예제 #1
0
static void pluck(t_bowedbar *x, float amplitude)
{
  long i,j;
  int pluckLen;
  float temp;
  
  pluckLen = (int)(x->length/x->modes[x->NR_MODES-1]);
  for (j=1;j<pluckLen/2;j++)	{
    temp = amplitude*2.0*Noise_tick();
    for(i=0; i<x->NR_MODES; i++)
      DLineN_tick(&x->delay[i], temp*j/pluckLen*x->gains[i]);
  }
  for (j=pluckLen/2;j>0;j--)	{
    temp = amplitude*2.0*Noise_tick();
    for(i=0; i<x->NR_MODES; i++)
      DLineN_tick(&x->delay[i], temp*j/pluckLen*x->gains[i]);;
  }
}
예제 #2
0
static t_int *bowedbar_perform(t_int *w)
{
	t_bowedbar *x = (t_bowedbar *)(w[1]);
	
	float bp 	= x->x_bp;
	float bpos 	= x->x_bpos;
	float bv 	= x->x_bv;
	float GAIN 	= x->x_GAIN;
	float integration_const_ = x->x_integration_const_;
	float fr 	= x->x_freq;
	
	t_float *out = (t_float *)(w[2]);
	long n = w[3];

	float temp, input, data;	
	long k;
	
	if(fr != x->fr_save) {
		setFreq(x, fr);
		x->fr_save = fr;
	}
	
	x->bowTabl.slope = bp;
	x->slope = bp;
	setStrikePosition(x, bpos);

	while(n--) {
  
 		data = 0.0;
  		input = 0.0;
  
  		if(integration_const_ == 0.0)
    		x->velinput = 0.0;
  		else
    		x->velinput = integration_const_ * x->velinput;
  
  		for(k=0; k<x->NR_MODES; k++) {
      		x->velinput += GAIN * x->delay[k].lastOutput;
    	}

      	input = bv - x->velinput;
      	input = input * BowTabl_lookup(&x->bowTabl, input);
      	input = input/(float)x->NR_MODES;
  
  		for(k=0; k<x->NR_MODES; k++) {	
  			BiQuad_tick(&x->bandpass_[k], input*x->gains[k] + GAIN * x->delay[k].lastOutput);
      		DLineN_tick(&x->delay[k], x->bandpass_[k].lastOutput);
      		data += x->bandpass_[k].lastOutput;
    	}
  
		*out++ =  data * 4.0;
 		 
	}
	return w + 4;
}	
예제 #3
0
int bowedbar(CSOUND *csound, BOWEDBAR *p)
{
    MYFLT       *ar = p->ar;
    uint32_t offset = p->h.insdshead->ksmps_offset;
    uint32_t early  = p->h.insdshead->ksmps_no_end;
    uint32_t n, nsmps = CS_KSMPS;
    MYFLT       amp = (*p->amp)*AMP_RSCALE; /* Normalise */
    int32 k;
    int i;
    MYFLT       maxVelocity;
    MYFLT       integration_const = *p->integration_const;

    if (p->lastpress != *p->bowPress)
      p->bowTabl.slope = p->lastpress = *p->bowPress;
    if (p->freq != *p->frequency) {
      p->freq = *p->frequency;
      if (p->freq > FL(1568.0)) p->freq = FL(1568.0);

      p->length = (int)(CS_ESR/p->freq);
      p->nr_modes = NR_MODES;   /* reset for frequency shift */
      for (i = 0; i<NR_MODES; i++) {
        if ((int)(p->length/p->modes[i]) > 4)
          DLineN_setDelay(csound, &p->delay[i], (int)(p->length/p->modes[i]));
        else    {
          p->nr_modes = i;
          break;
        }
      }
      if (p->nr_modes==0)
        return csound->InitError(csound,
                                 Str("Bowedbar: cannot have zero modes\n"));
      for (i=0; i<p->nr_modes; i++) {
        MYFLT R = FL(1.0) - p->freq * p->modes[i] * csound->pidsr;
        BiQuad_clear(&p->bandpass[i]);
        BiQuad_setFreqAndReson(p->bandpass[i], p->freq * p->modes[i], R);
        BiQuad_setEqualGainZeroes(p->bandpass[i]);
        BiQuad_setGain(p->bandpass[i], (FL(1.0)-R*R)*FL(0.5));
      }
    }
                                /* Bow position as well */
    if (*p->position != p->lastpos) {
      MYFLT temp2 = *p->position * PI_F;
      p->gains[0] = FABS(SIN(temp2 * FL(0.5))) /*  * pow(0.9,0))*/;
      p->gains[1] = FABS(SIN(temp2) * FL(0.9));
      p->gains[2] = FABS(SIN(temp2 * FL(1.5)) * FL(0.9)*FL(0.9));
      p->gains[3] = FABS(SIN(temp2 * FL(2.0)) * FL(0.9)*FL(0.9)*FL(0.9));
      p->lastpos = *p->position;
    }
    if (*p->bowposition != p->lastBowPos) { /* Not sure what this control is? */
      p->bowTarg += FL(0.02) * (*p->bowposition - p->lastBowPos);
      p->lastBowPos = *p->bowposition;
      ADSR_setTarget(csound, &p->adsr, p->lastBowPos);
      p->lastBowPos = *p->bowposition;
    }
    if (p->kloop>0 && p->h.insdshead->relesing) p->kloop=1;
    if ((--p->kloop) == 0) {
      ADSR_setReleaseRate(csound, &p->adsr, (FL(1.0) - amp) * FL(0.005));
      p->adsr.target = FL(0.0);
      p->adsr.rate = p->adsr.releaseRate;
      p->adsr.state = RELEASE;
    }
    maxVelocity = FL(0.03) + (FL(0.5) * amp);

    if (UNLIKELY(offset)) memset(ar, '\0', offset*sizeof(MYFLT));
    if (UNLIKELY(early)) {
      nsmps -= early;
      memset(&ar[nsmps], '\0', early*sizeof(MYFLT));
    }
    for (n=offset; n<nsmps; n++) {
      MYFLT data = FL(0.0);
      MYFLT input = FL(0.0);
      if (integration_const == FL(0.0))
        p->velinput = FL(0.0);
      else
        p->velinput = integration_const * p->velinput;

      for (k=0; k<p->nr_modes; k++) {
        p->velinput += *p->GAIN * p->delay[k].lastOutput;
      }

      if (*p->trackVel) {
        p->bowvel *= FL(0.9995);
        p->bowvel += p->bowTarg;
        p->bowTarg *= FL(0.995);
      }
      else
        p->bowvel = ADSR_tick(&p->adsr)*maxVelocity;

      input = p->bowvel - p->velinput;
      input = input * BowTabl_lookup(csound, &p->bowTabl, input);
      input = input/(MYFLT)p->nr_modes;

      for (k=0; k<p->nr_modes; k++) {
        BiQuad_tick(&p->bandpass[k],
                    input*p->gains[k] + *p->GAIN * p->delay[k].lastOutput);
        DLineN_tick(&p->delay[k], p->bandpass[k].lastOutput);
        data += p->bandpass[k].lastOutput;
      }

      ar[n] = data * AMP_SCALE * FL(20.0); /* 20 is an experimental value */
    }
    return OK;
}