/** ============================================================================
 *   @n@b Setup_Rx
 *
 *   @b Description
 *   @n This API sets up all relevant data structures and configuration required
 *      for receiving data from PASS/Ethernet. It sets up a Rx free descriptor queue
 *      with some empty pre-allocated buffers to receive data, and an Rx queue
 *      to which the Rxed data is streamed for the example application. This API
 *      also sets up the QM high priority accumulation interrupts required to
 *      receive data from the Rx queue.
 *
 *   @param[in]  
 *   @n None
 * 
 *   @return    Int32
 *              -1      -   Error
 *              0       -   Success
 * =============================================================================
 */
Int32 Setup_Rx (Ethernet *pThis)
{
    Int32                       result;
    UInt8                       isAllocated, accChannelNum;
    UInt16                      numAccEntries, intThreshold, i;
    Qmss_Queue                  rxFreeQInfo, rxQInfo;
    Ptr                   		pCppiDesc;
    Qmss_AccCmdCfg              accCfg;
    Cppi_RxFlowCfg              rxFlowCfg;
    Ptr                         pDataBuffer;
    Error_Block 				eb;
    Uint32                      mySWInfo[] = {0x11112222, 0x33334444};
    
    /* Open a Receive (Rx) queue. 
     *
     * This queue will be used to hold all the packets received by PASS/CPSW
     *
     * Open the next available High Priority Accumulation queue for Rx.
     */
    if ((gRxQHnd = Qmss_queueOpen (Qmss_QueueType_HIGH_PRIORITY_QUEUE, QMSS_PARAM_NOT_SPECIFIED, &isAllocated)) < 0)
    {
        uart_write ("Error opening a High Priority Accumulation Rx queue \n");
        return -1;
    }            
    rxQInfo = Qmss_getQueueNumber (gRxQHnd);

    uart_write ("Opened RX queue Number %d \n",rxQInfo.qNum);

    /* Setup high priority accumulation interrupts on the Rx queue. 
     *
     * Let's configure the accumulator with the following settings:
     *      (1) Interrupt pacing disabled.
     *      (2) Interrupt on every received packet
     */
    intThreshold    =   RX_INT_THRESHOLD;
    numAccEntries   =   (intThreshold + 1) * 2;
    accChannelNum   =   PA_ACC_CHANNEL_NUM;

    /* Initialize the accumulator list memory */
    memset ((Void *) gHiPriAccumList, 0, numAccEntries * 4);

    /* Ensure that the accumulator channel we are programming is not 
     * in use currently.
     */
    result = Qmss_disableAccumulator (Qmss_PdspId_PDSP1, accChannelNum);
    if (result != QMSS_ACC_SOK && result != QMSS_ACC_CHANNEL_NOT_ACTIVE)
    {
        uart_write ("Error Disabling high priority accumulator for channel : %d error code: %d\n",
                      accChannelNum, result);
        return -1;
    }

    /* Setup the accumulator settings */
    accCfg.channel             =   accChannelNum;
    accCfg.command             =   Qmss_AccCmd_ENABLE_CHANNEL;
    accCfg.queueEnMask         =   0;
    accCfg.listAddress         =   Convert_CoreLocal2GlobalAddr((Uint32) gHiPriAccumList);
   // accCfg.listAddress         = gHiPriAccumList;
    accCfg.queMgrIndex         =   gRxQHnd;
    accCfg.maxPageEntries      =   (intThreshold + 1); /* Add an extra entry for holding the entry count */
    accCfg.timerLoadCount      =   0;
    accCfg.interruptPacingMode =   Qmss_AccPacingMode_LAST_INTERRUPT;
    accCfg.listEntrySize       =   Qmss_AccEntrySize_REG_D;
    accCfg.listCountMode       =   Qmss_AccCountMode_ENTRY_COUNT;
    accCfg.multiQueueMode      =   Qmss_AccQueueMode_SINGLE_QUEUE;
  
    /* Program the accumulator */
    if ((result = Qmss_programAccumulator (Qmss_PdspId_PDSP1, &accCfg)) != QMSS_ACC_SOK)
    {
        uart_write ("Error Programming high priority accumulator for channel : %d queue : %d error code : %d\n",
                        accCfg.channel, accCfg.queMgrIndex, result);
        return -1;
    }

    Error_init(&eb);
    pThis->RxEventHandle = Event_create(NULL,&eb);
    if (pThis->RxEventHandle == NULL)
    {
    	uart_write("Event create failed");
    	return -1;
    }
    memset(pThis->pRxDataPtr,0,sizeof(pThis->pRxDataPtr));
    pThis->RxDataHead = 0;
    pThis->RxDataTail = 0;

    Intr_Init(&pThis->oEthIntr,	INTR_ITEM_ETH_RX,(Intr_Handler)Cpsw_RxISR, (void*)pThis);
    
    /* Open a Rx Free Descriptor Queue (Rx FDQ). 
     *
     * This queue will hold all the Rx free decriptors. These descriptors will be
     * used by the PASS CPDMA to hold data received via CPSW.
     */
    if ((gRxFreeQHnd = Qmss_queueOpen (Qmss_QueueType_STARVATION_COUNTER_QUEUE, QMSS_PARAM_NOT_SPECIFIED, &isAllocated)) < 0)
    {
        uart_write ("Error opening Rx Free descriptor queue \n");
        return -1;
    }            
    rxFreeQInfo = Qmss_getQueueNumber (gRxFreeQHnd);

    	uart_write("Opened RX Free queue Number %d\n",gRxFreeQHnd);

    /* Attach some free descriptors to the Rx free queue we just opened. */
    for (i = 0; i < NUM_RX_DESC; i++)
    {
        /* Get a free descriptor from the global free queue we setup 
         * during initialization.
         */
        if ((pCppiDesc = Qmss_queuePop (gGlobalFreeQHnd)) == NULL)
        {
            break;                
        }

        /* The descriptor address returned from the hardware has the 
         * descriptor size appended to the address in the last 4 bits.
         *
         * To get the true descriptor size, always mask off the last 
         * 4 bits of the address.
         */
        pCppiDesc = (Ptr) ((UInt32) pCppiDesc & 0xFFFFFFF0);

        if ((pDataBuffer = (Ptr) Memory_alloc((IHeap_Handle)heap2, ETHER_MAX_SIZE, 0, NULL)) == NULL)
        {
            uart_write ("Error allocating memory for Rx data buffer \n");
            break;
        }
        
        /* Populate the Rx free descriptor with the buffer we just allocated. */
        Cppi_setData (Cppi_DescType_HOST, pCppiDesc, (UInt8 *)Convert_CoreLocal2GlobalAddr((UInt32)pDataBuffer), ETHER_MAX_SIZE);

        /* Save original buffer information */
        Cppi_setOriginalBufInfo (Cppi_DescType_HOST, pCppiDesc, (UInt8 *)Convert_CoreLocal2GlobalAddr((UInt32)pDataBuffer), ETHER_MAX_SIZE);

        /* Setup the Completion queue:
         *
         * Setup the return policy for this desc to return to the free q we just
         * setup instead of the global free queue.
         */
        Cppi_setReturnQueue (Cppi_DescType_HOST, pCppiDesc, rxFreeQInfo);

        Cppi_setSoftwareInfo (Cppi_DescType_HOST, pCppiDesc, (UInt8 *) mySWInfo);

        Cppi_setPacketLen    (Cppi_DescType_HOST, pCppiDesc, ETHER_MAX_SIZE);
        
        /* Push descriptor to Tx free queue */
        Qmss_queuePushDescSize (gRxFreeQHnd, pCppiDesc, SIZE_CPSW_HOST_DESC);

    }        
    if (i != NUM_RX_DESC)
    {
        uart_write ("Error allocating Rx free descriptors \n");
        return -1;
    }

    //count=Qmss_getQueueEntryCount(gRxFreeQHnd);

    //platform_write("Total %d entries in queue %d\n",count,gRxFreeQHnd);

    /* Setup a Rx Flow.
     *
     * A Rx flow encapsulates all relevant data properties that CPDMA would
     * have to know in order to succefully receive data.
     */
    /* Initialize the flow configuration */
    memset (&rxFlowCfg, 0, sizeof(Cppi_RxFlowCfg));

    /* Let CPPI pick the next available flow */
    rxFlowCfg.flowIdNum             =   CPPI_PARAM_NOT_SPECIFIED;    

    rxFlowCfg.rx_dest_qmgr          =   rxQInfo.qMgr;    
    rxFlowCfg.rx_dest_qnum          =   rxQInfo.qNum;  
    rxFlowCfg.rx_desc_type          =   Cppi_DescType_HOST; 

    rxFlowCfg.rx_ps_location        =   Cppi_PSLoc_PS_IN_DESC;  
    rxFlowCfg.rx_psinfo_present     =   1;    /* Enable PS info */
    
    rxFlowCfg.rx_error_handling     =   0;    /* Drop the packet, do not retry on starvation by default */       
    rxFlowCfg.rx_einfo_present      =   1;    /* EPIB info present */       
    
    rxFlowCfg.rx_dest_tag_lo_sel    =   0;    /* Disable tagging */
    rxFlowCfg.rx_dest_tag_hi_sel    =   0;    
    rxFlowCfg.rx_src_tag_lo_sel     =   0;    
    rxFlowCfg.rx_src_tag_hi_sel     =   0;    

    rxFlowCfg.rx_size_thresh0_en    =   0;    /* By default, we disable Rx Thresholds */
    rxFlowCfg.rx_size_thresh1_en    =   0;    /* By default, we disable Rx Thresholds */
    rxFlowCfg.rx_size_thresh2_en    =   0;    /* By default, we disable Rx Thresholds */
    rxFlowCfg.rx_size_thresh0       =   0x0;
    rxFlowCfg.rx_size_thresh1       =   0x0;
    rxFlowCfg.rx_size_thresh2       =   0x0;

    rxFlowCfg.rx_fdq0_sz0_qmgr      =   rxFreeQInfo.qMgr; /* Setup the Receive free queue for the flow */
    rxFlowCfg.rx_fdq0_sz0_qnum      =   rxFreeQInfo.qNum;    
    rxFlowCfg.rx_fdq0_sz1_qnum      =   0x0; 
    rxFlowCfg.rx_fdq0_sz1_qmgr      =   0x0;
    rxFlowCfg.rx_fdq0_sz2_qnum      =   0x0;
    rxFlowCfg.rx_fdq0_sz2_qmgr      =   0x0;
    rxFlowCfg.rx_fdq0_sz3_qnum      =   0x0;
    rxFlowCfg.rx_fdq0_sz3_qmgr      =   0x0;

    rxFlowCfg.rx_fdq1_qnum          =   rxFreeQInfo.qNum;  /* Use the Rx Queue to pick descriptors */
    rxFlowCfg.rx_fdq1_qmgr          =   rxFreeQInfo.qMgr;
    rxFlowCfg.rx_fdq2_qnum          =   rxFreeQInfo.qNum;  /* Use the Rx Queue to pick descriptors */
    rxFlowCfg.rx_fdq2_qmgr          =   rxFreeQInfo.qMgr;
    rxFlowCfg.rx_fdq3_qnum          =   rxFreeQInfo.qNum;  /* Use the Rx Queue to pick descriptors */
    rxFlowCfg.rx_fdq3_qmgr          =   rxFreeQInfo.qMgr;

    /* Configure the Rx flow */
    if ((gRxFlowHnd = Cppi_configureRxFlow (gCpdmaHnd, &rxFlowCfg, &isAllocated)) == NULL)
    {
        uart_write ("Error configuring Rx flow \n");
        return -1;
    }
    else
    {
    	//platform_write("Rx flow configured. handle %p Id %d \n",gRxFlowHnd,Cppi_getFlowId (gRxFlowHnd));
    }


    /* All done with Rx configuration. Return success. */
    return 0;
}
예제 #2
0
파일: init_qmss.c 프로젝트: hewumars/Spider
static void configureRxFlow(int fftc_ix){
	uint8_t isAllocated;
	int rxQueue, freeRxQueue;
	Cppi_RxFlowCfg rxFlowCfg;

	switch(fftc_ix){
	case 0:
		rxQueue = QUEUE_RX_FFTC_A;
		freeRxQueue = QUEUE_FREE_RX_FFTC_A;
		break;
	case 1:
		rxQueue = QUEUE_RX_FFTC_B;
		freeRxQueue = QUEUE_FREE_RX_FFTC_B;
		break;
	}

	/* Initialize the flow configuration */
	memset (&rxFlowCfg, 0, sizeof(Cppi_RxFlowCfg));

	/* Setup a Rx Flow for this Rx object */
	rxFlowCfg.flowIdNum             =   0;
	rxFlowCfg.rx_dest_qmgr          =   0;
	rxFlowCfg.rx_dest_qnum          =   rxQueue;
	rxFlowCfg.rx_desc_type          =   Cppi_DescType_HOST;
	rxFlowCfg.rx_ps_location    	=   Cppi_PSLoc_PS_IN_DESC;
	rxFlowCfg.rx_psinfo_present     =   0;

	rxFlowCfg.rx_error_handling     =   0;    /* Drop the packet, do not retry on starvation by default */
	rxFlowCfg.rx_einfo_present      =   0;    /* By default no EPIB info */

	rxFlowCfg.rx_dest_tag_lo_sel    =   4;    /* Always pick the dest tag 7:0 bits from the PD dest_tag */
	rxFlowCfg.rx_dest_tag_hi_sel    =   5;    /* Always pick the dest tag 15:8 bits from the PD dest_tag */

	rxFlowCfg.rx_src_tag_lo_sel     =   2;    /* Always pick the src tag 7:0 bits from the PD flow_id 7:0 */
	rxFlowCfg.rx_src_tag_hi_sel     =   4;    /* Always pick the src tag 15:8 bits from the PD src_tag 7:0 */

	/* By default, we disable Rx Thresholds */
	rxFlowCfg.rx_size_thresh0_en    =   0;
	rxFlowCfg.rx_size_thresh1_en    =   0;
	rxFlowCfg.rx_size_thresh2_en    =   0;

	rxFlowCfg.rx_size_thresh0       =   0x0;
	rxFlowCfg.rx_size_thresh1       =   0x0;
	rxFlowCfg.rx_size_thresh2       =   0x0;

	rxFlowCfg.rx_fdq0_sz0_qmgr      =   0; /* Setup the Receive free queue for the flow */
	rxFlowCfg.rx_fdq0_sz0_qnum      =   freeRxQueue;
	rxFlowCfg.rx_fdq0_sz1_qnum      =   0x0;
	rxFlowCfg.rx_fdq0_sz1_qmgr      =   0x0;
	rxFlowCfg.rx_fdq0_sz2_qnum      =   0x0;
	rxFlowCfg.rx_fdq0_sz2_qmgr      =   0x0;
	rxFlowCfg.rx_fdq0_sz3_qnum      =   0x0;
	rxFlowCfg.rx_fdq0_sz3_qmgr      =   0x0;

	rxFlowCfg.rx_fdq1_qnum          =   freeRxQueue;  /* Use the Rx Queue to pick descriptors */
	rxFlowCfg.rx_fdq1_qmgr          =   0;
	rxFlowCfg.rx_fdq2_qnum          =   freeRxQueue;  /* Use the Rx Queue to pick descriptors */
	rxFlowCfg.rx_fdq2_qmgr          =   0;
	rxFlowCfg.rx_fdq3_qnum          =   freeRxQueue;  /* Use the Rx Queue to pick descriptors */
	rxFlowCfg.rx_fdq3_qmgr          =   0;

	/* Configure the Rx flow */
	if ((hCppiRxFlow[fftc_ix] = Cppi_configureRxFlow (hCppi[fftc_ix], &rxFlowCfg, &isAllocated)) == NULL){
		printf ("Error configuring Rx flow \n");
	}
}