예제 #1
0
static PetscErrorCode DMPlexGetAdjacency_Support_Internal(DM dm, PetscInt p, PetscInt *adjSize, PetscInt adj[])
{
  const PetscInt *support = NULL;
  PetscInt        numAdj   = 0, maxAdjSize = *adjSize, supportSize, s;
  PetscErrorCode  ierr;

  PetscFunctionBeginHot;
  ierr = DMPlexGetSupportSize(dm, p, &supportSize);CHKERRQ(ierr);
  ierr = DMPlexGetSupport(dm, p, &support);CHKERRQ(ierr);
  for (s = 0; s < supportSize; ++s) {
    const PetscInt *cone = NULL;
    PetscInt        coneSize, c, q;

    ierr = DMPlexGetConeSize(dm, support[s], &coneSize);CHKERRQ(ierr);
    ierr = DMPlexGetCone(dm, support[s], &cone);CHKERRQ(ierr);
    for (c = 0; c < coneSize; ++c) {
      for (q = 0; q < numAdj || (adj[numAdj++] = cone[c],0); ++q) {
        if (cone[c] == adj[q]) break;
      }
      if (numAdj > maxAdjSize) SETERRQ1(PETSC_COMM_SELF, PETSC_ERR_PLIB, "Invalid mesh exceeded adjacency allocation (%D)", maxAdjSize);
    }
  }
  *adjSize = numAdj;
  PetscFunctionReturn(0);
}
예제 #2
0
파일: network.c 프로젝트: pombredanne/petsc
/*@C
  DMNetworkGetSupportingEdges - Return the supporting edges for this vertex point

  Not Collective

  Input Parameters:
+ dm - The DMNetwork object
- p  - the vertex point

  Output Paramters:
+ nedges - number of edges connected to this vertex point
- edges  - List of edge points

  Level: intermediate

  Fortran Notes:
  Since it returns an array, this routine is only available in Fortran 90, and you must
  include petsc.h90 in your code.

.seealso: DMNetworkCreate, DMNetworkGetConnectedNodes
@*/
PetscErrorCode DMNetworkGetSupportingEdges(DM dm,PetscInt vertex,PetscInt *nedges,const PetscInt *edges[])
{
  PetscErrorCode ierr;
  DM_Network     *network = (DM_Network*)dm->data;

  PetscFunctionBegin;
  ierr = DMPlexGetSupportSize(network->plex,vertex,nedges);CHKERRQ(ierr);
  ierr = DMPlexGetSupport(network->plex,vertex,edges);CHKERRQ(ierr);
  PetscFunctionReturn(0);
}
예제 #3
0
/*@
  DMPlexReverseCell - Give a mesh cell the opposite orientation

  Input Parameters:
+ dm   - The DM
- cell - The cell number

  Note: The modification of the DM is done in-place.

  Level: advanced

.seealso: DMPlexOrient(), DMCreate(), DMPLEX
@*/
PetscErrorCode DMPlexReverseCell(DM dm, PetscInt cell)
{
  /* Note that the reverse orientation ro of a face with orientation o is:

       ro = o >= 0 ? -(faceSize - o) : faceSize + o

     where faceSize is the size of the cone for the face.
  */
  const PetscInt *cone,    *coneO, *support;
  PetscInt       *revcone, *revconeO;
  PetscInt        maxConeSize, coneSize, supportSize, faceSize, cp, sp;
  PetscErrorCode  ierr;

  PetscFunctionBegin;
  ierr = DMPlexGetMaxSizes(dm, &maxConeSize, NULL);CHKERRQ(ierr);
  ierr = DMGetWorkArray(dm, maxConeSize, MPIU_INT, &revcone);CHKERRQ(ierr);
  ierr = DMGetWorkArray(dm, maxConeSize, MPIU_INT, &revconeO);CHKERRQ(ierr);
  /* Reverse cone, and reverse orientations of faces */
  ierr = DMPlexGetConeSize(dm, cell, &coneSize);CHKERRQ(ierr);
  ierr = DMPlexGetCone(dm, cell, &cone);CHKERRQ(ierr);
  ierr = DMPlexGetConeOrientation(dm, cell, &coneO);CHKERRQ(ierr);
  for (cp = 0; cp < coneSize; ++cp) {
    const PetscInt rcp = coneSize-cp-1;

    ierr = DMPlexGetConeSize(dm, cone[rcp], &faceSize);CHKERRQ(ierr);
    revcone[cp]  = cone[rcp];
    revconeO[cp] = coneO[rcp] >= 0 ? -(faceSize-coneO[rcp]) : faceSize+coneO[rcp];
  }
  ierr = DMPlexSetCone(dm, cell, revcone);CHKERRQ(ierr);
  ierr = DMPlexSetConeOrientation(dm, cell, revconeO);CHKERRQ(ierr);
  /* Reverse orientation of this cell in the support hypercells */
  faceSize = coneSize;
  ierr = DMPlexGetSupportSize(dm, cell, &supportSize);CHKERRQ(ierr);
  ierr = DMPlexGetSupport(dm, cell, &support);CHKERRQ(ierr);
  for (sp = 0; sp < supportSize; ++sp) {
    ierr = DMPlexGetConeSize(dm, support[sp], &coneSize);CHKERRQ(ierr);
    ierr = DMPlexGetCone(dm, support[sp], &cone);CHKERRQ(ierr);
    ierr = DMPlexGetConeOrientation(dm, support[sp], &coneO);CHKERRQ(ierr);
    for (cp = 0; cp < coneSize; ++cp) {
      if (cone[cp] != cell) continue;
      ierr = DMPlexInsertConeOrientation(dm, support[sp], cp, coneO[cp] >= 0 ? -(faceSize-coneO[cp]) : faceSize+coneO[cp]);CHKERRQ(ierr);
    }
  }
  ierr = DMRestoreWorkArray(dm, maxConeSize, MPIU_INT, &revcone);CHKERRQ(ierr);
  ierr = DMRestoreWorkArray(dm, maxConeSize, MPIU_INT, &revconeO);CHKERRQ(ierr);
  PetscFunctionReturn(0);
}
예제 #4
0
static PetscErrorCode DMPlexTSSetupGeometry(DM dm, PetscFV fvm, DMTS_Plex *dmplexts)
{
  DM             dmFace, dmCell;
  DMLabel        ghostLabel;
  PetscSection   sectionFace, sectionCell;
  PetscSection   coordSection;
  Vec            coordinates;
  PetscReal      minradius;
  PetscScalar   *fgeom, *cgeom;
  PetscInt       dim, cStart, cEnd, cEndInterior, c, fStart, fEnd, f;
  PetscErrorCode ierr;

  PetscFunctionBegin;
  if (dmplexts->setupGeom) PetscFunctionReturn(0);
  ierr = DMPlexGetDimension(dm, &dim);CHKERRQ(ierr);
  ierr = DMGetCoordinateSection(dm, &coordSection);CHKERRQ(ierr);
  ierr = DMGetCoordinatesLocal(dm, &coordinates);CHKERRQ(ierr);
  /* Make cell centroids and volumes */
  ierr = DMClone(dm, &dmCell);CHKERRQ(ierr);
  ierr = DMSetCoordinateSection(dmCell, coordSection);CHKERRQ(ierr);
  ierr = DMSetCoordinatesLocal(dmCell, coordinates);CHKERRQ(ierr);
  ierr = PetscSectionCreate(PetscObjectComm((PetscObject) dm), &sectionCell);CHKERRQ(ierr);
  ierr = DMPlexGetHeightStratum(dm, 0, &cStart, &cEnd);CHKERRQ(ierr);
  ierr = DMPlexGetHybridBounds(dm, &cEndInterior, NULL, NULL, NULL);CHKERRQ(ierr);
  ierr = PetscSectionSetChart(sectionCell, cStart, cEnd);CHKERRQ(ierr);
  for (c = cStart; c < cEnd; ++c) {ierr = PetscSectionSetDof(sectionCell, c, sizeof(CellGeom)/sizeof(PetscScalar));CHKERRQ(ierr);}
  ierr = PetscSectionSetUp(sectionCell);CHKERRQ(ierr);
  ierr = DMSetDefaultSection(dmCell, sectionCell);CHKERRQ(ierr);
  ierr = PetscSectionDestroy(&sectionCell);CHKERRQ(ierr);
  ierr = DMCreateLocalVector(dmCell, &dmplexts->cellgeom);CHKERRQ(ierr);
  ierr = VecGetArray(dmplexts->cellgeom, &cgeom);CHKERRQ(ierr);
  for (c = cStart; c < cEndInterior; ++c) {
    CellGeom *cg;

    ierr = DMPlexPointLocalRef(dmCell, c, cgeom, &cg);CHKERRQ(ierr);
    ierr = PetscMemzero(cg, sizeof(*cg));CHKERRQ(ierr);
    ierr = DMPlexComputeCellGeometryFVM(dmCell, c, &cg->volume, cg->centroid, NULL);CHKERRQ(ierr);
  }
  /* Compute face normals and minimum cell radius */
  ierr = DMClone(dm, &dmFace);CHKERRQ(ierr);
  ierr = PetscSectionCreate(PetscObjectComm((PetscObject) dm), &sectionFace);CHKERRQ(ierr);
  ierr = DMPlexGetHeightStratum(dm, 1, &fStart, &fEnd);CHKERRQ(ierr);
  ierr = PetscSectionSetChart(sectionFace, fStart, fEnd);CHKERRQ(ierr);
  for (f = fStart; f < fEnd; ++f) {ierr = PetscSectionSetDof(sectionFace, f, sizeof(FaceGeom)/sizeof(PetscScalar));CHKERRQ(ierr);}
  ierr = PetscSectionSetUp(sectionFace);CHKERRQ(ierr);
  ierr = DMSetDefaultSection(dmFace, sectionFace);CHKERRQ(ierr);
  ierr = PetscSectionDestroy(&sectionFace);CHKERRQ(ierr);
  ierr = DMCreateLocalVector(dmFace, &dmplexts->facegeom);CHKERRQ(ierr);
  ierr = VecGetArray(dmplexts->facegeom, &fgeom);CHKERRQ(ierr);
  ierr = DMPlexGetLabel(dm, "ghost", &ghostLabel);CHKERRQ(ierr);
  minradius = PETSC_MAX_REAL;
  for (f = fStart; f < fEnd; ++f) {
    FaceGeom *fg;
    PetscReal area;
    PetscInt  ghost, d;

    ierr = DMLabelGetValue(ghostLabel, f, &ghost);CHKERRQ(ierr);
    if (ghost >= 0) continue;
    ierr = DMPlexPointLocalRef(dmFace, f, fgeom, &fg);CHKERRQ(ierr);
    ierr = DMPlexComputeCellGeometryFVM(dm, f, &area, fg->centroid, fg->normal);CHKERRQ(ierr);
    for (d = 0; d < dim; ++d) fg->normal[d] *= area;
    /* Flip face orientation if necessary to match ordering in support, and Update minimum radius */
    {
      CellGeom       *cL, *cR;
      const PetscInt *cells;
      PetscReal      *lcentroid, *rcentroid;
      PetscReal       v[3];

      ierr = DMPlexGetSupport(dm, f, &cells);CHKERRQ(ierr);
      ierr = DMPlexPointLocalRead(dmCell, cells[0], cgeom, &cL);CHKERRQ(ierr);
      ierr = DMPlexPointLocalRead(dmCell, cells[1], cgeom, &cR);CHKERRQ(ierr);
      lcentroid = cells[0] >= cEndInterior ? fg->centroid : cL->centroid;
      rcentroid = cells[1] >= cEndInterior ? fg->centroid : cR->centroid;
      WaxpyD(dim, -1, lcentroid, rcentroid, v);
      if (DotRealD(dim, fg->normal, v) < 0) {
        for (d = 0; d < dim; ++d) fg->normal[d] = -fg->normal[d];
      }
      if (DotRealD(dim, fg->normal, v) <= 0) {
        if (dim == 2) SETERRQ5(PETSC_COMM_SELF,PETSC_ERR_PLIB,"Direction for face %d could not be fixed, normal (%g,%g) v (%g,%g)", f, (double) fg->normal[0], (double) fg->normal[1], (double) v[0], (double) v[1]);
        if (dim == 3) SETERRQ7(PETSC_COMM_SELF,PETSC_ERR_PLIB,"Direction for face %d could not be fixed, normal (%g,%g,%g) v (%g,%g,%g)", f, (double) fg->normal[0], (double) fg->normal[1], (double) fg->normal[2], (double) v[0], (double) v[1], (double) v[2]);
        SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_PLIB,"Direction for face %d could not be fixed", f);
      }
      if (cells[0] < cEndInterior) {
        WaxpyD(dim, -1, fg->centroid, cL->centroid, v);
        minradius = PetscMin(minradius, NormD(dim, v));
      }
      if (cells[1] < cEndInterior) {
        WaxpyD(dim, -1, fg->centroid, cR->centroid, v);
        minradius = PetscMin(minradius, NormD(dim, v));
      }
    }
  }
  ierr = MPI_Allreduce(&minradius, &dmplexts->minradius, 1, MPIU_REAL, MPI_MIN, PetscObjectComm((PetscObject)dm));CHKERRQ(ierr);
  /* Compute centroids of ghost cells */
  for (c = cEndInterior; c < cEnd; ++c) {
    FaceGeom       *fg;
    const PetscInt *cone,    *support;
    PetscInt        coneSize, supportSize, s;

    ierr = DMPlexGetConeSize(dmCell, c, &coneSize);CHKERRQ(ierr);
    if (coneSize != 1) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Ghost cell %d has cone size %d != 1", c, coneSize);
    ierr = DMPlexGetCone(dmCell, c, &cone);CHKERRQ(ierr);
    ierr = DMPlexGetSupportSize(dmCell, cone[0], &supportSize);CHKERRQ(ierr);
    if (supportSize != 2) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %d has support size %d != 1", cone[0], supportSize);
    ierr = DMPlexGetSupport(dmCell, cone[0], &support);CHKERRQ(ierr);
    ierr = DMPlexPointLocalRef(dmFace, cone[0], fgeom, &fg);CHKERRQ(ierr);
    for (s = 0; s < 2; ++s) {
      /* Reflect ghost centroid across plane of face */
      if (support[s] == c) {
        const CellGeom *ci;
        CellGeom       *cg;
        PetscReal       c2f[3], a;

        ierr = DMPlexPointLocalRead(dmCell, support[(s+1)%2], cgeom, &ci);CHKERRQ(ierr);
        WaxpyD(dim, -1, ci->centroid, fg->centroid, c2f); /* cell to face centroid */
        a    = DotRealD(dim, c2f, fg->normal)/DotRealD(dim, fg->normal, fg->normal);
        ierr = DMPlexPointLocalRef(dmCell, support[s], cgeom, &cg);CHKERRQ(ierr);
        WaxpyD(dim, 2*a, fg->normal, ci->centroid, cg->centroid);
        cg->volume = ci->volume;
      }
    }
  }
  ierr = VecRestoreArray(dmplexts->facegeom, &fgeom);CHKERRQ(ierr);
  ierr = VecRestoreArray(dmplexts->cellgeom, &cgeom);CHKERRQ(ierr);
  ierr = DMDestroy(&dmCell);CHKERRQ(ierr);
  ierr = DMDestroy(&dmFace);CHKERRQ(ierr);
  dmplexts->setupGeom = PETSC_TRUE;
  PetscFunctionReturn(0);
}
예제 #5
0
파일: plexf.c 프로젝트: feelpp/debian-petsc
void PETSC_STDCALL  dmplexgetsupportsize_(DM dm,PetscInt *p,PetscInt *size, int *__ierr ){
*__ierr = DMPlexGetSupportSize(
	(DM)PetscToPointer((dm) ),*p,size);
}
예제 #6
0
파일: main.c 프로젝트: cpraveen/cfdlab
int main(int argc, char *argv[])
{
   PetscErrorCode ierr;
   DM             dm;
   PetscBool      interpolate = PETSC_TRUE;
   PetscInt       dim;
   PetscInt       pStart, pEnd;
   PetscInt       vStart, vEnd;
   PetscInt       eStart, eEnd;
   PetscInt       cStart, cEnd;
   PetscSection   s;

   ierr = PetscInitialize(&argc, &argv, (char*)0, help); CHKERRQ(ierr);
   ierr = DMPlexCreateGmshFromFile(MPI_COMM_WORLD, argv[1], interpolate, &dm); CHKERRQ(ierr);

   ierr = DMGetDimension(dm, &dim); CHKERRQ(ierr);
   printf("dim = %d\n", dim);

   ierr = DMPlexGetChart(dm, &pStart, &pEnd); CHKERRQ(ierr);
   printf("chart: pstart, pend = %d %d\n", pStart, pEnd);

   // vertices
   ierr = DMPlexGetDepthStratum(dm, 0, &vStart, &vEnd); CHKERRQ(ierr);
   printf("Depth 0: vstart, vend, len = %d %d %d\n", vStart, vEnd, vEnd-vStart);
   // edges
   ierr = DMPlexGetDepthStratum(dm, 1, &eStart, &eEnd); CHKERRQ(ierr);
   printf("Depth 1: estart, eend, len = %d %d %d\n", eStart, eEnd, eEnd-eStart);
   // cells
   ierr = DMPlexGetDepthStratum(dm, 2, &cStart, &cEnd); CHKERRQ(ierr);
   printf("Depth 2: cstart, cend, len = %d %d %d\n", cStart, cEnd, cEnd-cStart);

   // cells adjacent to face
   {
      FILE * fid = fopen("face_nbr.txt","w");
      for(PetscInt e=eStart; e<eEnd; ++e)
      {
         PetscInt nbr;
         ierr = DMPlexGetSupportSize(dm, e, &nbr); CHKERRQ(ierr);

         const PetscInt *nbcells;
         ierr = DMPlexGetSupport(dm, e, &nbcells); CHKERRQ(ierr);

         if(nbr == 1) // boundary face
            fprintf(fid, "%d %d\n",e-eStart+1,nbcells[0]-cStart+1);
         else if(nbr == 2) // interior face
            fprintf(fid, "%d %d %d\n",e-eStart+1,nbcells[0]-cStart+1,nbcells[1]-cStart+1);
         else
         {
            printf("nbr is not 1 or 2\n");
            exit(0);
         }
      }
      fclose(fid);
   }

   // point coordinates
   {
      Vec coordinates;
      ierr = DMGetCoordinatesLocal(dm, &coordinates); CHKERRQ(ierr);

      const PetscScalar *coords;
      ierr = VecGetArrayRead(coordinates, &coords); CHKERRQ(ierr);

      DM dmCoord;
      ierr = DMGetCoordinateDM(dm, &dmCoord); CHKERRQ(ierr);

      FILE * fid = fopen("vertices.txt","w");
      for(PetscInt v=vStart; v<vEnd; ++v)
      {
         PetscScalar  *vertex;
         ierr = DMPlexPointLocalRead(dmCoord, v, coords, &vertex); CHKERRQ(ierr);
         fprintf(fid, "%f %f\n", vertex[0], vertex[1]);
      }
      fclose(fid);

      ierr = VecRestoreArrayRead(coordinates, &coords); CHKERRQ(ierr);
   }

   // compute cell and face geometry
   {
      Vec cellgeom, facegeom;
      ierr = DMPlexComputeGeometryFVM(dm, &cellgeom, &facegeom); CHKERRQ(ierr);

      // cell information
      DM dmCell;
      ierr = VecGetDM(cellgeom, &dmCell); CHKERRQ(ierr);

      const PetscScalar *cgeom;
      ierr = VecGetArrayRead(cellgeom, &cgeom); CHKERRQ(ierr);

      FILE * fid = fopen("cells.txt","w");
      for(PetscInt c=cStart; c<cEnd; ++c)
      {
         // cell properties like volume, centroid
         PetscFVCellGeom *cg;
         ierr = DMPlexPointLocalRead(dmCell, c, cgeom, &cg); CHKERRQ(ierr);
         fprintf(fid, "%d %f %f %f\n", c-cStart+1, cg->volume, 
                 cg->centroid[0], cg->centroid[1]);
      }
      fclose(fid);
      ierr = VecRestoreArrayRead(cellgeom, &cgeom); CHKERRQ(ierr);

      // face information
      DM dmFace;
      ierr = VecGetDM(facegeom, &dmFace); CHKERRQ(ierr);

      const PetscScalar *fgeom;
      ierr = VecGetArrayRead(facegeom, &fgeom); CHKERRQ(ierr);

      fid = fopen("faces.txt","w");
      for(PetscInt e=eStart; e<eEnd; ++e)
      {
         // face properties like area normal, centroid
         PetscFVFaceGeom *fg;
         ierr = DMPlexPointLocalRead(dmFace, e, fgeom, &fg); CHKERRQ(ierr);
         fprintf(fid, "%d %f %f %f %f\n", e-eStart+1, fg->normal[0], fg->normal[1],
                 fg->centroid[0], fg->centroid[1]);
      }
      fclose(fid);
      ierr = VecRestoreArrayRead(facegeom, &fgeom); CHKERRQ(ierr);
   }

   // create section with one variable in each cell
   ierr = PetscSectionCreate(PetscObjectComm((PetscObject)dm), &s); CHKERRQ(ierr);
   ierr = PetscSectionSetChart(s, pStart, pEnd); CHKERRQ(ierr);
   for(PetscInt c=cStart; c<cEnd; ++c)
   {
      ierr = PetscSectionSetDof(s, c, 1); CHKERRQ(ierr);
   }
   ierr = PetscSectionSetUp(s); CHKERRQ(ierr);

   // create vector to store solution
   Vec lv, gv;
   ierr = DMSetDefaultSection(dm, s); CHKERRQ(ierr);
   ierr = DMGetLocalVector(dm, &lv); CHKERRQ(ierr);
   ierr = DMGetGlobalVector(dm, &gv); CHKERRQ(ierr);
}
예제 #7
0
PetscErrorCode DMCoarsen_Plex(DM dm, MPI_Comm comm, DM *dmCoarsened)
{
  DM_Plex       *mesh = (DM_Plex*) dm->data;
#ifdef PETSC_HAVE_PRAGMATIC
  DM             udm, coordDM;
  DMLabel        bd;
  Mat            A;
  Vec            coordinates, mb, mx;
  PetscSection   coordSection;
  const PetscScalar *coords;
  double        *coarseCoords;
  IS             bdIS;
  PetscReal     *x, *y, *z, *eqns, *metric;
  PetscReal      coarseRatio = PetscSqr(0.5);
  const PetscInt *faces;
  PetscInt      *cells, *bdFaces, *bdFaceIds;
  PetscInt       dim, numCorners, cStart, cEnd, numCells, numCoarseCells, c, vStart, vEnd, numVertices, numCoarseVertices, v, numBdFaces, f, maxConeSize, size, bdSize, coff;
#endif
  PetscErrorCode ierr;

  PetscFunctionBegin;
#ifdef PETSC_HAVE_PRAGMATIC
  if (!mesh->coarseMesh) {
    ierr = DMGetDimension(dm, &dim);CHKERRQ(ierr);
    ierr = DMGetCoordinateDM(dm, &coordDM);CHKERRQ(ierr);
    ierr = DMGetDefaultSection(coordDM, &coordSection);CHKERRQ(ierr);
    ierr = DMGetCoordinatesLocal(dm, &coordinates);CHKERRQ(ierr);
    ierr = DMPlexGetHeightStratum(dm, 0, &cStart, &cEnd);CHKERRQ(ierr);
    ierr = DMPlexGetDepthStratum(dm, 0, &vStart, &vEnd);CHKERRQ(ierr);
    ierr = DMPlexUninterpolate(dm, &udm);CHKERRQ(ierr);
    ierr = DMPlexGetMaxSizes(udm, &maxConeSize, NULL);CHKERRQ(ierr);
    numCells    = cEnd - cStart;
    numVertices = vEnd - vStart;
    ierr = PetscCalloc5(numVertices, &x, numVertices, &y, numVertices, &z, numVertices*PetscSqr(dim), &metric, numCells*maxConeSize, &cells);CHKERRQ(ierr);
    ierr = VecGetArrayRead(coordinates, &coords);CHKERRQ(ierr);
    for (v = vStart; v < vEnd; ++v) {
      PetscInt off;

      ierr = PetscSectionGetOffset(coordSection, v, &off);CHKERRQ(ierr);
      x[v-vStart] = coords[off+0];
      y[v-vStart] = coords[off+1];
      if (dim > 2) z[v-vStart] = coords[off+2];
    }
    ierr = VecRestoreArrayRead(coordinates, &coords);CHKERRQ(ierr);
    for (c = 0, coff = 0; c < numCells; ++c) {
      const PetscInt *cone;
      PetscInt        coneSize, cl;

      ierr = DMPlexGetConeSize(udm, c, &coneSize);CHKERRQ(ierr);
      ierr = DMPlexGetCone(udm, c, &cone);CHKERRQ(ierr);
      for (cl = 0; cl < coneSize; ++cl) cells[coff++] = cone[cl] - vStart;
    }
    switch (dim) {
    case 2:
      pragmatic_2d_init(&numVertices, &numCells, cells, x, y);
      break;
    case 3:
      pragmatic_3d_init(&numVertices, &numCells, cells, x, y, z);
      break;
    default:
      SETERRQ1(PetscObjectComm((PetscObject) dm), PETSC_ERR_ARG_OUTOFRANGE, "No Pragmatic coarsening defined for dimension %d", dim);
    }
    /* Create boundary mesh */
    ierr = DMLabelCreate("boundary", &bd);CHKERRQ(ierr);
    ierr = DMPlexMarkBoundaryFaces(dm, bd);CHKERRQ(ierr);
    ierr = DMLabelGetStratumIS(bd, 1, &bdIS);CHKERRQ(ierr);
    ierr = DMLabelGetStratumSize(bd, 1, &numBdFaces);CHKERRQ(ierr);
    ierr = ISGetIndices(bdIS, &faces);CHKERRQ(ierr);
    for (f = 0, bdSize = 0; f < numBdFaces; ++f) {
      PetscInt *closure = NULL;
      PetscInt  closureSize, cl;

      ierr = DMPlexGetTransitiveClosure(dm, faces[f], PETSC_TRUE, &closureSize, &closure);CHKERRQ(ierr);
      for (cl = 0; cl < closureSize*2; cl += 2) {
        if ((closure[cl] >= vStart) && (closure[cl] < vEnd)) ++bdSize;
      }
      ierr = DMPlexRestoreTransitiveClosure(dm, f, PETSC_TRUE, &closureSize, &closure);CHKERRQ(ierr);
    }
    ierr = PetscMalloc2(bdSize, &bdFaces, numBdFaces, &bdFaceIds);CHKERRQ(ierr);
    for (f = 0, bdSize = 0; f < numBdFaces; ++f) {
      PetscInt *closure = NULL;
      PetscInt  closureSize, cl;

      ierr = DMPlexGetTransitiveClosure(dm, faces[f], PETSC_TRUE, &closureSize, &closure);CHKERRQ(ierr);
      for (cl = 0; cl < closureSize*2; cl += 2) {
        if ((closure[cl] >= vStart) && (closure[cl] < vEnd)) bdFaces[bdSize++] = closure[cl] - vStart;
      }
      /* TODO Fix */
      bdFaceIds[f] = 1;
      ierr = DMPlexRestoreTransitiveClosure(dm, f, PETSC_TRUE, &closureSize, &closure);CHKERRQ(ierr);
    }
    ierr = ISDestroy(&bdIS);CHKERRQ(ierr);
    ierr = DMLabelDestroy(&bd);CHKERRQ(ierr);
    pragmatic_set_boundary(&numBdFaces, bdFaces, bdFaceIds);
    /* Create metric */
    size = (dim*(dim+1))/2;
    ierr = PetscMalloc1(PetscSqr(size), &eqns);CHKERRQ(ierr);
    ierr = MatCreateSeqDense(PETSC_COMM_SELF, size, size, eqns, &A);CHKERRQ(ierr);
    ierr = MatCreateVecs(A, &mx, &mb);CHKERRQ(ierr);
    ierr = VecSet(mb, 1.0);CHKERRQ(ierr);
    for (c = 0; c < numCells; ++c) {
      const PetscScalar *sol;
      PetscScalar       *cellCoords = NULL;
      PetscReal          e[3], vol;
      const PetscInt    *cone;
      PetscInt           coneSize, cl, i, j, d, r;

      ierr = DMPlexVecGetClosure(dm, coordSection, coordinates, c, NULL, &cellCoords);CHKERRQ(ierr);
      /* Only works for simplices */
      for (i = 0, r = 0; i < dim+1; ++i) {
        for (j = 0; j < i; ++j, ++r) {
          for (d = 0; d < dim; ++d) e[d] = cellCoords[i*dim+d] - cellCoords[j*dim+d];
          /* FORTRAN ORDERING */
          if (dim == 2) {
            eqns[0*size+r] = PetscSqr(e[0]);
            eqns[1*size+r] = 2.0*e[0]*e[1];
            eqns[2*size+r] = PetscSqr(e[1]);
          } else {
            eqns[0*size+r] = PetscSqr(e[0]);
            eqns[1*size+r] = 2.0*e[0]*e[1];
            eqns[2*size+r] = 2.0*e[0]*e[2];
            eqns[3*size+r] = PetscSqr(e[1]);
            eqns[4*size+r] = 2.0*e[1]*e[2];
            eqns[5*size+r] = PetscSqr(e[2]);
          }
        }
      }
      ierr = MatSetUnfactored(A);CHKERRQ(ierr);
      ierr = DMPlexVecRestoreClosure(dm, coordSection, coordinates, c, NULL, &cellCoords);CHKERRQ(ierr);
      ierr = MatLUFactor(A, NULL, NULL, NULL);CHKERRQ(ierr);
      ierr = MatSolve(A, mb, mx);CHKERRQ(ierr);
      ierr = VecGetArrayRead(mx, &sol);CHKERRQ(ierr);
      ierr = DMPlexComputeCellGeometryFVM(dm, c, &vol, NULL, NULL);CHKERRQ(ierr);
      ierr = DMPlexGetCone(udm, c, &cone);CHKERRQ(ierr);
      ierr = DMPlexGetConeSize(udm, c, &coneSize);CHKERRQ(ierr);
      for (cl = 0; cl < coneSize; ++cl) {
        const PetscInt v = cone[cl] - vStart;

        if (dim == 2) {
          metric[v*4+0] += vol*coarseRatio*sol[0];
          metric[v*4+1] += vol*coarseRatio*sol[1];
          metric[v*4+2] += vol*coarseRatio*sol[1];
          metric[v*4+3] += vol*coarseRatio*sol[2];
        } else {
          metric[v*9+0] += vol*coarseRatio*sol[0];
          metric[v*9+1] += vol*coarseRatio*sol[1];
          metric[v*9+3] += vol*coarseRatio*sol[1];
          metric[v*9+2] += vol*coarseRatio*sol[2];
          metric[v*9+6] += vol*coarseRatio*sol[2];
          metric[v*9+4] += vol*coarseRatio*sol[3];
          metric[v*9+5] += vol*coarseRatio*sol[4];
          metric[v*9+7] += vol*coarseRatio*sol[4];
          metric[v*9+8] += vol*coarseRatio*sol[5];
        }
      }
      ierr = VecRestoreArrayRead(mx, &sol);CHKERRQ(ierr);
    }
    for (v = 0; v < numVertices; ++v) {
      const PetscInt *support;
      PetscInt        supportSize, s;
      PetscReal       vol, totVol = 0.0;

      ierr = DMPlexGetSupport(udm, v+vStart, &support);CHKERRQ(ierr);
      ierr = DMPlexGetSupportSize(udm, v+vStart, &supportSize);CHKERRQ(ierr);
      for (s = 0; s < supportSize; ++s) {ierr = DMPlexComputeCellGeometryFVM(dm, support[s], &vol, NULL, NULL);CHKERRQ(ierr); totVol += vol;}
      for (s = 0; s < PetscSqr(dim); ++s) metric[v*PetscSqr(dim)+s] /= totVol;
    }
    ierr = VecDestroy(&mx);CHKERRQ(ierr);
    ierr = VecDestroy(&mb);CHKERRQ(ierr);
    ierr = MatDestroy(&A);CHKERRQ(ierr);
    ierr = DMDestroy(&udm);CHKERRQ(ierr);
    ierr = PetscFree(eqns);CHKERRQ(ierr);
    pragmatic_set_metric(metric);
    pragmatic_adapt();
    /* Read out mesh */
    pragmatic_get_info(&numCoarseVertices, &numCoarseCells);
    ierr = PetscMalloc1(numCoarseVertices*dim, &coarseCoords);CHKERRQ(ierr);
    switch (dim) {
    case 2:
      pragmatic_get_coords_2d(x, y);
      numCorners = 3;
      for (v = 0; v < numCoarseVertices; ++v) {coarseCoords[v*2+0] = x[v]; coarseCoords[v*2+1] = y[v];}
      break;
    case 3:
      pragmatic_get_coords_3d(x, y, z);
      numCorners = 4;
      for (v = 0; v < numCoarseVertices; ++v) {coarseCoords[v*3+0] = x[v]; coarseCoords[v*3+1] = y[v]; coarseCoords[v*3+2] = z[v];}
      break;
    default:
      SETERRQ1(PetscObjectComm((PetscObject) dm), PETSC_ERR_ARG_OUTOFRANGE, "No Pragmatic coarsening defined for dimension %d", dim);
    }
    pragmatic_get_elements(cells);
    /* TODO Read out markers for boundary */
    ierr = DMPlexCreateFromCellList(PetscObjectComm((PetscObject) dm), dim, numCoarseCells, numCoarseVertices, numCorners, PETSC_TRUE, cells, dim, coarseCoords, &mesh->coarseMesh);CHKERRQ(ierr);
    pragmatic_finalize();
    ierr = PetscFree5(x, y, z, metric, cells);CHKERRQ(ierr);
    ierr = PetscFree2(bdFaces, bdFaceIds);CHKERRQ(ierr);
    ierr = PetscFree(coarseCoords);CHKERRQ(ierr);
  }
#endif
  ierr = PetscObjectReference((PetscObject) mesh->coarseMesh);CHKERRQ(ierr);
  *dmCoarsened = mesh->coarseMesh;
  PetscFunctionReturn(0);
}
예제 #8
0
/*
  - Checks face match
    - Flips non-matching
  - Inserts faces of support cells in FIFO
*/
static PetscErrorCode DMPlexCheckFace_Internal(DM dm, PetscInt *faceFIFO, PetscInt *fTop, PetscInt *fBottom, PetscInt cStart, PetscInt fStart, PetscInt fEnd, PetscBT seenCells, PetscBT flippedCells, PetscBT seenFaces)
{
  const PetscInt *support, *coneA, *coneB, *coneOA, *coneOB;
  PetscInt        supportSize, coneSizeA, coneSizeB, posA = -1, posB = -1;
  PetscInt        face, dim, seenA, flippedA, seenB, flippedB, mismatch, c;
  PetscErrorCode  ierr;

  PetscFunctionBegin;
  face = faceFIFO[(*fTop)++];
  ierr = DMGetDimension(dm, &dim);CHKERRQ(ierr);
  ierr = DMPlexGetSupportSize(dm, face, &supportSize);CHKERRQ(ierr);
  ierr = DMPlexGetSupport(dm, face, &support);CHKERRQ(ierr);
  if (supportSize < 2) PetscFunctionReturn(0);
  if (supportSize != 2) SETERRQ1(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Faces should separate only two cells, not %d", supportSize);
  seenA    = PetscBTLookup(seenCells,    support[0]-cStart);
  flippedA = PetscBTLookup(flippedCells, support[0]-cStart) ? 1 : 0;
  seenB    = PetscBTLookup(seenCells,    support[1]-cStart);
  flippedB = PetscBTLookup(flippedCells, support[1]-cStart) ? 1 : 0;

  ierr = DMPlexGetConeSize(dm, support[0], &coneSizeA);CHKERRQ(ierr);
  ierr = DMPlexGetConeSize(dm, support[1], &coneSizeB);CHKERRQ(ierr);
  ierr = DMPlexGetCone(dm, support[0], &coneA);CHKERRQ(ierr);
  ierr = DMPlexGetCone(dm, support[1], &coneB);CHKERRQ(ierr);
  ierr = DMPlexGetConeOrientation(dm, support[0], &coneOA);CHKERRQ(ierr);
  ierr = DMPlexGetConeOrientation(dm, support[1], &coneOB);CHKERRQ(ierr);
  for (c = 0; c < coneSizeA; ++c) {
    if (!PetscBTLookup(seenFaces, coneA[c]-fStart)) {
      faceFIFO[(*fBottom)++] = coneA[c];
      ierr = PetscBTSet(seenFaces, coneA[c]-fStart);CHKERRQ(ierr);
    }
    if (coneA[c] == face) posA = c;
    if (*fBottom > fEnd-fStart) SETERRQ3(PETSC_COMM_SELF, PETSC_ERR_PLIB, "Face %d was pushed exceeding capacity %d > %d", coneA[c], *fBottom, fEnd-fStart);
  }
  if (posA < 0) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %d could not be located in cell %d", face, support[0]);
  for (c = 0; c < coneSizeB; ++c) {
    if (!PetscBTLookup(seenFaces, coneB[c]-fStart)) {
      faceFIFO[(*fBottom)++] = coneB[c];
      ierr = PetscBTSet(seenFaces, coneB[c]-fStart);CHKERRQ(ierr);
    }
    if (coneB[c] == face) posB = c;
    if (*fBottom > fEnd-fStart) SETERRQ3(PETSC_COMM_SELF, PETSC_ERR_PLIB, "Face %d was pushed exceeding capacity %d > %d", coneA[c], *fBottom, fEnd-fStart);
  }
  if (posB < 0) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %d could not be located in cell %d", face, support[1]);

  if (dim == 1) {
    mismatch = posA == posB;
  } else {
    mismatch = coneOA[posA] == coneOB[posB];
  }

  if (mismatch ^ (flippedA ^ flippedB)) {
    if (seenA && seenB) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Previously seen cells %d and %d do not match: Fault mesh is non-orientable", support[0], support[1]);
    if (!seenA && !flippedA) {
      ierr = PetscBTSet(flippedCells, support[0]-cStart);CHKERRQ(ierr);
    } else if (!seenB && !flippedB) {
      ierr = PetscBTSet(flippedCells, support[1]-cStart);CHKERRQ(ierr);
    } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Inconsistent mesh orientation: Fault mesh is non-orientable");
  } else if (mismatch && flippedA && flippedB) SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Attempt to flip already flipped cell: Fault mesh is non-orientable");
  ierr = PetscBTSet(seenCells, support[0]-cStart);CHKERRQ(ierr);
  ierr = PetscBTSet(seenCells, support[1]-cStart);CHKERRQ(ierr);
  PetscFunctionReturn(0);
}
예제 #9
0
/*@
  DMPlexOrient - Give a consistent orientation to the input mesh

  Input Parameters:
. dm - The DM

  Note: The orientation data for the DM are change in-place.
$ This routine will fail for non-orientable surfaces, such as the Moebius strip.

  Level: advanced

.seealso: DMCreate(), DMPLEX
@*/
PetscErrorCode DMPlexOrient(DM dm)
{
  MPI_Comm           comm;
  PetscSF            sf;
  const PetscInt    *lpoints;
  const PetscSFNode *rpoints;
  PetscSFNode       *rorntComp = NULL, *lorntComp = NULL;
  PetscInt          *numNeighbors, **neighbors;
  PetscSFNode       *nrankComp;
  PetscBool         *match, *flipped;
  PetscBT            seenCells, flippedCells, seenFaces;
  PetscInt          *faceFIFO, fTop, fBottom, *cellComp, *faceComp;
  PetscInt           numLeaves, numRoots, dim, h, cStart, cEnd, c, cell, fStart, fEnd, face, off, totNeighbors = 0;
  PetscMPIInt        rank, size, numComponents, comp = 0;
  PetscBool          flg, flg2;
  PetscViewer        viewer = NULL, selfviewer = NULL;
  PetscErrorCode     ierr;

  PetscFunctionBegin;
  ierr = PetscObjectGetComm((PetscObject) dm, &comm);CHKERRQ(ierr);
  ierr = MPI_Comm_rank(comm, &rank);CHKERRQ(ierr);
  ierr = MPI_Comm_size(comm, &size);CHKERRQ(ierr);
  ierr = PetscOptionsHasName(((PetscObject) dm)->options,((PetscObject) dm)->prefix, "-orientation_view", &flg);CHKERRQ(ierr);
  ierr = PetscOptionsHasName(((PetscObject) dm)->options,((PetscObject) dm)->prefix, "-orientation_view_synchronized", &flg2);CHKERRQ(ierr);
  ierr = DMGetPointSF(dm, &sf);CHKERRQ(ierr);
  ierr = PetscSFGetGraph(sf, &numRoots, &numLeaves, &lpoints, &rpoints);CHKERRQ(ierr);
  /* Truth Table
     mismatch    flips   do action   mismatch   flipA ^ flipB   action
         F       0 flips     no         F             F           F
         F       1 flip      yes        F             T           T
         F       2 flips     no         T             F           T
         T       0 flips     yes        T             T           F
         T       1 flip      no
         T       2 flips     yes
  */
  ierr = DMGetDimension(dm, &dim);CHKERRQ(ierr);
  ierr = DMPlexGetVTKCellHeight(dm, &h);CHKERRQ(ierr);
  ierr = DMPlexGetHeightStratum(dm, h,   &cStart, &cEnd);CHKERRQ(ierr);
  ierr = DMPlexGetHeightStratum(dm, h+1, &fStart, &fEnd);CHKERRQ(ierr);
  ierr = PetscBTCreate(cEnd - cStart, &seenCells);CHKERRQ(ierr);
  ierr = PetscBTMemzero(cEnd - cStart, seenCells);CHKERRQ(ierr);
  ierr = PetscBTCreate(cEnd - cStart, &flippedCells);CHKERRQ(ierr);
  ierr = PetscBTMemzero(cEnd - cStart, flippedCells);CHKERRQ(ierr);
  ierr = PetscBTCreate(fEnd - fStart, &seenFaces);CHKERRQ(ierr);
  ierr = PetscBTMemzero(fEnd - fStart, seenFaces);CHKERRQ(ierr);
  ierr = PetscCalloc3(fEnd - fStart, &faceFIFO, cEnd-cStart, &cellComp, fEnd-fStart, &faceComp);CHKERRQ(ierr);
  /*
   OLD STYLE
   - Add an integer array over cells and faces (component) for connected component number
   Foreach component
     - Mark the initial cell as seen
     - Process component as usual
     - Set component for all seenCells
     - Wipe seenCells and seenFaces (flippedCells can stay)
   - Generate parallel adjacency for component using SF and seenFaces
   - Collect numComponents adj data from each proc to 0
   - Build same serial graph
   - Use same solver
   - Use Scatterv to to send back flipped flags for each component
   - Negate flippedCells by component

   NEW STYLE
   - Create the adj on each process
   - Bootstrap to complete graph on proc 0
  */
  /* Loop over components */
  for (cell = cStart; cell < cEnd; ++cell) cellComp[cell-cStart] = -1;
  do {
    /* Look for first unmarked cell */
    for (cell = cStart; cell < cEnd; ++cell) if (cellComp[cell-cStart] < 0) break;
    if (cell >= cEnd) break;
    /* Initialize FIFO with first cell in component */
    {
      const PetscInt *cone;
      PetscInt        coneSize;

      fTop = fBottom = 0;
      ierr = DMPlexGetConeSize(dm, cell, &coneSize);CHKERRQ(ierr);
      ierr = DMPlexGetCone(dm, cell, &cone);CHKERRQ(ierr);
      for (c = 0; c < coneSize; ++c) {
        faceFIFO[fBottom++] = cone[c];
        ierr = PetscBTSet(seenFaces, cone[c]-fStart);CHKERRQ(ierr);
      }
      ierr = PetscBTSet(seenCells, cell-cStart);CHKERRQ(ierr);
    }
    /* Consider each face in FIFO */
    while (fTop < fBottom) {
      ierr = DMPlexCheckFace_Internal(dm, faceFIFO, &fTop, &fBottom, cStart, fStart, fEnd, seenCells, flippedCells, seenFaces);CHKERRQ(ierr);
    }
    /* Set component for cells and faces */
    for (cell = 0; cell < cEnd-cStart; ++cell) {
      if (PetscBTLookup(seenCells, cell)) cellComp[cell] = comp;
    }
    for (face = 0; face < fEnd-fStart; ++face) {
      if (PetscBTLookup(seenFaces, face)) faceComp[face] = comp;
    }
    /* Wipe seenCells and seenFaces for next component */
    ierr = PetscBTMemzero(fEnd - fStart, seenFaces);CHKERRQ(ierr);
    ierr = PetscBTMemzero(cEnd - cStart, seenCells);CHKERRQ(ierr);
    ++comp;
  } while (1);
  numComponents = comp;
  if (flg) {
    PetscViewer v;

    ierr = PetscViewerASCIIGetStdout(comm, &v);CHKERRQ(ierr);
    ierr = PetscViewerASCIIPushSynchronized(v);CHKERRQ(ierr);
    ierr = PetscViewerASCIISynchronizedPrintf(v, "[%d]BT for serial flipped cells:\n", rank);CHKERRQ(ierr);
    ierr = PetscBTView(cEnd-cStart, flippedCells, v);CHKERRQ(ierr);
    ierr = PetscViewerFlush(v);CHKERRQ(ierr);
    ierr = PetscViewerASCIIPopSynchronized(v);CHKERRQ(ierr);
  }
  /* Now all subdomains are oriented, but we need a consistent parallel orientation */
  if (numLeaves >= 0) {
    /* Store orientations of boundary faces*/
    ierr = PetscCalloc2(numRoots,&rorntComp,numRoots,&lorntComp);CHKERRQ(ierr);
    for (face = fStart; face < fEnd; ++face) {
      const PetscInt *cone, *support, *ornt;
      PetscInt        coneSize, supportSize;

      ierr = DMPlexGetSupportSize(dm, face, &supportSize);CHKERRQ(ierr);
      if (supportSize != 1) continue;
      ierr = DMPlexGetSupport(dm, face, &support);CHKERRQ(ierr);

      ierr = DMPlexGetCone(dm, support[0], &cone);CHKERRQ(ierr);
      ierr = DMPlexGetConeSize(dm, support[0], &coneSize);CHKERRQ(ierr);
      ierr = DMPlexGetConeOrientation(dm, support[0], &ornt);CHKERRQ(ierr);
      for (c = 0; c < coneSize; ++c) if (cone[c] == face) break;
      if (dim == 1) {
        /* Use cone position instead, shifted to -1 or 1 */
        if (PetscBTLookup(flippedCells, support[0]-cStart)) rorntComp[face].rank = 1-c*2;
        else                                                rorntComp[face].rank = c*2-1;
      } else {
        if (PetscBTLookup(flippedCells, support[0]-cStart)) rorntComp[face].rank = ornt[c] < 0 ? -1 :  1;
        else                                                rorntComp[face].rank = ornt[c] < 0 ?  1 : -1;
      }
      rorntComp[face].index = faceComp[face-fStart];
    }
    /* Communicate boundary edge orientations */
    ierr = PetscSFBcastBegin(sf, MPIU_2INT, rorntComp, lorntComp);CHKERRQ(ierr);
    ierr = PetscSFBcastEnd(sf, MPIU_2INT, rorntComp, lorntComp);CHKERRQ(ierr);
  }
  /* Get process adjacency */
  ierr = PetscMalloc2(numComponents, &numNeighbors, numComponents, &neighbors);CHKERRQ(ierr);
  viewer = PETSC_VIEWER_STDOUT_(PetscObjectComm((PetscObject)dm));
  if (flg2) {ierr = PetscViewerASCIIPushSynchronized(viewer);CHKERRQ(ierr);}
  ierr = PetscViewerGetSubViewer(viewer,PETSC_COMM_SELF,&selfviewer);CHKERRQ(ierr);
  for (comp = 0; comp < numComponents; ++comp) {
    PetscInt  l, n;

    numNeighbors[comp] = 0;
    ierr = PetscMalloc1(PetscMax(numLeaves, 0), &neighbors[comp]);CHKERRQ(ierr);
    /* I know this is p^2 time in general, but for bounded degree its alright */
    for (l = 0; l < numLeaves; ++l) {
      const PetscInt face = lpoints[l];

      /* Find a representative face (edge) separating pairs of procs */
      if ((face >= fStart) && (face < fEnd) && (faceComp[face-fStart] == comp)) {
        const PetscInt rrank = rpoints[l].rank;
        const PetscInt rcomp = lorntComp[face].index;

        for (n = 0; n < numNeighbors[comp]; ++n) if ((rrank == rpoints[neighbors[comp][n]].rank) && (rcomp == lorntComp[lpoints[neighbors[comp][n]]].index)) break;
        if (n >= numNeighbors[comp]) {
          PetscInt supportSize;

          ierr = DMPlexGetSupportSize(dm, face, &supportSize);CHKERRQ(ierr);
          if (supportSize != 1) SETERRQ1(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Boundary faces should see one cell, not %d", supportSize);
          if (flg) {ierr = PetscViewerASCIIPrintf(selfviewer, "[%d]: component %d, Found representative leaf %d (face %d) connecting to face %d on (%d, %d) with orientation %d\n", rank, comp, l, face, rpoints[l].index, rrank, rcomp, lorntComp[face].rank);CHKERRQ(ierr);}
          neighbors[comp][numNeighbors[comp]++] = l;
        }
      }
    }
    totNeighbors += numNeighbors[comp];
  }
  ierr = PetscViewerRestoreSubViewer(viewer,PETSC_COMM_SELF,&selfviewer);CHKERRQ(ierr);
  ierr = PetscViewerFlush(viewer);CHKERRQ(ierr);
  if (flg2) {ierr = PetscViewerASCIIPopSynchronized(viewer);CHKERRQ(ierr);}
  ierr = PetscMalloc2(totNeighbors, &nrankComp, totNeighbors, &match);CHKERRQ(ierr);
  for (comp = 0, off = 0; comp < numComponents; ++comp) {
    PetscInt n;

    for (n = 0; n < numNeighbors[comp]; ++n, ++off) {
      const PetscInt face = lpoints[neighbors[comp][n]];
      const PetscInt o    = rorntComp[face].rank*lorntComp[face].rank;

      if      (o < 0) match[off] = PETSC_TRUE;
      else if (o > 0) match[off] = PETSC_FALSE;
      else SETERRQ5(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Invalid face %d (%d, %d) neighbor: %d comp: %d", face, rorntComp[face], lorntComp[face], neighbors[comp][n], comp);
      nrankComp[off].rank  = rpoints[neighbors[comp][n]].rank;
      nrankComp[off].index = lorntComp[lpoints[neighbors[comp][n]]].index;
    }
    ierr = PetscFree(neighbors[comp]);CHKERRQ(ierr);
  }
  /* Collect the graph on 0 */
  if (numLeaves >= 0) {
    Mat          G;
    PetscBT      seenProcs, flippedProcs;
    PetscInt    *procFIFO, pTop, pBottom;
    PetscInt    *N   = NULL, *Noff;
    PetscSFNode *adj = NULL;
    PetscBool   *val = NULL;
    PetscMPIInt *recvcounts = NULL, *displs = NULL, *Nc, p, o;
    PetscMPIInt  size = 0;

    ierr = PetscCalloc1(numComponents, &flipped);CHKERRQ(ierr);
    if (!rank) {ierr = MPI_Comm_size(comm, &size);CHKERRQ(ierr);}
    ierr = PetscCalloc4(size, &recvcounts, size+1, &displs, size, &Nc, size+1, &Noff);CHKERRQ(ierr);
    ierr = MPI_Gather(&numComponents, 1, MPI_INT, Nc, 1, MPI_INT, 0, comm);CHKERRQ(ierr);
    for (p = 0; p < size; ++p) {
      displs[p+1] = displs[p] + Nc[p];
    }
    if (!rank) {ierr = PetscMalloc1(displs[size],&N);CHKERRQ(ierr);}
    ierr = MPI_Gatherv(numNeighbors, numComponents, MPIU_INT, N, Nc, displs, MPIU_INT, 0, comm);CHKERRQ(ierr);
    for (p = 0, o = 0; p < size; ++p) {
      recvcounts[p] = 0;
      for (c = 0; c < Nc[p]; ++c, ++o) recvcounts[p] += N[o];
      displs[p+1] = displs[p] + recvcounts[p];
    }
    if (!rank) {ierr = PetscMalloc2(displs[size], &adj, displs[size], &val);CHKERRQ(ierr);}
    ierr = MPI_Gatherv(nrankComp, totNeighbors, MPIU_2INT, adj, recvcounts, displs, MPIU_2INT, 0, comm);CHKERRQ(ierr);
    ierr = MPI_Gatherv(match, totNeighbors, MPIU_BOOL, val, recvcounts, displs, MPIU_BOOL, 0, comm);CHKERRQ(ierr);
    ierr = PetscFree2(numNeighbors, neighbors);CHKERRQ(ierr);
    if (!rank) {
      for (p = 1; p <= size; ++p) {Noff[p] = Noff[p-1] + Nc[p-1];}
      if (flg) {
        PetscInt n;

        for (p = 0, off = 0; p < size; ++p) {
          for (c = 0; c < Nc[p]; ++c) {
            ierr = PetscPrintf(PETSC_COMM_SELF, "Proc %d Comp %d:\n", p, c);CHKERRQ(ierr);
            for (n = 0; n < N[Noff[p]+c]; ++n, ++off) {
              ierr = PetscPrintf(PETSC_COMM_SELF, "  edge (%d, %d) (%d):\n", adj[off].rank, adj[off].index, val[off]);CHKERRQ(ierr);
            }
          }
        }
      }
      /* Symmetrize the graph */
      ierr = MatCreate(PETSC_COMM_SELF, &G);CHKERRQ(ierr);
      ierr = MatSetSizes(G, Noff[size], Noff[size], Noff[size], Noff[size]);CHKERRQ(ierr);
      ierr = MatSetUp(G);CHKERRQ(ierr);
      for (p = 0, off = 0; p < size; ++p) {
        for (c = 0; c < Nc[p]; ++c) {
          const PetscInt r = Noff[p]+c;
          PetscInt       n;

          for (n = 0; n < N[r]; ++n, ++off) {
            const PetscInt    q = Noff[adj[off].rank] + adj[off].index;
            const PetscScalar o = val[off] ? 1.0 : 0.0;

            ierr = MatSetValues(G, 1, &r, 1, &q, &o, INSERT_VALUES);CHKERRQ(ierr);
            ierr = MatSetValues(G, 1, &q, 1, &r, &o, INSERT_VALUES);CHKERRQ(ierr);
          }
        }
      }
      ierr = MatAssemblyBegin(G, MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
      ierr = MatAssemblyEnd(G, MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);

      ierr = PetscBTCreate(Noff[size], &seenProcs);CHKERRQ(ierr);
      ierr = PetscBTMemzero(Noff[size], seenProcs);CHKERRQ(ierr);
      ierr = PetscBTCreate(Noff[size], &flippedProcs);CHKERRQ(ierr);
      ierr = PetscBTMemzero(Noff[size], flippedProcs);CHKERRQ(ierr);
      ierr = PetscMalloc1(Noff[size], &procFIFO);CHKERRQ(ierr);
      pTop = pBottom = 0;
      for (p = 0; p < Noff[size]; ++p) {
        if (PetscBTLookup(seenProcs, p)) continue;
        /* Initialize FIFO with next proc */
        procFIFO[pBottom++] = p;
        ierr = PetscBTSet(seenProcs, p);CHKERRQ(ierr);
        /* Consider each proc in FIFO */
        while (pTop < pBottom) {
          const PetscScalar *ornt;
          const PetscInt    *neighbors;
          PetscInt           proc, nproc, seen, flippedA, flippedB, mismatch, numNeighbors, n;

          proc     = procFIFO[pTop++];
          flippedA = PetscBTLookup(flippedProcs, proc) ? 1 : 0;
          ierr = MatGetRow(G, proc, &numNeighbors, &neighbors, &ornt);CHKERRQ(ierr);
          /* Loop over neighboring procs */
          for (n = 0; n < numNeighbors; ++n) {
            nproc    = neighbors[n];
            mismatch = PetscRealPart(ornt[n]) > 0.5 ? 0 : 1;
            seen     = PetscBTLookup(seenProcs, nproc);
            flippedB = PetscBTLookup(flippedProcs, nproc) ? 1 : 0;

            if (mismatch ^ (flippedA ^ flippedB)) {
              if (seen) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Previously seen procs %d and %d do not match: Fault mesh is non-orientable", proc, nproc);
              if (!flippedB) {
                ierr = PetscBTSet(flippedProcs, nproc);CHKERRQ(ierr);
              } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Inconsistent mesh orientation: Fault mesh is non-orientable");
            } else if (mismatch && flippedA && flippedB) SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Attempt to flip already flipped cell: Fault mesh is non-orientable");
            if (!seen) {
              procFIFO[pBottom++] = nproc;
              ierr = PetscBTSet(seenProcs, nproc);CHKERRQ(ierr);
            }
          }
        }
      }
      ierr = PetscFree(procFIFO);CHKERRQ(ierr);
      ierr = MatDestroy(&G);CHKERRQ(ierr);
      ierr = PetscFree2(adj, val);CHKERRQ(ierr);
      ierr = PetscBTDestroy(&seenProcs);CHKERRQ(ierr);
    }
    /* Scatter flip flags */
    {
      PetscBool *flips = NULL;

      if (!rank) {
        ierr = PetscMalloc1(Noff[size], &flips);CHKERRQ(ierr);
        for (p = 0; p < Noff[size]; ++p) {
          flips[p] = PetscBTLookup(flippedProcs, p) ? PETSC_TRUE : PETSC_FALSE;
          if (flg && flips[p]) {ierr = PetscPrintf(comm, "Flipping Proc+Comp %d:\n", p);CHKERRQ(ierr);}
        }
        for (p = 0; p < size; ++p) {
          displs[p+1] = displs[p] + Nc[p];
        }
      }
      ierr = MPI_Scatterv(flips, Nc, displs, MPIU_BOOL, flipped, numComponents, MPIU_BOOL, 0, comm);CHKERRQ(ierr);
      ierr = PetscFree(flips);CHKERRQ(ierr);
    }
    if (!rank) {ierr = PetscBTDestroy(&flippedProcs);CHKERRQ(ierr);}
    ierr = PetscFree(N);CHKERRQ(ierr);
    ierr = PetscFree4(recvcounts, displs, Nc, Noff);CHKERRQ(ierr);
    ierr = PetscFree2(nrankComp, match);CHKERRQ(ierr);

    /* Decide whether to flip cells in each component */
    for (c = 0; c < cEnd-cStart; ++c) {if (flipped[cellComp[c]]) {ierr = PetscBTNegate(flippedCells, c);CHKERRQ(ierr);}}
    ierr = PetscFree(flipped);CHKERRQ(ierr);
  }
  if (flg) {
    PetscViewer v;

    ierr = PetscViewerASCIIGetStdout(comm, &v);CHKERRQ(ierr);
    ierr = PetscViewerASCIIPushSynchronized(v);CHKERRQ(ierr);
    ierr = PetscViewerASCIISynchronizedPrintf(v, "[%d]BT for parallel flipped cells:\n", rank);CHKERRQ(ierr);
    ierr = PetscBTView(cEnd-cStart, flippedCells, v);CHKERRQ(ierr);
    ierr = PetscViewerFlush(v);CHKERRQ(ierr);
    ierr = PetscViewerASCIIPopSynchronized(v);CHKERRQ(ierr);
  }
  /* Reverse flipped cells in the mesh */
  for (c = cStart; c < cEnd; ++c) {
    if (PetscBTLookup(flippedCells, c-cStart)) {
      ierr = DMPlexReverseCell(dm, c);CHKERRQ(ierr);
    }
  }
  ierr = PetscBTDestroy(&seenCells);CHKERRQ(ierr);
  ierr = PetscBTDestroy(&flippedCells);CHKERRQ(ierr);
  ierr = PetscBTDestroy(&seenFaces);CHKERRQ(ierr);
  ierr = PetscFree2(numNeighbors, neighbors);CHKERRQ(ierr);
  ierr = PetscFree2(rorntComp, lorntComp);CHKERRQ(ierr);
  ierr = PetscFree3(faceFIFO, cellComp, faceComp);CHKERRQ(ierr);
  PetscFunctionReturn(0);
}