예제 #1
0
//图像预处理第6步:分割,并在分割出来的字符外面画框以标识
void CChildView::OnImgprcDivide() 
{
	m_charRect=CharSegment(m_hDIB);
	//在屏幕上显示位图
	CDC* pDC=GetDC();
	DisplayDIB(pDC,m_hDIB);	
	DrawFrame(pDC,m_hDIB,m_charRect,2,RGB(20,60,200));
}
예제 #2
0
// 阈值分割
vector<CharSegment> OCR::segment(Plate plate) {
    Mat input = plate.plateImg;
    vector<CharSegment> output;
    Mat thresholdImage;
    threshold(input, thresholdImage, 60, 255, CV_THRESH_BINARY_INV);
    if (DEBUG)
        imshow("Threshold plate", thresholdImage);
    Mat img_contours;
    thresholdImage.copyTo(img_contours);
    // 找到可能的车牌的轮廓
    vector< vector< Point> > contours;
    findContours(img_contours,
                 contours, // 检测的轮廓数组,每一个轮廓用一个point类型的vector表示
                 CV_RETR_EXTERNAL, // 表示只检测外轮廓
                 CV_CHAIN_APPROX_NONE); // 轮廓的近似办法,这里存储所有的轮廓点

    // 在白色的图上画出蓝色的轮廓
    cv::Mat result;

    thresholdImage.copyTo(result);
    cvtColor(result, result, CV_GRAY2RGB);
    cv::drawContours(result, contours,
                     -1,  // 所有的轮廓都画出
                     cv::Scalar(255, 0, 0), // 颜色
                     1); // 线粗

    // 对每个轮廓检测和提取最小区域的有界矩形区域
    vector<vector<Point> >::iterator itc = contours.begin();

    char res[20];
    int i = 0;
    // 若没有达到设定的宽高比要求,移去该区域
    while (itc != contours.end())
    {
        Rect mr = boundingRect(Mat(*itc));
        rectangle(result, mr, Scalar(0, 255, 0));
        // 裁剪图像
        Mat auxRoi(thresholdImage, mr);
        if (verifySizes(auxRoi)) {
            auxRoi = preprocessChar(auxRoi);
            output.push_back(CharSegment(auxRoi, mr));
            //保存每个字符图片
            sprintf(res, "PlateNumber%d.jpg", i);
            i++;
            imwrite(res, auxRoi);
            rectangle(result, mr, Scalar(0, 125, 255));
        }
        ++itc;
    }
    if (DEBUG)
        cout << "Num chars: " << output.size() << "\n";

    if (DEBUG)
        imshow("SEgmented Chars", result);
    return output;
}
예제 #3
0
//Segment the chars from plate
vector<CharSegment> OCR::segment(Plate plate){
    Mat input=plate.plateImg;
    vector<CharSegment> output;

    //Threshold input image
    Mat img_threshold;
    //To make char image clearly
//    threshold(input, img_threshold, 60, 255, CV_THRESH_BINARY_INV);	//Spain
//    threshold(input, img_threshold, 150~160, 255, CV_THRESH_BINARY);	//China
    // TODO: IMPORTANT
    threshold(input, img_threshold, 175, 255, CV_THRESH_BINARY);	//China
    if(debug) {
        imshow("OCR_Threshold_Binary", img_threshold);
    }

    Mat img_contours;
    img_threshold.copyTo(img_contours);
    //Find contours of possibles characters
    vector< vector< Point> > contours;
    findContours(img_contours,
            contours, // a vector of contours
            CV_RETR_EXTERNAL, // retrieve the external contours
            CV_CHAIN_APPROX_NONE); // all pixels of each contours
    
    // Draw blue contours on a white image
    cv::Mat result;
    img_threshold.copyTo(result);
    cvtColor(result, result, CV_GRAY2RGB);
    cv::drawContours(result,
    		contours,
            -1, // draw all contours
            cv::Scalar(255,0,0), // in BLUE
            1); // with a thickness of 1

    //Start to iterate to each contour founded
    vector<vector<Point> >::iterator itc = contours.begin();
    //Remove patch that are no inside limits of aspect ratio and area.    
    while (itc!=contours.end()) {
        //Create bounding rect of object
        Rect mr = boundingRect(Mat(*itc));
        rectangle(result, mr, Scalar(0,255,0));	//Possible chars in GREEN

        //Crop image
        Mat auxRoi(img_threshold, mr);
        if(verifySizes(auxRoi)){
            auxRoi=preprocessChar(auxRoi);
            output.push_back(CharSegment(auxRoi, mr));
            rectangle(result, mr, Scalar(0,0,255));	//Possible chars in RED
        }
        ++itc;
    }

    if(debug)
    {
        cout << "OCR number of chars: " << output.size() << "\n";
        imshow("OCR Chars", result);
        cvWaitKey(0);
    }

    return output;
}