예제 #1
0
static int
nfssvc_call(struct thread *p, struct nfssvc_args *uap, struct ucred *cred)
{
    int error = EINVAL;
    struct nfsd_idargs nid;

    if (uap->flag & NFSSVC_IDNAME) {
        error = copyin(uap->argp, (caddr_t)&nid, sizeof (nid));
        if (error)
            goto out;
        error = nfssvc_idname(&nid);
        goto out;
    } else if (uap->flag & NFSSVC_GETSTATS) {
        error = copyout(&newnfsstats,
                        CAST_USER_ADDR_T(uap->argp), sizeof (newnfsstats));
        if (error == 0) {
            if ((uap->flag & NFSSVC_ZEROCLTSTATS) != 0) {
                newnfsstats.attrcache_hits = 0;
                newnfsstats.attrcache_misses = 0;
                newnfsstats.lookupcache_hits = 0;
                newnfsstats.lookupcache_misses = 0;
                newnfsstats.direofcache_hits = 0;
                newnfsstats.direofcache_misses = 0;
                newnfsstats.accesscache_hits = 0;
                newnfsstats.accesscache_misses = 0;
                newnfsstats.biocache_reads = 0;
                newnfsstats.read_bios = 0;
                newnfsstats.read_physios = 0;
                newnfsstats.biocache_writes = 0;
                newnfsstats.write_bios = 0;
                newnfsstats.write_physios = 0;
                newnfsstats.biocache_readlinks = 0;
                newnfsstats.readlink_bios = 0;
                newnfsstats.biocache_readdirs = 0;
                newnfsstats.readdir_bios = 0;
                newnfsstats.rpcretries = 0;
                newnfsstats.rpcrequests = 0;
                newnfsstats.rpctimeouts = 0;
                newnfsstats.rpcunexpected = 0;
                newnfsstats.rpcinvalid = 0;
                bzero(newnfsstats.rpccnt,
                      sizeof(newnfsstats.rpccnt));
            }
            if ((uap->flag & NFSSVC_ZEROSRVSTATS) != 0) {
                newnfsstats.srvrpc_errs = 0;
                newnfsstats.srv_errs = 0;
                newnfsstats.srvcache_inproghits = 0;
                newnfsstats.srvcache_idemdonehits = 0;
                newnfsstats.srvcache_nonidemdonehits = 0;
                newnfsstats.srvcache_misses = 0;
                newnfsstats.srvcache_tcppeak = 0;
                newnfsstats.srvclients = 0;
                newnfsstats.srvopenowners = 0;
                newnfsstats.srvopens = 0;
                newnfsstats.srvlockowners = 0;
                newnfsstats.srvlocks = 0;
                newnfsstats.srvdelegates = 0;
                newnfsstats.clopenowners = 0;
                newnfsstats.clopens = 0;
                newnfsstats.cllockowners = 0;
                newnfsstats.cllocks = 0;
                newnfsstats.cldelegates = 0;
                newnfsstats.cllocalopenowners = 0;
                newnfsstats.cllocalopens = 0;
                newnfsstats.cllocallockowners = 0;
                newnfsstats.cllocallocks = 0;
                bzero(newnfsstats.srvrpccnt,
                      sizeof(newnfsstats.srvrpccnt));
                bzero(newnfsstats.cbrpccnt,
                      sizeof(newnfsstats.cbrpccnt));
            }
        }
        goto out;
    } else if (uap->flag & NFSSVC_NFSUSERDPORT) {
        u_short sockport;

        error = copyin(uap->argp, (caddr_t)&sockport,
                       sizeof (u_short));
        if (!error)
            error = nfsrv_nfsuserdport(sockport, p);
    } else if (uap->flag & NFSSVC_NFSUSERDDELPORT) {
        nfsrv_nfsuserddelport();
        error = 0;
    }

out:
    NFSEXITCODE(error);
    return (error);
}
예제 #2
0
/*
 * Convert a pathname into a pointer to a locked inode.
 *
 * The FOLLOW flag is set when symbolic links are to be followed
 * when they occur at the end of the name translation process.
 * Symbolic links are always followed for all other pathname
 * components other than the last.
 *
 * The segflg defines whether the name is to be copied from user
 * space or kernel space.
 *
 * Overall outline of namei:
 *
 *	copy in name
 *	get starting directory
 *	while (!done && !error) {
 *		call lookup to search path.
 *		if symbolic link, massage name in buffer and continue
 *	}
 *
 * Returns:	0			Success
 *		ENOENT			No such file or directory
 *		ELOOP			Too many levels of symbolic links
 *		ENAMETOOLONG		Filename too long
 *		copyinstr:EFAULT	Bad address
 *		copyinstr:ENAMETOOLONG	Filename too long
 *		lookup:EBADF		Bad file descriptor
 *		lookup:EROFS
 *		lookup:EACCES
 *		lookup:EPERM
 *		lookup:ERECYCLE	 vnode was recycled from underneath us in lookup.
 *						 This means we should re-drive lookup from this point.
 *		lookup: ???
 *		VNOP_READLINK:???
 */
int
namei(struct nameidata *ndp)
{
	struct filedesc *fdp;	/* pointer to file descriptor state */
	char *cp;		/* pointer into pathname argument */
	struct vnode *dp;	/* the directory we are searching */
	struct vnode *usedvp = ndp->ni_dvp;  /* store pointer to vp in case we must loop due to
										   	heavy vnode pressure */
	u_long cnpflags = ndp->ni_cnd.cn_flags; /* store in case we have to restore after loop */
	uio_t auio;
	int error;
	struct componentname *cnp = &ndp->ni_cnd;
	vfs_context_t ctx = cnp->cn_context;
	proc_t p = vfs_context_proc(ctx);
/* XXX ut should be from context */
	uthread_t ut = (struct uthread *)get_bsdthread_info(current_thread());
	char *tmppn;
	char uio_buf[ UIO_SIZEOF(1) ];

#if DIAGNOSTIC
	if (!vfs_context_ucred(ctx) || !p)
		panic ("namei: bad cred/proc");
	if (cnp->cn_nameiop & (~OPMASK))
		panic ("namei: nameiop contaminated with flags");
	if (cnp->cn_flags & OPMASK)
		panic ("namei: flags contaminated with nameiops");
#endif
	fdp = p->p_fd;

vnode_recycled:

	/*
	 * Get a buffer for the name to be translated, and copy the
	 * name into the buffer.
	 */
	if ((cnp->cn_flags & HASBUF) == 0) {
		cnp->cn_pnbuf = ndp->ni_pathbuf;
		cnp->cn_pnlen = PATHBUFLEN;
	}
#if LP64_DEBUG
	if (IS_VALID_UIO_SEGFLG(ndp->ni_segflg) == 0) {
		panic("%s :%d - invalid ni_segflg\n", __FILE__, __LINE__); 
	}
#endif /* LP64_DEBUG */

retry_copy:
	if (UIO_SEG_IS_USER_SPACE(ndp->ni_segflg)) {
		error = copyinstr(ndp->ni_dirp, cnp->cn_pnbuf,
			    cnp->cn_pnlen, (size_t *)&ndp->ni_pathlen);
	} else {
		error = copystr(CAST_DOWN(void *, ndp->ni_dirp), cnp->cn_pnbuf,
			    cnp->cn_pnlen, (size_t *)&ndp->ni_pathlen);
	}
	if (error == ENAMETOOLONG && !(cnp->cn_flags & HASBUF)) {
		MALLOC_ZONE(cnp->cn_pnbuf, caddr_t, MAXPATHLEN, M_NAMEI, M_WAITOK);
		if (cnp->cn_pnbuf == NULL) {
			error = ENOMEM;
			goto error_out;
		}

		cnp->cn_flags |= HASBUF;
		cnp->cn_pnlen = MAXPATHLEN;
		
		goto retry_copy;
	}
	if (error)
	        goto error_out;

#if CONFIG_VOLFS
 	/*
	 * Check for legacy volfs style pathnames.
	 *
	 * For compatibility reasons we currently allow these paths,
	 * but future versions of the OS may not support them.
	 */
	if (ndp->ni_pathlen >= VOLFS_MIN_PATH_LEN &&
	    cnp->cn_pnbuf[0] == '/' &&
	    cnp->cn_pnbuf[1] == '.' &&
	    cnp->cn_pnbuf[2] == 'v' &&
	    cnp->cn_pnbuf[3] == 'o' &&
	    cnp->cn_pnbuf[4] == 'l' &&
	    cnp->cn_pnbuf[5] == '/' ) {
		char * realpath;
		int realpath_err;
		/* Attempt to resolve a legacy volfs style pathname. */
		MALLOC_ZONE(realpath, caddr_t, MAXPATHLEN, M_NAMEI, M_WAITOK);
		if (realpath) {
			if ((realpath_err= vfs_getrealpath(&cnp->cn_pnbuf[6], realpath, MAXPATHLEN, ctx))) {
				FREE_ZONE(realpath, MAXPATHLEN, M_NAMEI);
				if (realpath_err == ENOSPC){
					error = ENAMETOOLONG;
					goto error_out;
				}
			} else {
				if (cnp->cn_flags & HASBUF) {
					FREE_ZONE(cnp->cn_pnbuf, cnp->cn_pnlen, M_NAMEI);
				}
				cnp->cn_pnbuf = realpath;
				cnp->cn_pnlen = MAXPATHLEN;
				ndp->ni_pathlen = strlen(realpath) + 1;
				cnp->cn_flags |= HASBUF | CN_VOLFSPATH;
			}
		}
	}
 #endif /* CONFIG_VOLFS */

	/* If we are auditing the kernel pathname, save the user pathname */
	if (cnp->cn_flags & AUDITVNPATH1)
		AUDIT_ARG(upath, ut->uu_cdir, cnp->cn_pnbuf, ARG_UPATH1); 
	if (cnp->cn_flags & AUDITVNPATH2)
		AUDIT_ARG(upath, ut->uu_cdir, cnp->cn_pnbuf, ARG_UPATH2); 

	/*
	 * Do not allow empty pathnames
	 */
	if (*cnp->cn_pnbuf == '\0') {
		error = ENOENT;
		goto error_out;
	}
	ndp->ni_loopcnt = 0;

	/*
	 * determine the starting point for the translation.
	 */
	if ((ndp->ni_rootdir = fdp->fd_rdir) == NULLVP) {
	        if ( !(fdp->fd_flags & FD_CHROOT))
		        ndp->ni_rootdir = rootvnode;
	}
	cnp->cn_nameptr = cnp->cn_pnbuf;

	ndp->ni_usedvp = NULLVP;

	if (*(cnp->cn_nameptr) == '/') {
	        while (*(cnp->cn_nameptr) == '/') {
		        cnp->cn_nameptr++;
			ndp->ni_pathlen--;
		}
		dp = ndp->ni_rootdir;
	} else if (cnp->cn_flags & USEDVP) {
	        dp = ndp->ni_dvp;
		ndp->ni_usedvp = dp;
	} else
	        dp = vfs_context_cwd(ctx);

	if (dp == NULLVP || (dp->v_lflag & VL_DEAD)) {
	        error = ENOENT;
		goto error_out;
	}
	ndp->ni_dvp = NULLVP;
	ndp->ni_vp  = NULLVP;

	for (;;) {
	        int need_newpathbuf;
		int linklen;

		ndp->ni_startdir = dp;

		if ( (error = lookup(ndp)) ) {
			goto error_out;
		}
		/*
		 * Check for symbolic link
		 */
		if ((cnp->cn_flags & ISSYMLINK) == 0) {
			return (0);
		}
		if ((cnp->cn_flags & FSNODELOCKHELD)) {
		        cnp->cn_flags &= ~FSNODELOCKHELD;
			unlock_fsnode(ndp->ni_dvp, NULL);
		}	
		if (ndp->ni_loopcnt++ >= MAXSYMLINKS) {
			error = ELOOP;
			break;
		}
#if CONFIG_MACF
		if ((error = mac_vnode_check_readlink(ctx, ndp->ni_vp)) != 0)
			break;
#endif /* MAC */
		if (ndp->ni_pathlen > 1 || !(cnp->cn_flags & HASBUF))
		        need_newpathbuf = 1;
		else
		        need_newpathbuf = 0;

		if (need_newpathbuf) {
			MALLOC_ZONE(cp, char *, MAXPATHLEN, M_NAMEI, M_WAITOK);
			if (cp == NULL) {
				error = ENOMEM;
				break;
			}
		} else {
			cp = cnp->cn_pnbuf;
		}
		auio = uio_createwithbuffer(1, 0, UIO_SYSSPACE, UIO_READ, &uio_buf[0], sizeof(uio_buf));

		uio_addiov(auio, CAST_USER_ADDR_T(cp), MAXPATHLEN);

		error = VNOP_READLINK(ndp->ni_vp, auio, ctx);
		if (error) {
			if (need_newpathbuf)
				FREE_ZONE(cp, MAXPATHLEN, M_NAMEI);
			break;
		}
		// LP64todo - fix this
		linklen = MAXPATHLEN - uio_resid(auio);
		if (linklen + ndp->ni_pathlen > MAXPATHLEN) {
			if (need_newpathbuf)
				FREE_ZONE(cp, MAXPATHLEN, M_NAMEI);

			error = ENAMETOOLONG;
			break;
		}
		if (need_newpathbuf) {
			long len = cnp->cn_pnlen;

			tmppn = cnp->cn_pnbuf;
			bcopy(ndp->ni_next, cp + linklen, ndp->ni_pathlen);
			cnp->cn_pnbuf = cp;
			cnp->cn_pnlen = MAXPATHLEN;

			if ( (cnp->cn_flags & HASBUF) )
			        FREE_ZONE(tmppn, len, M_NAMEI);
			else
			        cnp->cn_flags |= HASBUF;
		} else
			cnp->cn_pnbuf[linklen] = '\0';

		ndp->ni_pathlen += linklen;
		cnp->cn_nameptr = cnp->cn_pnbuf;

		/*
		 * starting point for 'relative'
		 * symbolic link path
		 */
		dp = ndp->ni_dvp;
	        /*
		 * get rid of references returned via 'lookup'
		 */
		vnode_put(ndp->ni_vp);
		vnode_put(ndp->ni_dvp);

		ndp->ni_vp = NULLVP;
		ndp->ni_dvp = NULLVP;

		/*
		 * Check if symbolic link restarts us at the root
		 */
		if (*(cnp->cn_nameptr) == '/') {
			while (*(cnp->cn_nameptr) == '/') {
				cnp->cn_nameptr++;
				ndp->ni_pathlen--;
			}
			if ((dp = ndp->ni_rootdir) == NULLVP) {
			        error = ENOENT;
				goto error_out;
			}
		}
	}
	/*
	 * only come here if we fail to handle a SYMLINK...
	 * if either ni_dvp or ni_vp is non-NULL, then
	 * we need to drop the iocount that was picked
	 * up in the lookup routine
	 */
	if (ndp->ni_dvp)
	        vnode_put(ndp->ni_dvp);
	if (ndp->ni_vp)
	        vnode_put(ndp->ni_vp);
 error_out:
	if ( (cnp->cn_flags & HASBUF) ) {
		cnp->cn_flags &= ~HASBUF;
		FREE_ZONE(cnp->cn_pnbuf, cnp->cn_pnlen, M_NAMEI);
	}
	cnp->cn_pnbuf = NULL;
	ndp->ni_vp = NULLVP;
	if (error == ERECYCLE){
		/* vnode was recycled underneath us. re-drive lookup to start at 
		   the beginning again, since recycling invalidated last lookup*/
		ndp->ni_cnd.cn_flags = cnpflags;
		ndp->ni_dvp = usedvp;
		goto vnode_recycled;
	}


	return (error);
}
예제 #3
0
void
sendsig(struct proc *p, user_addr_t catcher, int sig, int mask, __unused u_long code)
{
	kern_return_t kretn;
	struct mcontext mctx;
	user_addr_t p_mctx = USER_ADDR_NULL;		/* mcontext dest. */
	struct mcontext64 mctx64;
	user_addr_t p_mctx64 = USER_ADDR_NULL;		/* mcontext dest. */
	struct user_ucontext64 uctx;
	user_addr_t p_uctx;		/* user stack addr top copy ucontext */
	user_siginfo_t sinfo;
	user_addr_t p_sinfo;		/* user stack addr top copy siginfo */
	struct sigacts *ps = p->p_sigacts;
	int oonstack;
	user_addr_t sp;
	mach_msg_type_number_t state_count;
	thread_t th_act;
	struct uthread *ut;
	int infostyle = UC_TRAD;
	int dualcontext =0;
	user_addr_t trampact;
	int vec_used = 0;
	int stack_size = 0;
	void * tstate;
	int flavor;
        int ctx32 = 1;

	th_act = current_thread();
	ut = get_bsdthread_info(th_act);

	/*
	 * XXX We conditionalize type passed here based on SA_SIGINFO, but
	 * XXX we always send up all the information, regardless; perhaps
	 * XXX this should not be conditionalized?  Defer making this change
	 * XXX now, due to possible tools impact.
	 */
	if (p->p_sigacts->ps_siginfo & sigmask(sig)) {
		/*
		 * If SA_SIGINFO is set, then we must provide the user
		 * process both a siginfo_t and a context argument.  We call
		 * this "FLAVORED", as opposed to "TRADITIONAL", which doesn't
		 * expect a context.  "DUAL" is a type of "FLAVORED".
		 */
		if (is_64signalregset()) {
			/*
			 * If this is a 64 bit CPU, we must include a 64 bit
			 * context in the data we pass to user space; we may
			 * or may not also include a 32 bit context at the
			 * same time, for non-leaf functions.
			 *
			 * The user may also explicitly choose to not receive
			 * a 32 bit context, at their option; we only allow
			 * this to happen on 64 bit processors, for obvious
			 * reasons.
			 */
			if (IS_64BIT_PROCESS(p) ||
			    (p->p_sigacts->ps_64regset & sigmask(sig))) {
				 /*
				  * For a 64 bit process, there is no 32 bit
				  * context.
				  */
				ctx32 = 0;
				infostyle = UC_FLAVOR64;
			} else {
				/*
				 * For a 32 bit process on a 64 bit CPU, we
				 * may have 64 bit leaf functions, so we need
				 * both contexts.
				 */
				dualcontext = 1;
				infostyle = UC_DUAL;
			}
		} else {
			/*
			 * If this is a 32 bit CPU, then we only have a 32 bit
			 * context to contend with.
			 */
			infostyle = UC_FLAVOR;
		}
        } else {
		/*
		 * If SA_SIGINFO is not set, then we have a traditional style
		 * call which does not need additional context passed.  The
		 * default is 32 bit traditional.
		 *
		 * XXX The second check is redundant on PPC32; keep it anyway.
		 */
		if (is_64signalregset() || IS_64BIT_PROCESS(p)) {
			/*
			 * However, if this is a 64 bit CPU, we need to change
			 * this to 64 bit traditional, and drop the 32 bit
			 * context.
			 */
			ctx32 = 0;
			infostyle = UC_TRAD64;
		}
	}

	proc_unlock(p);

	/* I need this for SIGINFO anyway */
	flavor = PPC_THREAD_STATE;
	tstate = (void *)&mctx.ss;
	state_count = PPC_THREAD_STATE_COUNT;
	if (thread_getstatus(th_act, flavor, (thread_state_t)tstate, &state_count)  != KERN_SUCCESS)
		goto bad;

	if ((ctx32 == 0) || dualcontext) {
		flavor = PPC_THREAD_STATE64;
		tstate = (void *)&mctx64.ss;
		state_count = PPC_THREAD_STATE64_COUNT;
                if (thread_getstatus(th_act, flavor, (thread_state_t)tstate, &state_count)  != KERN_SUCCESS)
                    goto bad;
	}

        if ((ctx32 == 1) || dualcontext) {
                flavor = PPC_EXCEPTION_STATE;
		tstate = (void *)&mctx.es;
		state_count = PPC_EXCEPTION_STATE_COUNT;
                if (thread_getstatus(th_act, flavor, (thread_state_t)tstate, &state_count)  != KERN_SUCCESS)
                    goto bad;
       } 
       
	if ((ctx32 == 0) || dualcontext) {
 		flavor = PPC_EXCEPTION_STATE64;
		tstate = (void *)&mctx64.es;
		state_count = PPC_EXCEPTION_STATE64_COUNT;
       
                if (thread_getstatus(th_act, flavor, (thread_state_t)tstate, &state_count)  != KERN_SUCCESS)
                    goto bad;
                
        }
       

        if ((ctx32 == 1) || dualcontext) {
                flavor = PPC_FLOAT_STATE;
		tstate = (void *)&mctx.fs;
		state_count = PPC_FLOAT_STATE_COUNT;
                if (thread_getstatus(th_act, flavor, (thread_state_t)tstate, &state_count)  != KERN_SUCCESS)
                    goto bad;
       } 
       
	if ((ctx32 == 0) || dualcontext) {
 		flavor = PPC_FLOAT_STATE;
		tstate = (void *)&mctx64.fs;
		state_count = PPC_FLOAT_STATE_COUNT;
                       if (thread_getstatus(th_act, flavor, (thread_state_t)tstate, &state_count)  != KERN_SUCCESS)
                    goto bad;
                
        }


	if (find_user_vec_curr()) {
		vec_used = 1;

                if ((ctx32 == 1) || dualcontext) {
                    flavor = PPC_VECTOR_STATE;
                    tstate = (void *)&mctx.vs;
                    state_count = PPC_VECTOR_STATE_COUNT;
                    if (thread_getstatus(th_act, flavor, (thread_state_t)tstate, &state_count)  != KERN_SUCCESS)
                    goto bad;
                    infostyle += 5;
            } 
       
            if ((ctx32 == 0) || dualcontext) {
                    flavor = PPC_VECTOR_STATE;
                    tstate = (void *)&mctx64.vs;
                    state_count = PPC_VECTOR_STATE_COUNT;
                    if (thread_getstatus(th_act, flavor, (thread_state_t)tstate, &state_count)  != KERN_SUCCESS)
                        goto bad;
                    infostyle += 5;
           }
	}  

	trampact = ps->ps_trampact[sig];
	oonstack = ut->uu_sigstk.ss_flags & SA_ONSTACK;

	/* figure out where our new stack lives */
	if ((ut->uu_flag & UT_ALTSTACK) && !oonstack &&
		(ps->ps_sigonstack & sigmask(sig))) {
		sp = ut->uu_sigstk.ss_sp;
		sp += ut->uu_sigstk.ss_size;
		stack_size = ut->uu_sigstk.ss_size;
		ut->uu_sigstk.ss_flags |= SA_ONSTACK;
	}
	else {
		if (ctx32 == 0)
			sp = mctx64.ss.r1;
		else
			sp = CAST_USER_ADDR_T(mctx.ss.r1);
	}

	
	/* put siginfo on top */
        
	/* preserve RED ZONE area */
	if (IS_64BIT_PROCESS(p))
		sp = TRUNC_DOWN64(sp, C_64_REDZONE_LEN, C_64_STK_ALIGN);
	else
		sp = TRUNC_DOWN32(sp, C_32_REDZONE_LEN, C_32_STK_ALIGN);

        /* next are the saved registers */
        if ((ctx32 == 0) || dualcontext) {
            sp -= sizeof(struct mcontext64);
            p_mctx64 = sp;
        }
        if ((ctx32 == 1) || dualcontext) {
            sp -= sizeof(struct mcontext);
            p_mctx = sp;
        }    
        
	if (IS_64BIT_PROCESS(p)) {
		/* context goes first on stack */
		sp -= sizeof(struct user_ucontext64);
		p_uctx = sp;

		/* this is where siginfo goes on stack */
		sp -= sizeof(user_siginfo_t);
		p_sinfo = sp;
		
		sp = TRUNC_DOWN64(sp, C_64_PARAMSAVE_LEN+C_64_LINKAGE_LEN, C_64_STK_ALIGN);
	} else {
		/*
		 * struct ucontext and struct ucontext64 are identical in
		 * size and content; the only difference is the internal
		 * pointer type for the last element, which makes no
		 * difference for the copyout().
		 */

		/* context goes first on stack */
		sp -= sizeof(struct ucontext64);
		p_uctx = sp;

		/* this is where siginfo goes on stack */
		sp -= sizeof(siginfo_t);
		p_sinfo = sp;

		sp = TRUNC_DOWN32(sp, C_32_PARAMSAVE_LEN+C_32_LINKAGE_LEN, C_32_STK_ALIGN);
	}

	uctx.uc_onstack = oonstack;
	uctx.uc_sigmask = mask;
	uctx.uc_stack.ss_sp = sp;
	uctx.uc_stack.ss_size = stack_size;
	if (oonstack)
		uctx.uc_stack.ss_flags |= SS_ONSTACK;
		
	uctx.uc_link = 0;
	if (ctx32 == 0)
		uctx.uc_mcsize = (size_t)((PPC_EXCEPTION_STATE64_COUNT + PPC_THREAD_STATE64_COUNT + PPC_FLOAT_STATE_COUNT) * sizeof(int));
	else
		uctx.uc_mcsize = (size_t)((PPC_EXCEPTION_STATE_COUNT + PPC_THREAD_STATE_COUNT + PPC_FLOAT_STATE_COUNT) * sizeof(int));
	
	if (vec_used) 
		uctx.uc_mcsize += (size_t)(PPC_VECTOR_STATE_COUNT * sizeof(int));
        
	if (ctx32 == 0)
             uctx.uc_mcontext64 = p_mctx64;
       else
            uctx.uc_mcontext64 = p_mctx;

	/* setup siginfo */
	bzero((caddr_t)&sinfo, sizeof(user_siginfo_t));
	sinfo.si_signo = sig;
	if (ctx32 == 0) {
		sinfo.si_addr = mctx64.ss.srr0;
		sinfo.pad[0] = mctx64.ss.r1;
	} else {
		sinfo.si_addr = CAST_USER_ADDR_T(mctx.ss.srr0);
		sinfo.pad[0] = CAST_USER_ADDR_T(mctx.ss.r1);
	}

	switch (sig) {
		case SIGILL:
			/*
			 * If it's 64 bit and not a dual context, mctx will
			 * contain uninitialized data, so we have to use
			 * mctx64 here.
			 */
			if(ctx32 == 0) {
				if (mctx64.ss.srr1 & (1 << (31 - SRR1_PRG_ILL_INS_BIT)))
					sinfo.si_code = ILL_ILLOPC;
				else if (mctx64.ss.srr1 & (1 << (31 - SRR1_PRG_PRV_INS_BIT)))
					sinfo.si_code = ILL_PRVOPC;
				else if (mctx64.ss.srr1 & (1 << (31 - SRR1_PRG_TRAP_BIT)))
					sinfo.si_code = ILL_ILLTRP;
				else
					sinfo.si_code = ILL_NOOP;
			} else {
				if (mctx.ss.srr1 & (1 << (31 - SRR1_PRG_ILL_INS_BIT)))
					sinfo.si_code = ILL_ILLOPC;
				else if (mctx.ss.srr1 & (1 << (31 - SRR1_PRG_PRV_INS_BIT)))
					sinfo.si_code = ILL_PRVOPC;
				else if (mctx.ss.srr1 & (1 << (31 - SRR1_PRG_TRAP_BIT)))
					sinfo.si_code = ILL_ILLTRP;
				else
					sinfo.si_code = ILL_NOOP;
			}
			break;
		case SIGFPE:
#define FPSCR_VX	2
#define FPSCR_OX	3
#define FPSCR_UX	4
#define FPSCR_ZX	5
#define FPSCR_XX	6
			/*
			 * If it's 64 bit and not a dual context, mctx will
			 * contain uninitialized data, so we have to use
			 * mctx64 here.
			 */
			if(ctx32 == 0) {
				if (mctx64.fs.fpscr & (1 << (31 - FPSCR_VX)))
					sinfo.si_code = FPE_FLTINV;
				else if (mctx64.fs.fpscr & (1 << (31 - FPSCR_OX)))
					sinfo.si_code = FPE_FLTOVF;
				else if (mctx64.fs.fpscr & (1 << (31 - FPSCR_UX)))
					sinfo.si_code = FPE_FLTUND;
				else if (mctx64.fs.fpscr & (1 << (31 - FPSCR_ZX)))
					sinfo.si_code = FPE_FLTDIV;
				else if (mctx64.fs.fpscr & (1 << (31 - FPSCR_XX)))
					sinfo.si_code = FPE_FLTRES;
				else
					sinfo.si_code = FPE_NOOP;
			} else {
				if (mctx.fs.fpscr & (1 << (31 - FPSCR_VX)))
					sinfo.si_code = FPE_FLTINV;
				else if (mctx.fs.fpscr & (1 << (31 - FPSCR_OX)))
					sinfo.si_code = FPE_FLTOVF;
				else if (mctx.fs.fpscr & (1 << (31 - FPSCR_UX)))
					sinfo.si_code = FPE_FLTUND;
				else if (mctx.fs.fpscr & (1 << (31 - FPSCR_ZX)))
					sinfo.si_code = FPE_FLTDIV;
				else if (mctx.fs.fpscr & (1 << (31 - FPSCR_XX)))
					sinfo.si_code = FPE_FLTRES;
				else
					sinfo.si_code = FPE_NOOP;
			}
			break;

		case SIGBUS:
			if (ctx32 == 0) {
				sinfo.si_addr = mctx64.es.dar;
			} else {
				sinfo.si_addr = CAST_USER_ADDR_T(mctx.es.dar);
			}
			/* on ppc we generate only if EXC_PPC_UNALIGNED */
			sinfo.si_code = BUS_ADRALN;
			break;

		case SIGSEGV:
			/*
			 * If it's 64 bit and not a dual context, mctx will
			 * contain uninitialized data, so we have to use
			 * mctx64 here.
			 */
			if (ctx32 == 0) {
				sinfo.si_addr = mctx64.es.dar;
				/* First check in srr1 and then in dsisr */
				if (mctx64.ss.srr1 & (1 << (31 - DSISR_PROT_BIT)))
					sinfo.si_code = SEGV_ACCERR;
				else if (mctx64.es.dsisr & (1 << (31 - DSISR_PROT_BIT)))
					sinfo.si_code = SEGV_ACCERR;
				else
					sinfo.si_code = SEGV_MAPERR;
			} else {
				sinfo.si_addr = CAST_USER_ADDR_T(mctx.es.dar);
				/* First check in srr1 and then in dsisr */
				if (mctx.ss.srr1 & (1 << (31 - DSISR_PROT_BIT)))
					sinfo.si_code = SEGV_ACCERR;
				else if (mctx.es.dsisr & (1 << (31 - DSISR_PROT_BIT)))
					sinfo.si_code = SEGV_ACCERR;
				else
					sinfo.si_code = SEGV_MAPERR;
			}
			break;
		default:
		{
			int status_and_exitcode;

			/*
			 * All other signals need to fill out a minimum set of
			 * information for the siginfo structure passed into
			 * the signal handler, if SA_SIGINFO was specified.
			 *
			 * p->si_status actually contains both the status and
			 * the exit code; we save it off in its own variable
			 * for later breakdown.
			 */
			proc_lock(p);
			sinfo.si_pid = p->si_pid;
			p->si_pid = 0;
			status_and_exitcode = p->si_status;
			p->si_status = 0;
			sinfo.si_uid = p->si_uid;
			p->si_uid = 0;
			sinfo.si_code = p->si_code;
			p->si_code = 0;
			proc_unlock(p);
			if (sinfo.si_code == CLD_EXITED) {
				if (WIFEXITED(status_and_exitcode)) 
					sinfo.si_code = CLD_EXITED;
				else if (WIFSIGNALED(status_and_exitcode)) {
					if (WCOREDUMP(status_and_exitcode)) {
						sinfo.si_code = CLD_DUMPED;
						status_and_exitcode = W_EXITCODE(status_and_exitcode,status_and_exitcode);
					} else {
						sinfo.si_code = CLD_KILLED;
						status_and_exitcode = W_EXITCODE(status_and_exitcode,status_and_exitcode);
					}
				}
			}
			/*
			 * The recorded status contains the exit code and the
			 * signal information, but the information to be passed
			 * in the siginfo to the handler is supposed to only
			 * contain the status, so we have to shift it out.
			 */
			sinfo.si_status = WEXITSTATUS(status_and_exitcode);
			break;
		}
	}


	/* copy info out to user space */
	if (IS_64BIT_PROCESS(p)) {

		/* XXX truncates catcher address to uintptr_t */
		DTRACE_PROC3(signal__handle, int, sig, siginfo_t *, &sinfo,
			void (*)(void), CAST_DOWN(sig_t, catcher));

		if (copyout(&uctx, p_uctx, sizeof(struct user_ucontext64)))
			goto bad;
		if (copyout(&sinfo, p_sinfo, sizeof(user_siginfo_t)))
			goto bad;
	} else {
예제 #4
0
파일: OSKextLib.cpp 프로젝트: SbIm/xnu-env
/*********************************************************************
* IMPORTANT: Once we have done the vm_map_copyout(), we *must* return
* KERN_SUCCESS or the kernel map gets messed up (reason as yet
* unknown). We use op_result to return the real result of our work.
*********************************************************************/
kern_return_t kext_request(
    host_priv_t                             hostPriv,
    /* in only */  uint32_t                 clientLogSpec,
    /* in only */  vm_offset_t              requestIn,
    /* in only */  mach_msg_type_number_t   requestLengthIn,
    /* out only */ vm_offset_t            * responseOut,
    /* out only */ mach_msg_type_number_t * responseLengthOut,
    /* out only */ vm_offset_t            * logDataOut,
    /* out only */ mach_msg_type_number_t * logDataLengthOut,
    /* out only */ kern_return_t          * op_result)
{
    kern_return_t     result          = KERN_FAILURE;
    vm_map_address_t  map_addr        = 0;     // do not free/deallocate
    char            * request         = NULL;  // must vm_deallocate

    mkext2_header   * mkextHeader     = NULL;  // do not release
    bool              isMkext         = false;

    char            * response        = NULL;  // must kmem_free
    uint32_t          responseLength  = 0;
    char            * logData         = NULL;  // must kmem_free
    uint32_t          logDataLength   = 0;

   /* MIG doesn't pass "out" parameters as empty, so clear them immediately
    * just in case, or MIG will try to copy out bogus data.
    */    
    *op_result = KERN_FAILURE;
    *responseOut = NULL;
    *responseLengthOut = 0;
    *logDataOut = NULL;
    *logDataLengthOut = 0;

   /* Check for input. Don't discard what isn't there, though.
    */
    if (!requestLengthIn || !requestIn) {
		OSKextLog(/* kext */ NULL,
            kOSKextLogErrorLevel |
            kOSKextLogIPCFlag,
            "Invalid request from user space (no data).");
        *op_result = KERN_INVALID_ARGUMENT;
        goto finish;
    }

   /* Once we have done the vm_map_copyout(), we *must* return KERN_SUCCESS
    * or the kernel map gets messed up (reason as yet unknown). We will use
    * op_result to return the real result of our work.
    */
    result = vm_map_copyout(kernel_map, &map_addr, (vm_map_copy_t)requestIn);
    if (result != KERN_SUCCESS) {
        OSKextLog(/* kext */ NULL,
            kOSKextLogErrorLevel |
            kOSKextLogIPCFlag,
            "vm_map_copyout() failed for request from user space.");
        vm_map_copy_discard((vm_map_copy_t)requestIn);
        goto finish;
    }
    request = CAST_DOWN(char *, map_addr);

   /* Check if request is an mkext; this is always a load request
    * and requires root access. If it isn't an mkext, see if it's
    * an XML request, and check the request to see if that requires
    * root access.
    */
    if (requestLengthIn > sizeof(mkext2_header)) {
        mkextHeader = (mkext2_header *)request;
        if (MKEXT_GET_MAGIC(mkextHeader) == MKEXT_MAGIC &&
            MKEXT_GET_SIGNATURE(mkextHeader) == MKEXT_SIGN) {

            isMkext = true;
        }
    }

    if (isMkext) {
#ifdef SECURE_KERNEL
        // xxx - something tells me if we have a secure kernel we don't even
        // xxx - want to log a message here. :-)
        *op_result = KERN_NOT_SUPPORTED;
        goto finish;
#else
        // xxx - can we find out if calling task is kextd?
        // xxx - can we find the name of the calling task?
        if (hostPriv == HOST_PRIV_NULL) {
            OSKextLog(/* kext */ NULL,
                kOSKextLogErrorLevel |
                kOSKextLogLoadFlag | kOSKextLogIPCFlag,
                "Attempt by non-root process to load a kext.");
            *op_result = kOSKextReturnNotPrivileged;
            goto finish;
        }

        *op_result = OSKext::loadFromMkext((OSKextLogSpec)clientLogSpec,
            request, requestLengthIn,
            &logData, &logDataLength);

#endif /* defined(SECURE_KERNEL) */

    } else {

       /* If the request isn't an mkext, then is should be XML. Parse it
        * if possible and hand the request over to OSKext.
        */
        *op_result = OSKext::handleRequest(hostPriv,
            (OSKextLogSpec)clientLogSpec,
            request, requestLengthIn,
            &response, &responseLength,
            &logData, &logDataLength);
    }

    if (response && responseLength > 0) {
        kern_return_t copyin_result;

        copyin_result = vm_map_copyin(kernel_map,
            CAST_USER_ADDR_T(response), responseLength,
            /* src_destroy */ false, (vm_map_copy_t *)responseOut);
        if (copyin_result == KERN_SUCCESS) {
            *responseLengthOut = responseLength;
        } else {
            OSKextLog(/* kext */ NULL,
                kOSKextLogErrorLevel |
                kOSKextLogIPCFlag,
                "Failed to copy response to request from user space.");
            *op_result = copyin_result;  // xxx - should we map to our own code?
            *responseOut = NULL;
            *responseLengthOut = 0;
            goto finish;
        }
    }

    if (logData && logDataLength > 0) {
        kern_return_t copyin_result;

        copyin_result = vm_map_copyin(kernel_map,
            CAST_USER_ADDR_T(logData), logDataLength,
            /* src_destroy */ false, (vm_map_copy_t *)logDataOut);
        if (copyin_result == KERN_SUCCESS) {
            *logDataLengthOut = logDataLength;
        } else {
            OSKextLog(/* kext */ NULL,
                kOSKextLogErrorLevel |
                kOSKextLogIPCFlag,
                "Failed to copy log data for request from user space.");
            *op_result = copyin_result;  // xxx - should we map to our own code?
            *logDataOut = NULL;
            *logDataLengthOut = 0;
            goto finish;
        }
    }

finish:
    if (request) {
        (void)vm_deallocate(kernel_map, (vm_offset_t)request, requestLengthIn);
    }
    if (response) {
        kmem_free(kernel_map, (vm_offset_t)response, responseLength);
    }
    if (logData) {
        kmem_free(kernel_map, (vm_offset_t)logData, logDataLength);
    }

    return result;
}