예제 #1
0
int CVSpilsSetGSTypeB(void *cvadj_mem, int gstypeB)
{
  CVadjMem ca_mem;
  CVodeMem cvB_mem;
  int flag;

  if (cvadj_mem == NULL) {
    CVProcessError(NULL, CVSPILS_ADJMEM_NULL, "CVSPILS", "CVSpilsSetGSTypeB", MSGS_CAMEM_NULL);
    return(CVSPILS_ADJMEM_NULL);
  }
  ca_mem = (CVadjMem) cvadj_mem;

  cvB_mem = ca_mem->cvb_mem;

  flag = CVSpilsSetGSType(cvB_mem,gstypeB);

  return(flag);
}
예제 #2
0
int CVSpilsSetGSTypeB(void *cvode_mem, int which, int gstypeB)
{
  CVodeMem cv_mem;
  CVadjMem ca_mem;
  CVodeBMem cvB_mem;
  void *cvodeB_mem;
  int flag;

  /* Check if cvode_mem exists */
  if (cvode_mem == NULL) {
    cvProcessError(NULL, CVSPILS_MEM_NULL, "CVSPILS", "CVSpilsSetGSTypeB", MSGS_CVMEM_NULL);
    return(CVSPILS_MEM_NULL);
  }
  cv_mem = (CVodeMem) cvode_mem;

  /* Was ASA initialized? */
  if (cv_mem->cv_adjMallocDone == FALSE) {
    cvProcessError(cv_mem, CVSPILS_NO_ADJ, "CVSPILS", "CVSpilsSetGSTypeB", MSGS_NO_ADJ);
    return(CVSPILS_NO_ADJ);
  } 
  ca_mem = cv_mem->cv_adj_mem;

  /* Check which */
  if ( which >= ca_mem->ca_nbckpbs ) {
    cvProcessError(cv_mem, CVSPILS_ILL_INPUT, "CVSPILS", "CVSpilsSetGSTypeB", MSGS_BAD_WHICH);
    return(CVSPILS_ILL_INPUT);
  }

  /* Find the CVodeBMem entry in the linked list corresponding to which */
  cvB_mem = ca_mem->cvB_mem;
  while (cvB_mem != NULL) {
    if ( which == cvB_mem->cv_index ) break;
    cvB_mem = cvB_mem->cv_next;
  }

  cvodeB_mem = (void *) (cvB_mem->cv_mem);

  flag = CVSpilsSetGSType(cvodeB_mem,gstypeB);

  return(flag);
}
예제 #3
0
void FCV_BPSPGMR(int *pretype, int *gstype, int *maxl, realtype *delt, int *ier)
{
  /* 
     Call CVBPSpgmr to specify the SPGMR linear solver:
     CV_cvodemem is the pointer to the CVODE memory block
     pretype    is the preconditioner type
     gstype     is the Gram-Schmidt process type
     maxl       is the maximum Krylov dimension
     delt       is the linear convergence tolerance factor 
  */

  *ier = CVBPSpgmr(CV_cvodemem, *pretype, *maxl, CVBP_Data);
  if (*ier != CVSPILS_SUCCESS) return;

  *ier = CVSpilsSetGSType(CV_cvodemem, *gstype);
  if (*ier != CVSPILS_SUCCESS) return;

  *ier = CVSpilsSetDelt(CV_cvodemem, *delt);
  if (*ier != CVSPILS_SUCCESS) return;

  CV_ls = CV_LS_SPGMR;
}
예제 #4
0
PetscErrorCode TSSetUp_Sundials(TS ts)
{
  TS_Sundials    *cvode = (TS_Sundials*)ts->data;
  PetscErrorCode ierr;
  PetscInt       glosize,locsize,i,flag;
  PetscScalar    *y_data,*parray;
  void           *mem;
  PC             pc;
  PCType         pctype;
  PetscBool      pcnone;

  PetscFunctionBegin;
  /* get the vector size */
  ierr = VecGetSize(ts->vec_sol,&glosize);CHKERRQ(ierr);
  ierr = VecGetLocalSize(ts->vec_sol,&locsize);CHKERRQ(ierr);

  /* allocate the memory for N_Vec y */
  cvode->y = N_VNew_Parallel(cvode->comm_sundials,locsize,glosize);
  if (!cvode->y) SETERRQ(PETSC_COMM_SELF,1,"cvode->y is not allocated");

  /* initialize N_Vec y: copy ts->vec_sol to cvode->y */
  ierr   = VecGetArray(ts->vec_sol,&parray);CHKERRQ(ierr);
  y_data = (PetscScalar*) N_VGetArrayPointer(cvode->y);
  for (i = 0; i < locsize; i++) y_data[i] = parray[i];
  ierr = VecRestoreArray(ts->vec_sol,NULL);CHKERRQ(ierr);

  ierr = VecDuplicate(ts->vec_sol,&cvode->update);CHKERRQ(ierr);
  ierr = VecDuplicate(ts->vec_sol,&cvode->ydot);CHKERRQ(ierr);
  ierr = PetscLogObjectParent((PetscObject)ts,(PetscObject)cvode->update);CHKERRQ(ierr);
  ierr = PetscLogObjectParent((PetscObject)ts,(PetscObject)cvode->ydot);CHKERRQ(ierr);

  /*
    Create work vectors for the TSPSolve_Sundials() routine. Note these are
    allocated with zero space arrays because the actual array space is provided
    by Sundials and set using VecPlaceArray().
  */
  ierr = VecCreateMPIWithArray(PetscObjectComm((PetscObject)ts),1,locsize,PETSC_DECIDE,0,&cvode->w1);CHKERRQ(ierr);
  ierr = VecCreateMPIWithArray(PetscObjectComm((PetscObject)ts),1,locsize,PETSC_DECIDE,0,&cvode->w2);CHKERRQ(ierr);
  ierr = PetscLogObjectParent((PetscObject)ts,(PetscObject)cvode->w1);CHKERRQ(ierr);
  ierr = PetscLogObjectParent((PetscObject)ts,(PetscObject)cvode->w2);CHKERRQ(ierr);

  /* Call CVodeCreate to create the solver memory and the use of a Newton iteration */
  mem = CVodeCreate(cvode->cvode_type, CV_NEWTON);
  if (!mem) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_MEM,"CVodeCreate() fails");
  cvode->mem = mem;

  /* Set the pointer to user-defined data */
  flag = CVodeSetUserData(mem, ts);
  if (flag) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_LIB,"CVodeSetUserData() fails");

  /* Sundials may choose to use a smaller initial step, but will never use a larger step. */
  flag = CVodeSetInitStep(mem,(realtype)ts->time_step);
  if (flag) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_LIB,"CVodeSetInitStep() failed");
  if (cvode->mindt > 0) {
    flag = CVodeSetMinStep(mem,(realtype)cvode->mindt);
    if (flag) {
      if (flag == CV_MEM_NULL) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_LIB,"CVodeSetMinStep() failed, cvode_mem pointer is NULL");
      else if (flag == CV_ILL_INPUT) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_LIB,"CVodeSetMinStep() failed, hmin is nonpositive or it exceeds the maximum allowable step size");
      else SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_LIB,"CVodeSetMinStep() failed");
    }
  }
  if (cvode->maxdt > 0) {
    flag = CVodeSetMaxStep(mem,(realtype)cvode->maxdt);
    if (flag) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_LIB,"CVodeSetMaxStep() failed");
  }

  /* Call CVodeInit to initialize the integrator memory and specify the
   * user's right hand side function in u'=f(t,u), the inital time T0, and
   * the initial dependent variable vector cvode->y */
  flag = CVodeInit(mem,TSFunction_Sundials,ts->ptime,cvode->y);
  if (flag) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_LIB,"CVodeInit() fails, flag %d",flag);

  /* specifies scalar relative and absolute tolerances */
  flag = CVodeSStolerances(mem,cvode->reltol,cvode->abstol);
  if (flag) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_LIB,"CVodeSStolerances() fails, flag %d",flag);

  /* Specify max num of steps to be taken by cvode in its attempt to reach the next output time */
  flag = CVodeSetMaxNumSteps(mem,ts->max_steps);

  /* call CVSpgmr to use GMRES as the linear solver.        */
  /* setup the ode integrator with the given preconditioner */
  ierr = TSSundialsGetPC(ts,&pc);CHKERRQ(ierr);
  ierr = PCGetType(pc,&pctype);CHKERRQ(ierr);
  ierr = PetscObjectTypeCompare((PetscObject)pc,PCNONE,&pcnone);CHKERRQ(ierr);
  if (pcnone) {
    flag = CVSpgmr(mem,PREC_NONE,0);
    if (flag) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_LIB,"CVSpgmr() fails, flag %d",flag);
  } else {
    flag = CVSpgmr(mem,PREC_LEFT,cvode->maxl);
    if (flag) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_LIB,"CVSpgmr() fails, flag %d",flag);

    /* Set preconditioner and solve routines Precond and PSolve,
     and the pointer to the user-defined block data */
    flag = CVSpilsSetPreconditioner(mem,TSPrecond_Sundials,TSPSolve_Sundials);
    if (flag) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_LIB,"CVSpilsSetPreconditioner() fails, flag %d", flag);
  }

  flag = CVSpilsSetGSType(mem, MODIFIED_GS);
  if (flag) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_LIB,"CVSpgmrSetGSType() fails, flag %d",flag);
  PetscFunctionReturn(0);
}
int main()
{
    realtype abstol=ATOL, reltol=RTOL, t, tout;
    N_Vector c;
    WebData wdata;
    void *cvode_mem;
    booleantype firstrun;
    int jpre, gstype, flag;
    int ns, mxns, iout;

    c = NULL;
    wdata = NULL;
    cvode_mem = NULL;

    /* Initializations */
    c = N_VNew_Serial(NEQ);
    if(check_flag((void *)c, "N_VNew_Serial", 0)) return(1);
    wdata = AllocUserData();
    if(check_flag((void *)wdata, "AllocUserData", 2)) return(1);
    InitUserData(wdata);
    ns = wdata->ns;
    mxns = wdata->mxns;

    /* Print problem description */
    PrintIntro();

    /* Loop over jpre and gstype (four cases) */
    for (jpre = PREC_LEFT; jpre <= PREC_RIGHT; jpre++) {
        for (gstype = MODIFIED_GS; gstype <= CLASSICAL_GS; gstype++) {

            /* Initialize c and print heading */
            CInit(c, wdata);
            PrintHeader(jpre, gstype);

            /* Call CVodeInit or CVodeReInit, then CVSpgmr to set up problem */

            firstrun = (jpre == PREC_LEFT) && (gstype == MODIFIED_GS);
            if (firstrun) {
                cvode_mem = CVodeCreate(CV_BDF, CV_NEWTON);
                if(check_flag((void *)cvode_mem, "CVodeCreate", 0)) return(1);

                wdata->cvode_mem = cvode_mem;

                flag = CVodeSetUserData(cvode_mem, wdata);
                if(check_flag(&flag, "CVodeSetUserData", 1)) return(1);

                flag = CVodeInit(cvode_mem, f, T0, c);
                if(check_flag(&flag, "CVodeInit", 1)) return(1);

                flag = CVodeSStolerances(cvode_mem, reltol, abstol);
                if (check_flag(&flag, "CVodeSStolerances", 1)) return(1);

                flag = CVSpgmr(cvode_mem, jpre, MAXL);
                if(check_flag(&flag, "CVSpgmr", 1)) return(1);

                flag = CVSpilsSetGSType(cvode_mem, gstype);
                if(check_flag(&flag, "CVSpilsSetGSType", 1)) return(1);

                flag = CVSpilsSetEpsLin(cvode_mem, DELT);
                if(check_flag(&flag, "CVSpilsSetEpsLin", 1)) return(1);

                flag = CVSpilsSetPreconditioner(cvode_mem, Precond, PSolve);
                if(check_flag(&flag, "CVSpilsSetPreconditioner", 1)) return(1);

            } else {

                flag = CVodeReInit(cvode_mem, T0, c);
                if(check_flag(&flag, "CVodeReInit", 1)) return(1);

                flag = CVSpilsSetPrecType(cvode_mem, jpre);
                check_flag(&flag, "CVSpilsSetPrecType", 1);
                flag = CVSpilsSetGSType(cvode_mem, gstype);
                if(check_flag(&flag, "CVSpilsSetGSType", 1)) return(1);

            }

            /* Print initial values */
            if (firstrun) PrintAllSpecies(c, ns, mxns, T0);

            /* Loop over output points, call CVode, print sample solution values. */
            tout = T1;
            for (iout = 1; iout <= NOUT; iout++) {
                flag = CVode(cvode_mem, tout, c, &t, CV_NORMAL);
                PrintOutput(cvode_mem, t);
                if (firstrun && (iout % 3 == 0)) PrintAllSpecies(c, ns, mxns, t);
                if(check_flag(&flag, "CVode", 1)) break;
                if (tout > RCONST(0.9)) tout += DTOUT;
                else tout *= TOUT_MULT;
            }

            /* Print final statistics, and loop for next case */
            PrintFinalStats(cvode_mem);

        }
    }

    /* Free all memory */
    CVodeFree(&cvode_mem);
    N_VDestroy_Serial(c);
    FreeUserData(wdata);

    return(0);
}
예제 #6
0
int main(void)
{
  realtype abstol, reltol, t, tout;
  N_Vector u;
  UserData data;
  void *cvode_mem;
  int linsolver, iout, flag;

  u = NULL;
  data = NULL;
  cvode_mem = NULL;

  /* Allocate memory, and set problem data, initial values, tolerances */ 
  u = N_VNew_Serial(NEQ);
  if(check_flag((void *)u, "N_VNew_Serial", 0)) return(1);
  data = AllocUserData();
  if(check_flag((void *)data, "AllocUserData", 2)) return(1);
  InitUserData(data);
  SetInitialProfiles(u, data->dx, data->dy);
  abstol=ATOL; 
  reltol=RTOL;

  /* Call CVodeCreate to create the solver memory and specify the 
   * Backward Differentiation Formula and the use of a Newton iteration */
  cvode_mem = CVodeCreate(CV_BDF, CV_NEWTON);
  if(check_flag((void *)cvode_mem, "CVodeCreate", 0)) return(1);

  /* Set the pointer to user-defined data */
  flag = CVodeSetUserData(cvode_mem, data);
  if(check_flag(&flag, "CVodeSetUserData", 1)) return(1);

  /* Call CVodeInit to initialize the integrator memory and specify the
   * user's right hand side function in u'=f(t,u), the inital time T0, and
   * the initial dependent variable vector u. */
  flag = CVodeInit(cvode_mem, f, T0, u);
  if(check_flag(&flag, "CVodeInit", 1)) return(1);

  /* Call CVodeSStolerances to specify the scalar relative tolerance
   * and scalar absolute tolerances */
  flag = CVodeSStolerances(cvode_mem, reltol, abstol);
  if (check_flag(&flag, "CVodeSStolerances", 1)) return(1);

  /* START: Loop through SPGMR, SPBCG and SPTFQMR linear solver modules */
  for (linsolver = 0; linsolver < 3; ++linsolver) {

    if (linsolver != 0) {

      /* Re-initialize user data */
      InitUserData(data);
      SetInitialProfiles(u, data->dx, data->dy);

    /* Re-initialize CVode for the solution of the same problem, but
       using a different linear solver module */
      flag = CVodeReInit(cvode_mem, T0, u);
      if (check_flag(&flag, "CVodeReInit", 1)) return(1);

    }

    /* Attach a linear solver module */
    switch(linsolver) {

    /* (a) SPGMR */
    case(USE_SPGMR):

      /* Print header */
      printf(" -------");
      printf(" \n| SPGMR |\n");
      printf(" -------\n");

      /* Call CVSpgmr to specify the linear solver CVSPGMR 
	 with left preconditioning and the maximum Krylov dimension maxl */
      flag = CVSpgmr(cvode_mem, PREC_LEFT, 0);
      if(check_flag(&flag, "CVSpgmr", 1)) return(1);

      /* Set modified Gram-Schmidt orthogonalization, preconditioner 
	 setup and solve routines Precond and PSolve, and the pointer 
	 to the user-defined block data */
      flag = CVSpilsSetGSType(cvode_mem, MODIFIED_GS);
      if(check_flag(&flag, "CVSpilsSetGSType", 1)) return(1);

      break;

    /* (b) SPBCG */
    case(USE_SPBCG):

      /* Print header */
      printf(" -------");
      printf(" \n| SPBCG |\n");
      printf(" -------\n");

      /* Call CVSpbcg to specify the linear solver CVSPBCG 
	 with left preconditioning and the maximum Krylov dimension maxl */
      flag = CVSpbcg(cvode_mem, PREC_LEFT, 0);
      if(check_flag(&flag, "CVSpbcg", 1)) return(1);

      break;

    /* (c) SPTFQMR */
    case(USE_SPTFQMR):

      /* Print header */
      printf(" ---------");
      printf(" \n| SPTFQMR |\n");
      printf(" ---------\n");

      /* Call CVSptfqmr to specify the linear solver CVSPTFQMR 
	 with left preconditioning and the maximum Krylov dimension maxl */
      flag = CVSptfqmr(cvode_mem, PREC_LEFT, 0);
      if(check_flag(&flag, "CVSptfqmr", 1)) return(1);

      break;

    }


    /* Set preconditioner setup and solve routines Precond and PSolve,
       and the pointer to the user-defined block data */
    flag = CVSpilsSetPreconditioner(cvode_mem, Precond, PSolve);
    if(check_flag(&flag, "CVSpilsSetPreconditioner", 1)) return(1);

    /* In loop over output points, call CVode, print results, test for error */
    printf(" \n2-species diurnal advection-diffusion problem\n\n");
    for (iout=1, tout = TWOHR; iout <= NOUT; iout++, tout += TWOHR) {
      flag = CVode(cvode_mem, tout, u, &t, CV_NORMAL);
      PrintOutput(cvode_mem, u, t);
      if(check_flag(&flag, "CVode", 1)) break;
    }

    PrintFinalStats(cvode_mem, linsolver);

  }  /* END: Loop through SPGMR, SPBCG and SPTFQMR linear solver modules */

  /* Free memory */
  N_VDestroy_Serial(u);
  FreeUserData(data);
  CVodeFree(&cvode_mem);

  return(0);
}
예제 #7
0
PetscErrorCode TSSetUp_Sundials_Nonlinear(TS ts)
{
  TS_Sundials    *cvode = (TS_Sundials*)ts->data;
  PetscErrorCode ierr;
  PetscInt       glosize,locsize,i,flag;
  PetscScalar    *y_data,*parray;
  void           *mem;
  const PCType   pctype;
  PetscTruth     pcnone;
  Vec            sol = ts->vec_sol;

  PetscFunctionBegin;
  ierr = PCSetFromOptions(cvode->pc);CHKERRQ(ierr);
  /* get the vector size */
  ierr = VecGetSize(ts->vec_sol,&glosize);CHKERRQ(ierr);
  ierr = VecGetLocalSize(ts->vec_sol,&locsize);CHKERRQ(ierr);

  /* allocate the memory for N_Vec y */
  cvode->y = N_VNew_Parallel(cvode->comm_sundials,locsize,glosize);
  if (!cvode->y) SETERRQ(1,"cvode->y is not allocated");

  /* initialize N_Vec y: copy ts->vec_sol to cvode->y */
  ierr = VecGetArray(ts->vec_sol,&parray);CHKERRQ(ierr);
  y_data = (PetscScalar *) N_VGetArrayPointer(cvode->y);
  for (i = 0; i < locsize; i++) y_data[i] = parray[i];
  /*ierr = PetscMemcpy(y_data,parray,locsize*sizeof(PETSC_SCALAR)); CHKERRQ(ierr);*/
  ierr = VecRestoreArray(ts->vec_sol,PETSC_NULL);CHKERRQ(ierr);
  ierr = VecDuplicate(ts->vec_sol,&cvode->update);CHKERRQ(ierr);  
  ierr = VecDuplicate(ts->vec_sol,&cvode->func);CHKERRQ(ierr);  
  ierr = PetscLogObjectParent(ts,cvode->update);CHKERRQ(ierr);
  ierr = PetscLogObjectParent(ts,cvode->func);CHKERRQ(ierr);

  /* 
    Create work vectors for the TSPSolve_Sundials() routine. Note these are
    allocated with zero space arrays because the actual array space is provided 
    by Sundials and set using VecPlaceArray().
  */
  ierr = VecCreateMPIWithArray(((PetscObject)ts)->comm,locsize,PETSC_DECIDE,0,&cvode->w1);CHKERRQ(ierr);
  ierr = VecCreateMPIWithArray(((PetscObject)ts)->comm,locsize,PETSC_DECIDE,0,&cvode->w2);CHKERRQ(ierr);
  ierr = PetscLogObjectParent(ts,cvode->w1);CHKERRQ(ierr);
  ierr = PetscLogObjectParent(ts,cvode->w2);CHKERRQ(ierr);

  /* Call CVodeCreate to create the solver memory and the use of a Newton iteration */
  mem = CVodeCreate(cvode->cvode_type, CV_NEWTON); 
  if (!mem) SETERRQ(PETSC_ERR_MEM,"CVodeCreate() fails");
  cvode->mem = mem;

  /* Set the pointer to user-defined data */
  flag = CVodeSetUserData(mem, ts);
  if (flag) SETERRQ(PETSC_ERR_LIB,"CVodeSetUserData() fails");

  /* Call CVodeInit to initialize the integrator memory and specify the
   * user's right hand side function in u'=f(t,u), the inital time T0, and
   * the initial dependent variable vector cvode->y */
  flag = CVodeInit(mem,TSFunction_Sundials,ts->ptime,cvode->y);
  if (flag){
    SETERRQ1(PETSC_ERR_LIB,"CVodeInit() fails, flag %d",flag);
  }

  flag = CVodeSStolerances(mem,cvode->reltol,cvode->abstol);
  if (flag){
    SETERRQ1(PETSC_ERR_LIB,"CVodeSStolerances() fails, flag %d",flag);
  }

  /* initialize the number of steps */
  ierr   = TSMonitor(ts,ts->steps,ts->ptime,sol);CHKERRQ(ierr); 

  /* call CVSpgmr to use GMRES as the linear solver.        */
  /* setup the ode integrator with the given preconditioner */
  ierr = PCGetType(cvode->pc,&pctype);CHKERRQ(ierr);
  ierr = PetscTypeCompare((PetscObject)cvode->pc,PCNONE,&pcnone);CHKERRQ(ierr);
  if (pcnone){
    flag  = CVSpgmr(mem,PREC_NONE,0);
    if (flag) SETERRQ1(PETSC_ERR_LIB,"CVSpgmr() fails, flag %d",flag);
  } else {
    flag  = CVSpgmr(mem,PREC_LEFT,0);
    if (flag) SETERRQ1(PETSC_ERR_LIB,"CVSpgmr() fails, flag %d",flag);

    /* Set preconditioner and solve routines Precond and PSolve, 
     and the pointer to the user-defined block data */
    flag = CVSpilsSetPreconditioner(mem,TSPrecond_Sundials,TSPSolve_Sundials);
    if (flag) SETERRQ1(PETSC_ERR_LIB,"CVSpilsSetPreconditioner() fails, flag %d", flag);
  }

  flag = CVSpilsSetGSType(mem, MODIFIED_GS);
  if (flag) SETERRQ1(PETSC_ERR_LIB,"CVSpgmrSetGSType() fails, flag %d",flag);
  PetscFunctionReturn(0);
}
예제 #8
0
int main()
{
  realtype abstol, reltol, t, tout;
  N_Vector u;
  UserData data;
  void *cvode_mem;
  int iout, flag;

  u = NULL;
  data = NULL;
  cvode_mem = NULL;

  /* Allocate memory, and set problem data, initial values, tolerances */ 
  u = N_VNew_Serial(NEQ);
  if(check_flag((void *)u, "N_VNew_Serial", 0)) return(1);
  data = AllocUserData();
  if(check_flag((void *)data, "AllocUserData", 2)) return(1);
  InitUserData(data);
  SetInitialProfiles(u, data->dx, data->dy);
  abstol=ATOL; 
  reltol=RTOL;

  /* Call CVodeCreate to create the solver memory and specify the 
   * Backward Differentiation Formula and the use of a Newton iteration */
  cvode_mem = CVodeCreate(CV_BDF, CV_NEWTON);
  if(check_flag((void *)cvode_mem, "CVodeCreate", 0)) return(1);

  /* Set the pointer to user-defined data */
  flag = CVodeSetUserData(cvode_mem, data);
  if(check_flag(&flag, "CVodeSetUserData", 1)) return(1);

  /* Call CVodeInit to initialize the integrator memory and specify the
   * user's right hand side function in u'=f(t,u), the inital time T0, and
   * the initial dependent variable vector u. */
  flag = CVodeInit(cvode_mem, f, T0, u);
  if(check_flag(&flag, "CVodeInit", 1)) return(1);

  /* Call CVodeSStolerances to specify the scalar relative tolerance
   * and scalar absolute tolerances */
  flag = CVodeSStolerances(cvode_mem, reltol, abstol);
  if (check_flag(&flag, "CVodeSStolerances", 1)) return(1);

  /* Call CVSpgmr to specify the linear solver CVSPGMR 
   * with left preconditioning and the maximum Krylov dimension maxl */
  flag = CVSpgmr(cvode_mem, PREC_LEFT, 0);
  if(check_flag(&flag, "CVSpgmr", 1)) return(1);

  /* set the JAcobian-times-vector function */
  flag = CVSpilsSetJacTimesVecFn(cvode_mem, jtv);
  if(check_flag(&flag, "CVSpilsSetJacTimesVecFn", 1)) return(1);

  /* Set modified Gram-Schmidt orthogonalization */
  flag = CVSpilsSetGSType(cvode_mem, MODIFIED_GS);
  if(check_flag(&flag, "CVSpilsSetGSType", 1)) return(1);

  /* Set the preconditioner solve and setup functions */
  flag = CVSpilsSetPreconditioner(cvode_mem, Precond, PSolve);
  if(check_flag(&flag, "CVSpilsSetPreconditioner", 1)) return(1);

  /* In loop over output points, call CVode, print results, test for error */
  printf(" \n2-species diurnal advection-diffusion problem\n\n");
  for (iout=1, tout = TWOHR; iout <= NOUT; iout++, tout += TWOHR) {
    flag = CVode(cvode_mem, tout, u, &t, CV_NORMAL);
    PrintOutput(cvode_mem, u, t);
    if(check_flag(&flag, "CVode", 1)) break;
  }

  PrintFinalStats(cvode_mem);

  /* Free memory */
  N_VDestroy_Serial(u);
  FreeUserData(data);
  CVodeFree(&cvode_mem);

  return(0);
}