예제 #1
1
int convert_eckey_to_x962_and_print(const EC_KEY* eckey, int version) {
  assert(eckey);

  // We don't need to manage the memory for group/point since we're using get0.
  const EC_GROUP* group = EC_KEY_get0_group(eckey);
  if (!group) {
    fprintf(stderr, "error: EC_KEY_get0_group() failed.\n");
    return 3;
  }

  const EC_POINT* pubkey_point = EC_KEY_get0_public_key(eckey);
  if (!pubkey_point) {
    fprintf(stderr, "error: EC_KEY_get0_public_key() failed.\n");
    return 3;
  }

  size_t octets_len = 256;
  unsigned char octets[256];
  
  octets_len = EC_POINT_point2oct(group, pubkey_point,
                                  POINT_CONVERSION_UNCOMPRESSED,
                                  octets, octets_len, NULL);
  if (0 == octets_len) {
    fprintf(stderr, "error: EC_POINT_point2oct() failed.\n");
    return 3;
  }

  if (octets_len != X962_UNCOMPRESSED_SIZE) {
    fprintf(stderr, "error: EC_POINT_point2oct() produced %lu bytes.\n",
            (unsigned long) octets_len);
    return 3;
  }

  if (octets[0] != X962_UNCOMPRESSED_HEADER) {
    fprintf(stderr, "error: EC_POINT_point2oct() produced compressed data.\n");
    return 3;
  }

  int result = verify_x962_octets_are_on_p256(octets, octets_len);
  if (result != 0) {
    return result;
  }

  return print_octets(octets, octets_len, version);
}
예제 #2
0
파일: crypto.c 프로젝트: mbrossard/pkcs11
static int pkcs11_ecdh_compute_key_common(unsigned char **out, size_t *outlen,
                                          const EC_POINT *point, const EC_KEY *key,
                                          struct pkcs11_key_data *pkd)
{
	int rv = 0;

    if(pkd != NULL) {
        unsigned char oct[256];
        const EC_GROUP *group = EC_KEY_get0_group(key);
        size_t len = EC_POINT_point2oct(group, point, POINT_CONVERSION_UNCOMPRESSED, oct, sizeof(oct), NULL);
        if(len > 0) {
            CK_ECDH1_DERIVE_PARAMS params = { CKD_NULL, 0, NULL, len, oct };
            CK_BBOOL ck_true = TRUE;
            CK_BBOOL ck_false = FALSE;
            CK_OBJECT_HANDLE derived = CK_INVALID_HANDLE;
            CK_OBJECT_CLASS class = CKO_SECRET_KEY;
            CK_KEY_TYPE type = CKK_GENERIC_SECRET;
            CK_ATTRIBUTE template[] = {
size_t polypseud_decrypt(const polypseud_ctx *ctx, pseudonym *ep, const BIGNUM *privkey, const BIGNUM *closingkey, unsigned char **pp) {
   if(EC_POINT_mul(ctx->ec_group, ep->a, NULL, ep->a, privkey, ctx->bn_ctx) == 0) 
       return 0;
   
   if(EC_POINT_invert(ctx->ec_group, ep->a, ctx->bn_ctx) == 0) 
        return 0;

   if(EC_POINT_add(ctx->ec_group, ep->a, ep->b, ep->a, ctx->bn_ctx) == 0)
       return 0;

   if(EC_POINT_mul(ctx->ec_group, ep->a, NULL, ep->a, closingkey, ctx->bn_ctx) == 0) 
       return 0;
   
   unsigned char octstring[100];

   size_t len = EC_POINT_point2oct(ctx->ec_group, ep->a, POINT_CONVERSION_UNCOMPRESSED, octstring, 100, ctx->bn_ctx);
   
   return hash(octstring, len, pp); 
}
예제 #4
0
파일: mpkgen.c 프로젝트: 9cat/misc
void b58encode_address(const EC_POINT *ppoint, const EC_GROUP *pgroup, int addrtype, char *result)
{
        unsigned char eckey_buf[128], *pend;
        unsigned char binres[21] = {0,};
        unsigned char hash1[32];

        pend = eckey_buf;

        EC_POINT_point2oct(pgroup,
                           ppoint,
                           POINT_CONVERSION_UNCOMPRESSED,
                           eckey_buf,
                           sizeof(eckey_buf),
                           NULL);
        pend = eckey_buf + 0x41;
        binres[0] = addrtype;
        SHA256(eckey_buf, pend - eckey_buf, hash1);
        RIPEMD160(hash1, sizeof(hash1), &binres[1]);

        b58encode_check(binres, sizeof(binres), result);
}
예제 #5
0
void CBAddPoints(uint8_t * point1, uint8_t * point2){
	// Get group
	EC_GROUP * group = EC_GROUP_new_by_curve_name(NID_secp256k1);
	// Get OpenSSL representations of points
	EC_POINT * p1 = EC_POINT_new(group);
	EC_POINT * p2 = EC_POINT_new(group);
	BN_CTX * ctx = BN_CTX_new();
	EC_POINT_oct2point(group, p1, point1, 33, ctx);
	EC_POINT_oct2point(group, p2, point2, 33, ctx);
	// Add points together
	EC_POINT * result = EC_POINT_new(group);
	EC_POINT_add(group, result, p1, p2, ctx);
	// Free points
	EC_POINT_free(p1);
	EC_POINT_free(p2);
	// Write result to point1
	EC_POINT_point2oct(group, result, POINT_CONVERSION_COMPRESSED, point1, 33, ctx);
	// Free result, group and ctx
	EC_POINT_free(result);
	EC_GROUP_free(group);
	BN_CTX_free(ctx);
}
예제 #6
0
u2fs_rc dump_user_key(const u2fs_EC_KEY_t * key, char **output)
{
  //TODO add PEM - current output is openssl octet string

  if (key == NULL || output == NULL)
    return U2FS_MEMORY_ERROR;

  EC_GROUP *ecg = EC_GROUP_new_by_curve_name(NID_X9_62_prime256v1);
  point_conversion_form_t pcf = POINT_CONVERSION_UNCOMPRESSED;

  if (ecg == NULL)
    return U2FS_MEMORY_ERROR;

  const EC_POINT *point = EC_KEY_get0_public_key((EC_KEY *) key);

  *output = malloc(U2FS_PUBLIC_KEY_LEN);

  if (*output == NULL) {
    EC_GROUP_free(ecg);
    ecg = NULL;
    return U2FS_MEMORY_ERROR;
  }

  if (EC_POINT_point2oct
      (ecg, point, pcf, (unsigned char *) *output, U2FS_PUBLIC_KEY_LEN,
       NULL) != U2FS_PUBLIC_KEY_LEN) {
    free(ecg);
    ecg = NULL;
    free(*output);
    *output = NULL;
    return U2FS_CRYPTO_ERROR;
  }

  EC_GROUP_free(ecg);
  ecg = NULL;

  return U2FS_OK;

}
예제 #7
0
int main() {
	srand((unsigned)time(NULL));
	int i;
	EC_KEY* key;
	//key = EC_KEY_new_by_curve_name(415);
	key = EC_KEY_new_by_curve_name(NID_X9_62_prime256v1);
	const EC_GROUP *group = EC_KEY_get0_group(key);
	if (EC_KEY_generate_key(key)==0) {
		printf("Error generate key\n");
		return -1;
	}
	unsigned char pk_b[33];
	const EC_POINT *pub = EC_KEY_get0_public_key(key);
	if (EC_POINT_point2oct(group, pub, POINT_CONVERSION_COMPRESSED, pk_b, 33, 0)!=33) {
		printf("Error 2\n");
		return -1;
	}
	unsigned char h1[16],h2[16];

	printf("\x02");
	for (i=0;i<16;i++) {
		h1[i]=rand()%256;
		printf("%c",h1[i]);
	}
	for (i=0;i<33;i++)
		printf("%c",pk_b[i]);
	fflush(stdout);
	//get h2
	for (i=0;i<16;i++) 
		h2[i]=rand()%256;
	for (i=0;i<16;i++)
		scanf("%c",&h2[i]);
		
	//get peerpk_b
	unsigned char peerpk_b[33]={2 , 30 , 25 , 50 , 17 , 242 , 232 , 55 , 157 , 18 , 106 , 115 , 214 , 193 , 192 , 39 , 207 , 226 , 184 , 216 , 244 , 147 , 111 , 188 , 125 , 230 , 38 , 125 , 231 , 50 , 56 , 152 , 148 };
	for (i=0;i<33;i++)
		scanf("%c",&peerpk_b[i]);
	
	EC_POINT *peerpk = EC_POINT_new(group);
	if (EC_POINT_oct2point(group, peerpk, peerpk_b, 33, 0)==0) {
		printf("Error 3\n");
		return -1;
	}
	unsigned char skey[33];
	if (ECDH_compute_key(skey, 32,  peerpk, key, NULL)==0) {
		printf("Error 4\n");
		return -1;
	}


	SHA512_CTX shactx;	
	unsigned char hash[SHA512_DIGEST_LENGTH];
	SHA512_Init(&shactx);
	SHA512_Update(&shactx, h2, 16);
	SHA512_Update(&shactx, skey, 32);
	SHA512_Update(&shactx, h1, 16);
	SHA512_Final(hash, &shactx);

	for (i=0;i<64;i++)
		printf("%02x",hash[i]);	
	fflush(stdout);

	struct cipher c;
	c.recvfd=0;
	c.sendfd=1;
	for (i=0;i<16;i++)
		c.sendkey[i]=hash[i];
	for (i=0;i<4;i++)
		c.sendiv[i]=hash[32+i];
	for (i=0;i<16;i++)
		c.recvkey[i]=hash[16+i];
	for (i=0;i<4;i++)
		c.recviv[i]=hash[36+i];
	c.sendcnt=0;
	c.recvcnt=0;

	unsigned char d[1000];
	unsigned char oiv[8];
	int op;
	char dlen;

	while (true) {
		scanf("%d",&op);
		scanf("%c",&dlen);
		scanf("%c",&dlen);
		for (i=0;i<dlen;i++)
			scanf("%c",&d[i]);
		if (op==1) {
			for (i=0;i<8;i++)
				oiv[i]=rand()%256;
			encrypt(c,d,dlen,oiv);
			c.recvcnt+=1;
		} else if (op==2) {
			for (i=0;i<8;i++)
				scanf("%c",&oiv[i]);
			decrypt(c,d,dlen,oiv, NULL);
			c.sendcnt+=1;
		}
		fflush(stdout);
	}
	
	return 0;
}
예제 #8
0
파일: ecdh.c 프로젝트: MarvinZhuang/tmate
int ssh_server_ecdh_init(ssh_session session, ssh_buffer packet){
    /* ECDH keys */
    ssh_string q_c_string = NULL;
    ssh_string q_s_string = NULL;
    EC_KEY *ecdh_key=NULL;
    const EC_GROUP *group;
    const EC_POINT *ecdh_pubkey;
    bignum_CTX ctx;
    /* SSH host keys (rsa,dsa,ecdsa) */
    ssh_key privkey;
    ssh_string sig_blob = NULL;
    int len;
    int rc;

    enter_function();

    /* Extract the client pubkey from the init packet */

    q_c_string = buffer_get_ssh_string(packet);
    if (q_c_string == NULL) {
      ssh_set_error(session,SSH_FATAL, "No Q_C ECC point in packet");
      goto error;
    }
    session->next_crypto->ecdh_client_pubkey = q_c_string;

    /* Build server's keypair */

    ctx = BN_CTX_new();
    ecdh_key = EC_KEY_new_by_curve_name(NISTP256);
    group = EC_KEY_get0_group(ecdh_key);
    EC_KEY_generate_key(ecdh_key);
    ecdh_pubkey=EC_KEY_get0_public_key(ecdh_key);
    len = EC_POINT_point2oct(group,ecdh_pubkey,POINT_CONVERSION_UNCOMPRESSED,
        NULL,0,ctx);
    q_s_string=ssh_string_new(len);

    EC_POINT_point2oct(group,ecdh_pubkey,POINT_CONVERSION_UNCOMPRESSED,
        ssh_string_data(q_s_string),len,ctx);

    BN_CTX_free(ctx);
    session->next_crypto->ecdh_privkey = ecdh_key;
    session->next_crypto->ecdh_server_pubkey = q_s_string;

    buffer_add_u8(session->out_buffer, SSH2_MSG_KEXDH_REPLY);
    /* build k and session_id */
    if (ecdh_build_k(session) < 0) {
      ssh_set_error(session, SSH_FATAL, "Cannot build k number");
      goto error;
    }
    if (ssh_get_key_params(session, &privkey) == SSH_ERROR)
        goto error;
    if (make_sessionid(session) != SSH_OK) {
      ssh_set_error(session, SSH_FATAL, "Could not create a session id");
      goto error;
    }

    /* add host's public key */
    buffer_add_ssh_string(session->out_buffer, session->next_crypto->server_pubkey);
    /* add ecdh public key */
    buffer_add_ssh_string(session->out_buffer,q_s_string);
    /* add signature blob */
    sig_blob = ssh_srv_pki_do_sign_sessionid(session, privkey);
    if (sig_blob == NULL) {
        ssh_set_error(session, SSH_FATAL, "Could not sign the session id");
        goto error;
    }
    buffer_add_ssh_string(session->out_buffer, sig_blob);
    ssh_string_free(sig_blob);
    /* Free private keys as they should not be readable after this point */
    if (session->srv.rsa_key) {
        ssh_key_free(session->srv.rsa_key);
        session->srv.rsa_key = NULL;
    }
    if (session->srv.dsa_key) {
        ssh_key_free(session->srv.dsa_key);
        session->srv.dsa_key = NULL;
    }

    ssh_log(session,SSH_LOG_PROTOCOL, "SSH_MSG_KEXDH_REPLY sent");
    rc = packet_send(session);
    if (rc == SSH_ERROR)
        goto error;

    /* Send the MSG_NEWKEYS */
    if (buffer_add_u8(session->out_buffer, SSH2_MSG_NEWKEYS) < 0) {
      goto error;
    }
    session->dh_handshake_state=DH_STATE_NEWKEYS_SENT;
    rc=packet_send(session);
    ssh_log(session, SSH_LOG_PROTOCOL, "SSH_MSG_NEWKEYS sent");
    return rc;
  error:
    return SSH_ERROR;
}
예제 #9
0
static int do_EC_KEY_print(BIO *bp, const EC_KEY *x, int off, int ktype) {
  uint8_t *buffer = NULL;
  const char *ecstr;
  size_t buf_len = 0, i;
  int ret = 0, reason = ERR_R_BIO_LIB;
  BN_CTX *ctx = NULL;
  const EC_GROUP *group;
  const EC_POINT *public_key;
  const BIGNUM *priv_key;
  uint8_t *pub_key_bytes = NULL;
  size_t pub_key_bytes_len = 0;

  if (x == NULL || (group = EC_KEY_get0_group(x)) == NULL) {
    reason = ERR_R_PASSED_NULL_PARAMETER;
    goto err;
  }

  ctx = BN_CTX_new();
  if (ctx == NULL) {
    reason = ERR_R_MALLOC_FAILURE;
    goto err;
  }

  if (ktype > 0) {
    public_key = EC_KEY_get0_public_key(x);
    if (public_key != NULL) {
      pub_key_bytes_len = EC_POINT_point2oct(
          group, public_key, EC_KEY_get_conv_form(x), NULL, 0, ctx);
      if (pub_key_bytes_len == 0) {
        reason = ERR_R_MALLOC_FAILURE;
        goto err;
      }
      pub_key_bytes = OPENSSL_malloc(pub_key_bytes_len);
      if (pub_key_bytes == NULL) {
        reason = ERR_R_MALLOC_FAILURE;
        goto err;
      }
      pub_key_bytes_len =
          EC_POINT_point2oct(group, public_key, EC_KEY_get_conv_form(x),
                             pub_key_bytes, pub_key_bytes_len, ctx);
      if (pub_key_bytes_len == 0) {
        reason = ERR_R_MALLOC_FAILURE;
        goto err;
      }
      buf_len = pub_key_bytes_len;
    }
  }

  if (ktype == 2) {
    priv_key = EC_KEY_get0_private_key(x);
    if (priv_key && (i = (size_t)BN_num_bytes(priv_key)) > buf_len) {
      buf_len = i;
    }
  } else {
    priv_key = NULL;
  }

  if (ktype > 0) {
    buf_len += 10;
    if ((buffer = OPENSSL_malloc(buf_len)) == NULL) {
      reason = ERR_R_MALLOC_FAILURE;
      goto err;
    }
  }
  if (ktype == 2) {
    ecstr = "Private-Key";
  } else if (ktype == 1) {
    ecstr = "Public-Key";
  } else {
    ecstr = "ECDSA-Parameters";
  }

  if (!BIO_indent(bp, off, 128)) {
    goto err;
  }
  const BIGNUM *order = EC_GROUP_get0_order(group);
  if (BIO_printf(bp, "%s: (%d bit)\n", ecstr, BN_num_bits(order)) <= 0) {
    goto err;
  }

  if ((priv_key != NULL) &&
      !ASN1_bn_print(bp, "priv:", priv_key, buffer, off)) {
    goto err;
  }
  if (pub_key_bytes != NULL) {
    BIO_hexdump(bp, pub_key_bytes, pub_key_bytes_len, off);
  }
  /* TODO(fork): implement */
  /*
  if (!ECPKParameters_print(bp, group, off))
    goto err; */
  ret = 1;

err:
  if (!ret) {
    OPENSSL_PUT_ERROR(EVP, reason);
  }
  OPENSSL_free(pub_key_bytes);
  BN_CTX_free(ctx);
  OPENSSL_free(buffer);
  return ret;
}
예제 #10
0
파일: p11_ec.c 프로젝트: bphinz/libp11
/* Our version of the ossl_ecdh_compute_key replaced in the EC_KEY_METHOD */
static int pkcs11_ec_ckey(void *out,
		size_t outlen,
		const EC_POINT *ecpointpeer,
		const EC_KEY *ecdh,
		void *(*KDF) (const void *in,
			size_t inlen,
			void *out,
			size_t *outlen))
{
	int ret = -1;
	size_t buflen;
	unsigned char *buf = NULL;
	size_t peerbuflen;
	unsigned char *peerbuf = NULL;
	const EC_GROUP *ecgroup = NULL;
	const EC_POINT *ecpoint = NULL;
	CK_ECDH1_DERIVE_PARAMS ecdh_parms;
	PKCS11_KEY * key = NULL;

	key = (PKCS11_KEY *) EC_KEY_get_ex_data(ecdh, ec_key_ex_index);

	if (key == NULL) {
	    ret -1;
	    goto err;
	}

	/* both peer and ecdh use same group parameters */
	ecgroup = EC_KEY_get0_group(ecdh);
	buflen = (EC_GROUP_get_degree(ecgroup) + 7) / 8;

	peerbuflen = 2*buflen + 1;
	peerbuf = OPENSSL_malloc(peerbuflen);
	if (peerbuf == NULL) {
		ret = -1;
		goto err;
	}

	ecdh_parms.kdf = CKD_NULL;
	ecdh_parms.ulSharedDataLen = 0;
	ecdh_parms.pSharedData = NULL;
	ecdh_parms.ulPublicDataLen = peerbuflen;
	ret = EC_POINT_point2oct(ecgroup,
			ecpointpeer,
			POINT_CONVERSION_UNCOMPRESSED,
			peerbuf, peerbuflen,NULL);
	ecdh_parms.ulPublicDataLen = peerbuflen;
	ecdh_parms.pPublicData = peerbuf;


	ret = pkcs11_ecdh_derive_internal(&buf, &buflen, CKM_ECDH1_DERIVE,
		(const void *)&ecdh_parms, NULL, key);

	if (KDF != 0) {
		if (KDF(buf, buflen, out, &outlen) == NULL) {
			ret -1;
			goto err;
		}
		ret = outlen;
	} else {
		if (outlen > buflen)
		    outlen = buflen;
		memcpy(out, buf, outlen);
		ret = outlen;
	}
err:
	OPENSSL_free(buf);
	return (ret);
}
CK_RV PKCS11_Objects_OpenSSL::GetAttributeValue(Cryptoki_Session_Context* pSessionCtx, CK_OBJECT_HANDLE hObject, CK_ATTRIBUTE_PTR pTemplate, CK_ULONG ulCount)
{
    OBJECT_DATA* pObj = PKCS11_Objects_OpenSSL::GetObjectFromHandle(pSessionCtx, hObject);

    if(pObj == NULL) return CKR_OBJECT_HANDLE_INVALID;

    if(pObj->Type == CertificateType)
    {
        CERT_DATA* pCertData = (CERT_DATA*)pObj->Data;
        X509* pCert = pCertData->cert;
        INT32 valLen = 0;
    
        for(int i=0; i<(int)ulCount; i++)
        {
            switch(pTemplate[i].type)
            {
                case CKA_CLASS:
                    *(INT32*)pTemplate[i].pValue = SwapEndianIfBEc32(CKO_CERTIFICATE);
                    break;
                case CKA_PRIVATE:
                    *(INT32*)pTemplate[i].pValue = SwapEndianIfBEc32(pCertData->privKeyData.key == NULL ? 0 : 1);
                    valLen = sizeof(INT32);
                    break;

                case CKA_VALUE_BITS:
                    {
                        *(INT32*)pTemplate[i].pValue = SwapEndianIfBEc32(pCertData->pubKeyData.size);
                        valLen = sizeof(INT32);
                    }
                    break;
                    
                case CKA_KEY_TYPE:
                    {
                        *(UINT32*)pTemplate[i].pValue = SwapEndianIfBEc32(pCertData->pubKeyData.type);
                        valLen = sizeof(UINT32);
                    }
                    break;

                case CKA_ISSUER:
                    {
                        char* name=X509_NAME_oneline(X509_get_issuer_name(pCert),NULL,0);
                        valLen = TINYCLR_SSL_STRLEN(name) + 1;

                        if(valLen > pTemplate[i].ulValueLen) valLen = pTemplate[i].ulValueLen;
                        
                        hal_strcpy_s((char*)pTemplate[i].pValue, valLen, name);
                        OPENSSL_free(name);
                    }
                    break;

                case CKA_SUBJECT:
                    {
                        char* subject=X509_NAME_oneline(X509_get_subject_name(pCert),NULL,0);
                        valLen = TINYCLR_SSL_STRLEN(subject) + 1;

                        if(valLen > pTemplate[i].ulValueLen) valLen = pTemplate[i].ulValueLen;
                        
                        hal_strcpy_s((char*)pTemplate[i].pValue, valLen, subject);
                        OPENSSL_free(subject);
                    }
                    break;

                case CKA_SERIAL_NUMBER:
                    {
                        ASN1_INTEGER* asn = X509_get_serialNumber(pCert);

                        valLen = asn->length;

                        if(valLen > pTemplate[i].ulValueLen) valLen = pTemplate[i].ulValueLen;

                        TINYCLR_SSL_MEMCPY(pTemplate[i].pValue, asn->data, valLen);
                    }
                    break;

                case CKA_MECHANISM_TYPE:
                    if(pCert->sig_alg != NULL)
                    {
                        int signature_nid;
                        CK_MECHANISM_TYPE type = CKM_VENDOR_DEFINED;
                        
                        signature_nid = OBJ_obj2nid(pCert->sig_alg->algorithm);

                        switch(signature_nid)
                        {
                            case NID_sha1WithRSA:
                            case NID_sha1WithRSAEncryption:
                                //szNid = "1.2.840.113549.1.1.5";
                                type = CKM_SHA1_RSA_PKCS;
                                break;

                            case NID_md5WithRSA:
                            case NID_md5WithRSAEncryption:
                                //szNid = "1.2.840.113549.1.1.4";
                                type = CKM_MD5_RSA_PKCS;
                                break;

                            case NID_sha256WithRSAEncryption:
                                //szNid = "1.2.840.113549.1.1.11";
                                type = CKM_SHA256_RSA_PKCS;
                                break;

                            case NID_sha384WithRSAEncryption:
                                //szNid = "1.2.840.113549.1.1.12";
                                type = CKM_SHA384_RSA_PKCS;
                                break;

                            case NID_sha512WithRSAEncryption:
                                //szNid = "1.2.840.113549.1.1.13";
                                type = CKM_SHA512_RSA_PKCS;
                                break;
                        }

                        valLen = sizeof(CK_MECHANISM_TYPE);
                        *(CK_MECHANISM_TYPE*)pTemplate[i].pValue = SwapEndianIfBEc32(type);
                    }
                    break;

                case CKA_START_DATE:
                    {
                        DATE_TIME_INFO dti;
                        
                        ssl_get_ASN1_UTCTIME(X509_get_notBefore(pCert), &dti);

                        valLen = (INT32)pTemplate[i].ulValueLen;

                        if(valLen > sizeof(dti)) valLen = sizeof(dti);

                        TINYCLR_SSL_MEMCPY(pTemplate[i].pValue, &dti, valLen);
                    }
                    break;

                case CKA_END_DATE:
                    {
                        DATE_TIME_INFO dti;
                        
                        ssl_get_ASN1_UTCTIME(X509_get_notAfter(pCert), &dti);

                        valLen = pTemplate[i].ulValueLen;

                        if(valLen > sizeof(dti)) valLen = sizeof(dti);

                        TINYCLR_SSL_MEMCPY(pTemplate[i].pValue, &dti, valLen);
                    }
                    break;

                case CKA_VALUE:
                    {
                        UINT8* pData = (UINT8*)pTemplate[i].pValue;
                        UINT8* pTmp = pData;

                        valLen = i2d_X509(pCert, NULL);

                        if(valLen > pTemplate[i].ulValueLen) return CKR_DEVICE_MEMORY;
                        
                        valLen = i2d_X509(pCert, &pTmp);

                        if(valLen < 0) return CKR_FUNCTION_FAILED;
                    }
                    break;

                case CKA_VALUE_LEN:
                    *(UINT32*)pTemplate[i].pValue = SwapEndianIfBEc32(valLen);
                    break;

                default:
                    return CKR_ATTRIBUTE_TYPE_INVALID;
            }
        }
    }
    else if(pObj->Type == KeyType)
    {
        KEY_DATA* pKey = (KEY_DATA*)pObj->Data;
        int valLen = 0;
        bool isPrivate = false;

        for(int i=0; i<(int)ulCount; i++)
        {
            switch(pTemplate[i].type)
            {
                case CKA_CLASS:
                    *(INT32*)pTemplate[i].pValue = SwapEndianIfBEc32((0 != (pKey->attrib & Private) ? CKO_PRIVATE_KEY : 0 != (pKey->attrib & Public) ? CKO_PUBLIC_KEY : CKO_SECRET_KEY));
                    break;
                    
                case CKA_MODULUS:
                    if(pKey->type == CKK_RSA)
                    {
                        EVP_PKEY* pRealKey = (EVP_PKEY*)pKey->key;

                        valLen = BN_bn2bin(pRealKey->pkey.rsa->n, (UINT8*)pTemplate[i].pValue);
                    }    
                    break;

                case CKA_EXPONENT_1:
                    if(pKey->type == CKK_RSA)
                    {
                        EVP_PKEY* pRealKey = (EVP_PKEY*)pKey->key;

                        valLen = BN_bn2bin(pRealKey->pkey.rsa->dmp1, (UINT8*)pTemplate[i].pValue);
                    }    
                    break;

                case CKA_EXPONENT_2:
                    if(pKey->type == CKK_RSA)
                    {
                        EVP_PKEY* pRealKey = (EVP_PKEY*)pKey->key;

                        valLen = BN_bn2bin(pRealKey->pkey.rsa->dmq1, (UINT8*)pTemplate[i].pValue);
                    }    
                    break;

                case CKA_COEFFICIENT:
                    if(pKey->type == CKK_RSA)
                    {
                        EVP_PKEY* pRealKey = (EVP_PKEY*)pKey->key;

                        valLen = BN_bn2bin(pRealKey->pkey.rsa->iqmp, (UINT8*)pTemplate[i].pValue);
                    }    
                    break;
                    
                case CKA_PRIME_1:
                    if(pKey->type == CKK_RSA)
                    {
                        EVP_PKEY* pRealKey = (EVP_PKEY*)pKey->key;

                        valLen = BN_bn2bin(pRealKey->pkey.rsa->p, (UINT8*)pTemplate[i].pValue);
                    }    
                    break;

                case CKA_PRIME_2:
                    if(pKey->type == CKK_RSA)
                    {
                        EVP_PKEY* pRealKey = (EVP_PKEY*)pKey->key;

                        valLen = BN_bn2bin(pRealKey->pkey.rsa->q, (UINT8*)pTemplate[i].pValue);
                    }    
                    break;

                
                case CKA_PRIVATE_EXPONENT:
                    if(pKey->type == CKK_DSA)
                    {
                        EVP_PKEY* pRealKey = (EVP_PKEY*)pKey->key;

                        valLen = BN_bn2bin(pRealKey->pkey.dsa->priv_key, (UINT8*)pTemplate[i].pValue);
                    }
                    else if(pKey->type == CKK_RSA)
                    {
                        EVP_PKEY* pRealKey = (EVP_PKEY*)pKey->key;

                        valLen = BN_bn2bin(pRealKey->pkey.rsa->d, (UINT8*)pTemplate[i].pValue);
                    }
                    break;
                case CKA_PUBLIC_EXPONENT:
                    if(pKey->type == CKK_DSA)
                    {
                        EVP_PKEY* pRealKey = (EVP_PKEY*)pKey->key;
                
                        valLen = BN_bn2bin(pRealKey->pkey.dsa->pub_key, (UINT8*)pTemplate[i].pValue);
                    }
                    else if(pKey->type == CKK_EC)
                    {
                        UINT8 pTmp[66*2+1];
                    
                        EC_KEY* pEC = ((EVP_PKEY*)pKey->key)->pkey.ec;
                        
                        const EC_POINT* point = EC_KEY_get0_public_key(pEC);
                        valLen = EC_POINT_point2oct(EC_KEY_get0_group(pEC), point, POINT_CONVERSION_UNCOMPRESSED, (UINT8*)pTmp, ARRAYSIZE(pTmp), NULL);
                    
                        if(valLen == 0) return CKR_FUNCTION_FAILED;
                            
                        memmove(pTemplate[i].pValue, &pTmp[1], valLen-1); // remove POINT_CONVERSION_UNCOMPRESSED header byte
                    }
                    else if(pKey->type == CKK_RSA)
                    {
                        EVP_PKEY* pRealKey = (EVP_PKEY*)pKey->key;

                        valLen = BN_bn2bin(pRealKey->pkey.rsa->e, (UINT8*)pTemplate[i].pValue);
                    }                    
                    break;

                case CKA_PRIME:
                    if(pKey->type == CKK_DSA)
                    {
                        EVP_PKEY* pRealKey = (EVP_PKEY*)pKey->key;

                        valLen = BN_bn2bin(pRealKey->pkey.dsa->p, (UINT8*)pTemplate[i].pValue);
                    }
                    break;

                case CKA_SUBPRIME:
                    if(pKey->type == CKK_DSA)
                    {
                        EVP_PKEY* pRealKey = (EVP_PKEY*)pKey->key;

                        valLen = BN_bn2bin(pRealKey->pkey.dsa->q, (UINT8*)pTemplate[i].pValue);
                    }
                    break;

                case CKA_BASE:
                    if(pKey->type == CKK_DSA)
                    {
                        EVP_PKEY* pRealKey = (EVP_PKEY*)pKey->key;
                        
                        valLen = BN_bn2bin(pRealKey->pkey.dsa->g, (UINT8*)pTemplate[i].pValue);
                    }
                    break;

                case CKA_PRIVATE:
                    isPrivate = 0 != *(INT32*)pTemplate[i].pValue;
                    break;
                

                case CKA_KEY_TYPE:
                    *(INT32*)pTemplate[i].pValue = SwapEndianIfBEc32(pKey->type);
                    break; 

                case CKA_VALUE_BITS:
                    *(UINT32*)pTemplate[i].pValue = SwapEndianIfBEc32(pKey->size);
                    break;

                case CKA_VALUE:
                    switch(pKey->type)
                    {
                        case CKK_AES:
                        case CKK_GENERIC_SECRET:
                            {
                                // TODO: Add permissions to export key
                                int len = (pKey->size + 7) / 8;
                                
                                if(len > (INT32)pTemplate[i].ulValueLen) len = (int)pTemplate[i].ulValueLen;
                                
                                TINYCLR_SSL_MEMCPY(pTemplate[i].pValue, pKey->key, len);
                                valLen = len;
                            }
                            break;

                        default:
                            return CKR_ATTRIBUTE_TYPE_INVALID;                                
                    }
                    break;

                case CKA_VALUE_LEN:
                    switch(pKey->type)
                    {
                        case CKK_EC:
                            *(UINT32*)pTemplate[i].pValue = SwapEndianIfBEc32(valLen);
                            break;

                        default:
                            return CKR_ATTRIBUTE_TYPE_INVALID;
                    }
                    break;

                default:
                    return CKR_ATTRIBUTE_TYPE_INVALID;
            }
        }
    }

    return CKR_OK;    
}
예제 #12
0
int verifyRingSignature(data_chunk &keyImage, uint256 &txnHash, int nRingSize, const uint8_t *pPubkeys, const uint8_t *pSigc, const uint8_t *pSigr)
{
    if (fDebugRingSig)
    {
        // LogPrintf("%s size %d\n", __func__, nRingSize); // happens often
    };

    int rv = 0;

    BN_CTX_start(bnCtx);

    BIGNUM   *bnT   = BN_CTX_get(bnCtx);
    BIGNUM   *bnH   = BN_CTX_get(bnCtx);
    BIGNUM   *bnC   = BN_CTX_get(bnCtx);
    BIGNUM   *bnR   = BN_CTX_get(bnCtx);
    BIGNUM   *bnSum = BN_CTX_get(bnCtx);
    EC_POINT *ptT1  = NULL;
    EC_POINT *ptT2  = NULL;
    EC_POINT *ptT3  = NULL;
    EC_POINT *ptPk  = NULL;
    EC_POINT *ptKi  = NULL;
    EC_POINT *ptL   = NULL;
    EC_POINT *ptR   = NULL;
    EC_POINT *ptSi  = NULL;

    uint8_t tempData[66]; // hold raw point data to hash
    uint256 commitHash;
    CHashWriter ssCommitHash(SER_GETHASH, PROTOCOL_VERSION);

    ssCommitHash << txnHash;

    // zero sum
    if (!bnSum || !(BN_zero(bnSum)))
    {
        LogPrintf("%s: BN_zero failed.\n", __func__);
        rv = 1; goto End;
    };

    if (   !(ptT1 = EC_POINT_new(ecGrp))
        || !(ptT2 = EC_POINT_new(ecGrp))
        || !(ptT3 = EC_POINT_new(ecGrp))
        || !(ptPk = EC_POINT_new(ecGrp))
        || !(ptKi = EC_POINT_new(ecGrp))
        || !(ptL  = EC_POINT_new(ecGrp))
        || !(ptSi = EC_POINT_new(ecGrp))
        || !(ptR  = EC_POINT_new(ecGrp)))
    {
        LogPrintf("%s: EC_POINT_new failed.\n", __func__);
        rv = 1; goto End;
    };

    // get keyimage as point
    if (!(bnT = BN_bin2bn(&keyImage[0], EC_COMPRESSED_SIZE, bnT))
        || !(ptKi) || !(ptKi = EC_POINT_bn2point(ecGrp, bnT, ptKi, bnCtx)))
    {
        LogPrintf("%s: extract ptKi failed.\n", __func__);
        rv = 1; goto End;
    };

    for (int i = 0; i < nRingSize; ++i)
    {
        // Li = ci * Pi + ri * G
        // Ri = ci * I + ri * Hp(Pi)

        if (   !bnC || !(bnC = BN_bin2bn(&pSigc[i * EC_SECRET_SIZE], EC_SECRET_SIZE, bnC))
            || !bnR || !(bnR = BN_bin2bn(&pSigr[i * EC_SECRET_SIZE], EC_SECRET_SIZE, bnR)))
        {
            LogPrintf("%s: extract bnC and bnR failed.\n", __func__);
            rv = 1; goto End;
        };

        // get Pk i as point
        if (!(bnT = BN_bin2bn(&pPubkeys[i * EC_COMPRESSED_SIZE], EC_COMPRESSED_SIZE, bnT))
            || !(ptPk) || !(ptPk = EC_POINT_bn2point(ecGrp, bnT, ptPk, bnCtx)))
        {
            LogPrintf("%s: extract ptPk failed.\n", __func__);
            rv = 1; goto End;
        };

        // ptT1 = ci * Pi
        if (!EC_POINT_mul(ecGrp, ptT1, NULL, ptPk, bnC, bnCtx))
        {
            LogPrintf("%s: EC_POINT_mul failed.\n", __func__);
            rv = 1; goto End;
        };

        // ptT2 = ri * G
        if (!EC_POINT_mul(ecGrp, ptT2, bnR, NULL, NULL, bnCtx))
        {
            LogPrintf("%s: EC_POINT_mul failed.\n", __func__);
            rv = 1; goto End;
        };

        // ptL = ptT1 + ptT2
        if (!EC_POINT_add(ecGrp, ptL, ptT1, ptT2, bnCtx))
        {
            LogPrintf("%s: EC_POINT_add failed.\n", __func__);
            rv = 1; goto End;
        };

        // ptT3 = Hp(Pi)
        if (hashToEC(&pPubkeys[i * EC_COMPRESSED_SIZE], EC_COMPRESSED_SIZE, bnT, ptT3) != 0)
        {
            LogPrintf("%s: hashToEC failed.\n", __func__);
            rv = 1; goto End;
        };

        // DEBUGGING: ------- check if we can find the signer...
        // ptSi = Pi * bnT
        if ((!EC_POINT_mul(ecGrp, ptSi, NULL, ptPk, bnT, bnCtx)
           || false)
        && (rv = errorN(1, "%s: EC_POINT_mul failed.1", __func__)))
            goto End;

        if (0 == EC_POINT_cmp(ecGrp, ptSi, ptKi, bnCtx) )
            LogPrintf("signer is index %d\n", i);
        // DEBUGGING: - End - check if we can find the signer...

        // ptT1 = k1 * I
        if (!EC_POINT_mul(ecGrp, ptT1, NULL, ptKi, bnC, bnCtx))
        {
            LogPrintf("%s: EC_POINT_mul failed.\n", __func__);
            rv = 1; goto End;
        };

        // ptT2 = k2 * ptT3
        if (!EC_POINT_mul(ecGrp, ptT2, NULL, ptT3, bnR, bnCtx))
        {
            LogPrintf("%s: EC_POINT_mul failed.\n", __func__);
            rv = 1; goto End;
        };

        // ptR = ptT1 + ptT2
        if (!EC_POINT_add(ecGrp, ptR, ptT1, ptT2, bnCtx))
        {
            LogPrintf("%s: EC_POINT_add failed.\n", __func__);
            rv = 1; goto End;
        };

        // sum = (sum + ci) % N
        if (!BN_mod_add(bnSum, bnSum, bnC, bnOrder, bnCtx))
        {
            LogPrintf("%s: BN_mod_add failed.\n", __func__);
            rv = 1; goto End;
        };

        // -- add ptL and ptR to hash
        if (   !(EC_POINT_point2oct(ecGrp, ptL, POINT_CONVERSION_COMPRESSED, &tempData[0],  33, bnCtx) == (int) EC_COMPRESSED_SIZE)
            || !(EC_POINT_point2oct(ecGrp, ptR, POINT_CONVERSION_COMPRESSED, &tempData[33], 33, bnCtx) == (int) EC_COMPRESSED_SIZE))
        {
            LogPrintf("%s: extract ptL and ptR failed.\n", __func__);
            rv = 1; goto End;
        };

        ssCommitHash.write((const char*)&tempData[0], 66);
    };

    commitHash = ssCommitHash.GetHash();

    if (!(bnH) || !(bnH = BN_bin2bn(commitHash.begin(), EC_SECRET_SIZE, bnH)))
    {
        LogPrintf("%s: commitHash -> bnH failed.\n", __func__);
        rv = 1; goto End;
    };

    if (!BN_mod(bnH, bnH, bnOrder, bnCtx))
    {
        LogPrintf("%s: BN_mod failed.\n", __func__);
        rv = 1; goto End;
    };

    // bnT = (bnH - bnSum) % N
    if (!BN_mod_sub(bnT, bnH, bnSum, bnOrder, bnCtx))
    {
        LogPrintf("%s: BN_mod_sub failed.\n", __func__);
        rv = 1; goto End;
    };

    // test bnT == 0  (bnSum == bnH)
    if (!BN_is_zero(bnT))
    {
        LogPrintf("%s: signature does not verify.\n", __func__);
        rv = 2;
    };

    End:

    EC_POINT_free(ptT1);
    EC_POINT_free(ptT2);
    EC_POINT_free(ptT3);
    EC_POINT_free(ptPk);
    EC_POINT_free(ptKi);
    EC_POINT_free(ptL);
    EC_POINT_free(ptR);
    EC_POINT_free(ptSi);

    BN_CTX_end(bnCtx);

    return rv;
};
예제 #13
0
int
sc_pkcs15_convert_prkey(struct sc_pkcs15_prkey *pkcs15_key, void *evp_key)
{
#ifdef ENABLE_OPENSSL
	EVP_PKEY *pk = (EVP_PKEY *)evp_key;

	switch (pk->type) {
	case EVP_PKEY_RSA: {
		struct sc_pkcs15_prkey_rsa *dst = &pkcs15_key->u.rsa;
		RSA *src = EVP_PKEY_get1_RSA(pk);

		pkcs15_key->algorithm = SC_ALGORITHM_RSA;
		if (!sc_pkcs15_convert_bignum(&dst->modulus, src->n)
		 || !sc_pkcs15_convert_bignum(&dst->exponent, src->e)
		 || !sc_pkcs15_convert_bignum(&dst->d, src->d)
		 || !sc_pkcs15_convert_bignum(&dst->p, src->p)
		 || !sc_pkcs15_convert_bignum(&dst->q, src->q))
			return SC_ERROR_NOT_SUPPORTED;
		if (src->iqmp && src->dmp1 && src->dmq1) {
			sc_pkcs15_convert_bignum(&dst->iqmp, src->iqmp);
			sc_pkcs15_convert_bignum(&dst->dmp1, src->dmp1);
			sc_pkcs15_convert_bignum(&dst->dmq1, src->dmq1);
		}
		RSA_free(src);
		break;
		}
	case EVP_PKEY_DSA: {
		struct sc_pkcs15_prkey_dsa *dst = &pkcs15_key->u.dsa;
		DSA *src = EVP_PKEY_get1_DSA(pk);

		pkcs15_key->algorithm = SC_ALGORITHM_DSA;
		sc_pkcs15_convert_bignum(&dst->pub, src->pub_key);
		sc_pkcs15_convert_bignum(&dst->p, src->p);
		sc_pkcs15_convert_bignum(&dst->q, src->q);
		sc_pkcs15_convert_bignum(&dst->g, src->g);
		sc_pkcs15_convert_bignum(&dst->priv, src->priv_key);
		DSA_free(src);
		break;
		}
#if OPENSSL_VERSION_NUMBER >= 0x10000000L && !defined(OPENSSL_NO_EC)
	case NID_id_GostR3410_2001: {
		struct sc_pkcs15_prkey_gostr3410 *dst = &pkcs15_key->u.gostr3410;
		EC_KEY *src = EVP_PKEY_get0(pk);

		assert(src);
		pkcs15_key->algorithm = SC_ALGORITHM_GOSTR3410;
		assert(EC_KEY_get0_private_key(src));
		sc_pkcs15_convert_bignum(&dst->d, EC_KEY_get0_private_key(src));
		break;
		}
	case EVP_PKEY_EC: {
		struct sc_pkcs15_prkey_ec *dst = &pkcs15_key->u.ec;
		EC_KEY *src = NULL;
		const EC_GROUP *grp = NULL;
		unsigned char buf[255];
		size_t buflen = 255;
		int nid;

		src = EVP_PKEY_get0(pk);
		assert(src);
		assert(EC_KEY_get0_private_key(src));
		assert(EC_KEY_get0_public_key(src));

		pkcs15_key->algorithm = SC_ALGORITHM_EC;

		if (!sc_pkcs15_convert_bignum(&dst->privateD, EC_KEY_get0_private_key(src)))
			return SC_ERROR_INCOMPATIBLE_KEY;

		grp = EC_KEY_get0_group(src);
		if(grp == 0)
			return SC_ERROR_INCOMPATIBLE_KEY;

		/* get curve name */
		nid = EC_GROUP_get_curve_name(grp);
		if(nid != 0)
			dst->params.named_curve = strdup(OBJ_nid2sn(nid));

		/* Decode EC_POINT from a octet string */
		buflen = EC_POINT_point2oct(grp, (const EC_POINT *) EC_KEY_get0_public_key(src),
				POINT_CONVERSION_UNCOMPRESSED, buf, buflen, NULL);
		if (!buflen)
			return SC_ERROR_INCOMPATIBLE_KEY;

		/* copy the public key */
		dst->ecpointQ.value = malloc(buflen);
		memcpy(dst->ecpointQ.value, buf, buflen);
		dst->ecpointQ.len = buflen;

		/* calculate the field length */
		dst->params.field_length = (buflen - 1) / 2 * 8;

		/* Octetstring may need leading zeros if BN is to short */
		if (dst->privateD.len < dst->params.field_length/8)   {
			size_t d = dst->params.field_length/8 - dst->privateD.len;

			dst->privateD.data = realloc(dst->privateD.data, dst->privateD.len + d);
			if (!dst->privateD.data)
				return SC_ERROR_OUT_OF_MEMORY;

			memmove(dst->privateD.data + d, dst->privateD.data, dst->privateD.len);
			memset(dst->privateD.data, 0, d);

			dst->privateD.len += d;
		}

		break;
	}
#endif /* OPENSSL_VERSION_NUMBER >= 0x10000000L && !defined(OPENSSL_NO_EC) */
	default:
		return SC_ERROR_NOT_SUPPORTED;
	}

	return SC_SUCCESS;
#else
	return SC_ERROR_NOT_IMPLEMENTED;
#endif
}
예제 #14
0
int
sc_pkcs15_convert_pubkey(struct sc_pkcs15_pubkey *pkcs15_key, void *evp_key)
{
#ifdef ENABLE_OPENSSL
	EVP_PKEY *pk = (EVP_PKEY *)evp_key;

	switch (pk->type) {
	case EVP_PKEY_RSA: {
		struct sc_pkcs15_pubkey_rsa *dst = &pkcs15_key->u.rsa;
		RSA *src = EVP_PKEY_get1_RSA(pk);

		pkcs15_key->algorithm = SC_ALGORITHM_RSA;
		if (!sc_pkcs15_convert_bignum(&dst->modulus, src->n) || !sc_pkcs15_convert_bignum(&dst->exponent, src->e))
			return SC_ERROR_INVALID_DATA;
		RSA_free(src);
		break;
		}
	case EVP_PKEY_DSA: {
		struct sc_pkcs15_pubkey_dsa *dst = &pkcs15_key->u.dsa;
		DSA *src = EVP_PKEY_get1_DSA(pk);

		pkcs15_key->algorithm = SC_ALGORITHM_DSA;
		sc_pkcs15_convert_bignum(&dst->pub, src->pub_key);
		sc_pkcs15_convert_bignum(&dst->p, src->p);
		sc_pkcs15_convert_bignum(&dst->q, src->q);
		sc_pkcs15_convert_bignum(&dst->g, src->g);
		DSA_free(src);
		break;
		}
#if OPENSSL_VERSION_NUMBER >= 0x10000000L && !defined(OPENSSL_NO_EC)
	case NID_id_GostR3410_2001: {
		struct sc_pkcs15_pubkey_gostr3410 *dst = &pkcs15_key->u.gostr3410;
		EC_KEY *eckey = EVP_PKEY_get0(pk);
		const EC_POINT *point;
		BIGNUM *X, *Y;
		int r = 0;

		assert(eckey);
		point = EC_KEY_get0_public_key(eckey);
		if (!point)
			return SC_ERROR_INTERNAL;
		X = BN_new();
		Y = BN_new();
		if (X && Y && EC_KEY_get0_group(eckey))
			r = EC_POINT_get_affine_coordinates_GFp(EC_KEY_get0_group(eckey),
					point, X, Y, NULL);
		if (r == 1) {
			dst->xy.len = BN_num_bytes(X) + BN_num_bytes(Y);
			dst->xy.data = malloc(dst->xy.len);
			if (dst->xy.data) {
				BN_bn2bin(Y, dst->xy.data);
				BN_bn2bin(X, dst->xy.data + BN_num_bytes(Y));
				r = sc_mem_reverse(dst->xy.data, dst->xy.len);
				if (!r)
					r = 1;
				pkcs15_key->algorithm = SC_ALGORITHM_GOSTR3410;
			}
			else
				r = -1;
		}
		BN_free(X);
		BN_free(Y);
		if (r != 1)
			return SC_ERROR_INTERNAL;
		break;
		}
	case EVP_PKEY_EC: {
		struct sc_pkcs15_pubkey_ec *dst = &pkcs15_key->u.ec;
		EC_KEY *src = NULL;
		const EC_GROUP *grp = NULL;
		unsigned char buf[255];
		size_t buflen = 255;
		int nid;

		src = EVP_PKEY_get0(pk);
		assert(src);
		assert(EC_KEY_get0_public_key(src));

		pkcs15_key->algorithm = SC_ALGORITHM_EC;
		grp = EC_KEY_get0_group(src);
		if(grp == 0)
			return SC_ERROR_INCOMPATIBLE_KEY;

		/* Decode EC_POINT from a octet string */
		buflen = EC_POINT_point2oct(grp, (const EC_POINT *) EC_KEY_get0_public_key(src),
				POINT_CONVERSION_UNCOMPRESSED, buf, buflen, NULL);

		/* get curve name */
		nid = EC_GROUP_get_curve_name(grp);
		if(nid != 0) {
			const char *name = OBJ_nid2sn(nid);
			if(sizeof(name) > 0)
				dst->params.named_curve = strdup(name);
		}

		/* copy the public key */
		if (buflen > 0) {
			dst->ecpointQ.value = malloc(buflen);
			memcpy(dst->ecpointQ.value, buf, buflen);
			dst->ecpointQ.len = buflen;
			/* calculate the field length */
			dst->params.field_length = (buflen - 1) / 2 * 8;
		}
		else
			return SC_ERROR_INCOMPATIBLE_KEY;

		break;
	}
#endif /* OPENSSL_VERSION_NUMBER >= 0x10000000L && !defined(OPENSSL_NO_EC) */
	default:
		return SC_ERROR_NOT_SUPPORTED;
	}

	return SC_SUCCESS;
#else
	return SC_ERROR_NOT_IMPLEMENTED;
#endif
}
예제 #15
0
파일: sm2_enc.c 프로젝트: cuiwm/GmSSL
SM2_CIPHERTEXT_VALUE *SM2_do_encrypt(const EVP_MD *kdf_md, const EVP_MD *mac_md,
	const unsigned char *in, size_t inlen, EC_KEY *ec_key)
{
	int ok = 0;
	SM2_CIPHERTEXT_VALUE *cv = NULL;
	const EC_GROUP *ec_group = EC_KEY_get0_group(ec_key);
	const EC_POINT *pub_key = EC_KEY_get0_public_key(ec_key);
	KDF_FUNC kdf = KDF_get_x9_63(kdf_md);
	EC_POINT *point = NULL;
	BIGNUM *n = NULL;
	BIGNUM *h = NULL;
	BIGNUM *k = NULL;
	BN_CTX *bn_ctx = NULL;
	EVP_MD_CTX *md_ctx = NULL;
	unsigned char buf[(OPENSSL_ECC_MAX_FIELD_BITS + 7)/4 + 1];
	int nbytes;
	size_t len;
	int i;

	if (!ec_group || !pub_key) {
		goto end;
	}
	if (!kdf) {
		goto end;
	}

	/* init ciphertext_value */
	if (!(cv = OPENSSL_malloc(sizeof(SM2_CIPHERTEXT_VALUE)))) {
		goto end;
	}
	bzero(cv, sizeof(SM2_CIPHERTEXT_VALUE));
	cv->ephem_point = EC_POINT_new(ec_group);
	cv->ciphertext = OPENSSL_malloc(inlen);
	cv->ciphertext_size = inlen;
	if (!cv->ephem_point || !cv->ciphertext) {
		goto end;
	}

	point = EC_POINT_new(ec_group);
	n = BN_new();
	h = BN_new();
	k = BN_new();
	bn_ctx = BN_CTX_new();
	md_ctx = EVP_MD_CTX_create();
	if (!point || !n || !h || !k || !bn_ctx || !md_ctx) {
		goto end;
	}

	/* init ec domain parameters */
	if (!EC_GROUP_get_order(ec_group, n, bn_ctx)) {
		goto end;
	}
	if (!EC_GROUP_get_cofactor(ec_group, h, bn_ctx)) {
		goto end;
	}
	nbytes = (EC_GROUP_get_degree(ec_group) + 7) / 8;
	OPENSSL_assert(nbytes == BN_num_bytes(n));

#if 0
	/* check sm2 curve and md is 256 bits */
	OPENSSL_assert(nbytes == 32);
	OPENSSL_assert(EVP_MD_size(kdf_md) == 32);
	OPENSSL_assert(EVP_MD_size(mac_md) == 32);
#endif

	do
	{
		/* A1: rand k in [1, n-1] */
		do {
			BN_rand_range(k, n);
		} while (BN_is_zero(k));
	
		/* A2: C1 = [k]G = (x1, y1) */
		if (!EC_POINT_mul(ec_group, cv->ephem_point, k, NULL, NULL, bn_ctx)) {
			goto end;
		}
		
		/* A3: check [h]P_B != O */
		if (!EC_POINT_mul(ec_group, point, NULL, pub_key, h, bn_ctx)) {
			goto end;
		}
		if (EC_POINT_is_at_infinity(ec_group, point)) {
			goto end;
		}
		
		/* A4: compute ECDH [k]P_B = (x2, y2) */
		if (!EC_POINT_mul(ec_group, point, NULL, pub_key, k, bn_ctx)) {
			goto end;
		}
		if (!(len = EC_POINT_point2oct(ec_group, point,
			POINT_CONVERSION_UNCOMPRESSED, buf, sizeof(buf), bn_ctx))) {
			goto end;
		}
		OPENSSL_assert(len == nbytes * 2 + 1);

		/* A5: t = KDF(x2 || y2, klen) */
		kdf(buf + 1, len - 1, cv->ciphertext, &cv->ciphertext_size);


		for (i = 0; i < cv->ciphertext_size; i++) {
			if (cv->ciphertext[i]) {
				break;
			}
		}
		if (i == cv->ciphertext_size) {
			continue;
		}

		break;

	} while (1);


	/* A6: C2 = M xor t */
	for (i = 0; i < inlen; i++) {
		cv->ciphertext[i] ^= in[i];
	}

	/* A7: C3 = Hash(x2 || M || y2) */
	if (!EVP_DigestInit_ex(md_ctx, mac_md, NULL)) {
		goto end;
	}
	if (!EVP_DigestUpdate(md_ctx, buf + 1, nbytes)) {
		goto end;
	}
	if (!EVP_DigestUpdate(md_ctx, in, inlen)) {
		goto end;
	}
	if (!EVP_DigestUpdate(md_ctx, buf + 1 + nbytes, nbytes)) {
		goto end;
	}
	if (!EVP_DigestFinal_ex(md_ctx, cv->mactag, &cv->mactag_size)) {
		goto end;
	}

	ok = 1;

end:
	if (!ok && cv) {
		SM2_CIPHERTEXT_VALUE_free(cv);
		cv = NULL;
	}

	if (point) EC_POINT_free(point);
	if (n) BN_free(n);
	if (h) BN_free(h);
	if (k) BN_free(k);
	if (bn_ctx) BN_CTX_free(bn_ctx);
	if (md_ctx) EVP_MD_CTX_destroy(md_ctx);

	return cv;
}
예제 #16
0
void char2_field_tests()
	{	
	BN_CTX *ctx = NULL;
	BIGNUM *p, *a, *b;
	EC_GROUP *group;
	EC_GROUP *C2_K163 = NULL, *C2_K233 = NULL, *C2_K283 = NULL, *C2_K409 = NULL, *C2_K571 = NULL;
	EC_GROUP *C2_B163 = NULL, *C2_B233 = NULL, *C2_B283 = NULL, *C2_B409 = NULL, *C2_B571 = NULL;
	EC_POINT *P, *Q, *R;
	BIGNUM *x, *y, *z, *cof;
	unsigned char buf[100];
	size_t i, len;
	int k;
	
#if 1 /* optional */
	ctx = BN_CTX_new();
	if (!ctx) ABORT;
#endif

	p = BN_new();
	a = BN_new();
	b = BN_new();
	if (!p || !a || !b) ABORT;

	if (!BN_hex2bn(&p, "13")) ABORT;
	if (!BN_hex2bn(&a, "3")) ABORT;
	if (!BN_hex2bn(&b, "1")) ABORT;
	
	group = EC_GROUP_new(EC_GF2m_simple_method()); /* applications should use EC_GROUP_new_curve_GF2m
	                                                * so that the library gets to choose the EC_METHOD */
	if (!group) ABORT;
	if (!EC_GROUP_set_curve_GF2m(group, p, a, b, ctx)) ABORT;

	{
		EC_GROUP *tmp;
		tmp = EC_GROUP_new(EC_GROUP_method_of(group));
		if (!tmp) ABORT;
		if (!EC_GROUP_copy(tmp, group)) ABORT;
		EC_GROUP_free(group);
		group = tmp;
	}
	
	if (!EC_GROUP_get_curve_GF2m(group, p, a, b, ctx)) ABORT;

	fprintf(stdout, "Curve defined by Weierstrass equation\n     y^2 + x*y = x^3 + a*x^2 + b  (mod 0x");
	BN_print_fp(stdout, p);
	fprintf(stdout, ")\n     a = 0x");
	BN_print_fp(stdout, a);
	fprintf(stdout, "\n     b = 0x");
	BN_print_fp(stdout, b);
	fprintf(stdout, "\n(0x... means binary polynomial)\n");

	P = EC_POINT_new(group);
	Q = EC_POINT_new(group);
	R = EC_POINT_new(group);
	if (!P || !Q || !R) ABORT;
	
	if (!EC_POINT_set_to_infinity(group, P)) ABORT;
	if (!EC_POINT_is_at_infinity(group, P)) ABORT;

	buf[0] = 0;
	if (!EC_POINT_oct2point(group, Q, buf, 1, ctx)) ABORT;

	if (!EC_POINT_add(group, P, P, Q, ctx)) ABORT;
	if (!EC_POINT_is_at_infinity(group, P)) ABORT;

	x = BN_new();
	y = BN_new();
	z = BN_new();
	cof = BN_new();
	if (!x || !y || !z || !cof) ABORT;

	if (!BN_hex2bn(&x, "6")) ABORT;
/* Change test based on whether binary point compression is enabled or not. */
#ifdef OPENSSL_EC_BIN_PT_COMP
	if (!EC_POINT_set_compressed_coordinates_GF2m(group, Q, x, 1, ctx)) ABORT;
#else
	if (!BN_hex2bn(&y, "8")) ABORT;
	if (!EC_POINT_set_affine_coordinates_GF2m(group, Q, x, y, ctx)) ABORT;
#endif
	if (!EC_POINT_is_on_curve(group, Q, ctx))
		{
/* Change test based on whether binary point compression is enabled or not. */
#ifdef OPENSSL_EC_BIN_PT_COMP
		if (!EC_POINT_get_affine_coordinates_GF2m(group, Q, x, y, ctx)) ABORT;
#endif
		fprintf(stderr, "Point is not on curve: x = 0x");
		BN_print_fp(stderr, x);
		fprintf(stderr, ", y = 0x");
		BN_print_fp(stderr, y);
		fprintf(stderr, "\n");
		ABORT;
		}

	fprintf(stdout, "A cyclic subgroup:\n");
	k = 100;
	do
		{
		if (k-- == 0) ABORT;

		if (EC_POINT_is_at_infinity(group, P))
			fprintf(stdout, "     point at infinity\n");
		else
			{
			if (!EC_POINT_get_affine_coordinates_GF2m(group, P, x, y, ctx)) ABORT;

			fprintf(stdout, "     x = 0x");
			BN_print_fp(stdout, x);
			fprintf(stdout, ", y = 0x");
			BN_print_fp(stdout, y);
			fprintf(stdout, "\n");
			}
		
		if (!EC_POINT_copy(R, P)) ABORT;
		if (!EC_POINT_add(group, P, P, Q, ctx)) ABORT;
		}
	while (!EC_POINT_is_at_infinity(group, P));

	if (!EC_POINT_add(group, P, Q, R, ctx)) ABORT;
	if (!EC_POINT_is_at_infinity(group, P)) ABORT;

/* Change test based on whether binary point compression is enabled or not. */
#ifdef OPENSSL_EC_BIN_PT_COMP
	len = EC_POINT_point2oct(group, Q, POINT_CONVERSION_COMPRESSED, buf, sizeof buf, ctx);
	if (len == 0) ABORT;
	if (!EC_POINT_oct2point(group, P, buf, len, ctx)) ABORT;
	if (0 != EC_POINT_cmp(group, P, Q, ctx)) ABORT;
	fprintf(stdout, "Generator as octet string, compressed form:\n     ");
	for (i = 0; i < len; i++) fprintf(stdout, "%02X", buf[i]);
#endif
	
	len = EC_POINT_point2oct(group, Q, POINT_CONVERSION_UNCOMPRESSED, buf, sizeof buf, ctx);
	if (len == 0) ABORT;
	if (!EC_POINT_oct2point(group, P, buf, len, ctx)) ABORT;
	if (0 != EC_POINT_cmp(group, P, Q, ctx)) ABORT;
	fprintf(stdout, "\nGenerator as octet string, uncompressed form:\n     ");
	for (i = 0; i < len; i++) fprintf(stdout, "%02X", buf[i]);
	
/* Change test based on whether binary point compression is enabled or not. */
#ifdef OPENSSL_EC_BIN_PT_COMP
	len = EC_POINT_point2oct(group, Q, POINT_CONVERSION_HYBRID, buf, sizeof buf, ctx);
	if (len == 0) ABORT;
	if (!EC_POINT_oct2point(group, P, buf, len, ctx)) ABORT;
	if (0 != EC_POINT_cmp(group, P, Q, ctx)) ABORT;
	fprintf(stdout, "\nGenerator as octet string, hybrid form:\n     ");
	for (i = 0; i < len; i++) fprintf(stdout, "%02X", buf[i]);
#endif

	fprintf(stdout, "\n");
	
	if (!EC_POINT_invert(group, P, ctx)) ABORT;
	if (0 != EC_POINT_cmp(group, P, R, ctx)) ABORT;


	/* Curve K-163 (FIPS PUB 186-2, App. 6) */
	CHAR2_CURVE_TEST
		(
		"NIST curve K-163",
		"0800000000000000000000000000000000000000C9",
		"1",
		"1",
		"02FE13C0537BBC11ACAA07D793DE4E6D5E5C94EEE8",
		"0289070FB05D38FF58321F2E800536D538CCDAA3D9",
		1,
		"04000000000000000000020108A2E0CC0D99F8A5EF",
		"2",
		163,
		C2_K163
		);

	/* Curve B-163 (FIPS PUB 186-2, App. 6) */
	CHAR2_CURVE_TEST
		(
		"NIST curve B-163",
		"0800000000000000000000000000000000000000C9",
		"1",
		"020A601907B8C953CA1481EB10512F78744A3205FD",
		"03F0EBA16286A2D57EA0991168D4994637E8343E36",
		"00D51FBC6C71A0094FA2CDD545B11C5C0C797324F1",
		1,
		"040000000000000000000292FE77E70C12A4234C33",
		"2",
		163,
		C2_B163
		);

	/* Curve K-233 (FIPS PUB 186-2, App. 6) */
	CHAR2_CURVE_TEST
		(
		"NIST curve K-233",
		"020000000000000000000000000000000000000004000000000000000001",
		"0",
		"1",
		"017232BA853A7E731AF129F22FF4149563A419C26BF50A4C9D6EEFAD6126",
		"01DB537DECE819B7F70F555A67C427A8CD9BF18AEB9B56E0C11056FAE6A3",
		0,
		"008000000000000000000000000000069D5BB915BCD46EFB1AD5F173ABDF",
		"4",
		233,
		C2_K233
		);

	/* Curve B-233 (FIPS PUB 186-2, App. 6) */
	CHAR2_CURVE_TEST
		(
		"NIST curve B-233",
		"020000000000000000000000000000000000000004000000000000000001",
		"000000000000000000000000000000000000000000000000000000000001",
		"0066647EDE6C332C7F8C0923BB58213B333B20E9CE4281FE115F7D8F90AD",
		"00FAC9DFCBAC8313BB2139F1BB755FEF65BC391F8B36F8F8EB7371FD558B",
		"01006A08A41903350678E58528BEBF8A0BEFF867A7CA36716F7E01F81052",
		1,
		"01000000000000000000000000000013E974E72F8A6922031D2603CFE0D7",
		"2",
		233,
		C2_B233
		);

	/* Curve K-283 (FIPS PUB 186-2, App. 6) */
	CHAR2_CURVE_TEST
		(
		"NIST curve K-283",
		"0800000000000000000000000000000000000000000000000000000000000000000010A1",
		"0",
		"1",
		"0503213F78CA44883F1A3B8162F188E553CD265F23C1567A16876913B0C2AC2458492836",
		"01CCDA380F1C9E318D90F95D07E5426FE87E45C0E8184698E45962364E34116177DD2259",
		0,
		"01FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE9AE2ED07577265DFF7F94451E061E163C61",
		"4",
		283,
		C2_K283
		);

	/* Curve B-283 (FIPS PUB 186-2, App. 6) */
	CHAR2_CURVE_TEST
		(
		"NIST curve B-283",
		"0800000000000000000000000000000000000000000000000000000000000000000010A1",
		"000000000000000000000000000000000000000000000000000000000000000000000001",
		"027B680AC8B8596DA5A4AF8A19A0303FCA97FD7645309FA2A581485AF6263E313B79A2F5",
		"05F939258DB7DD90E1934F8C70B0DFEC2EED25B8557EAC9C80E2E198F8CDBECD86B12053",
		"03676854FE24141CB98FE6D4B20D02B4516FF702350EDDB0826779C813F0DF45BE8112F4",
		1,
		"03FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEF90399660FC938A90165B042A7CEFADB307",
		"2",
		283,
		C2_B283
		);

	/* Curve K-409 (FIPS PUB 186-2, App. 6) */
	CHAR2_CURVE_TEST
		(
		"NIST curve K-409",
		"02000000000000000000000000000000000000000000000000000000000000000000000000000000008000000000000000000001",
		"0",
		"1",
		"0060F05F658F49C1AD3AB1890F7184210EFD0987E307C84C27ACCFB8F9F67CC2C460189EB5AAAA62EE222EB1B35540CFE9023746",
		"01E369050B7C4E42ACBA1DACBF04299C3460782F918EA427E6325165E9EA10E3DA5F6C42E9C55215AA9CA27A5863EC48D8E0286B",
		1,
		"007FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE5F83B2D4EA20400EC4557D5ED3E3E7CA5B4B5C83B8E01E5FCF",
		"4",
		409,
		C2_K409
		);

	/* Curve B-409 (FIPS PUB 186-2, App. 6) */
	CHAR2_CURVE_TEST
		(
		"NIST curve B-409",
		"02000000000000000000000000000000000000000000000000000000000000000000000000000000008000000000000000000001",
		"00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001",
		"0021A5C2C8EE9FEB5C4B9A753B7B476B7FD6422EF1F3DD674761FA99D6AC27C8A9A197B272822F6CD57A55AA4F50AE317B13545F",
		"015D4860D088DDB3496B0C6064756260441CDE4AF1771D4DB01FFE5B34E59703DC255A868A1180515603AEAB60794E54BB7996A7",
		"0061B1CFAB6BE5F32BBFA78324ED106A7636B9C5A7BD198D0158AA4F5488D08F38514F1FDF4B4F40D2181B3681C364BA0273C706",
		1,
		"010000000000000000000000000000000000000000000000000001E2AAD6A612F33307BE5FA47C3C9E052F838164CD37D9A21173",
		"2",
		409,
		C2_B409
		);

	/* Curve K-571 (FIPS PUB 186-2, App. 6) */
	CHAR2_CURVE_TEST
		(
		"NIST curve K-571",
		"80000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000425",
		"0",
		"1",
		"026EB7A859923FBC82189631F8103FE4AC9CA2970012D5D46024804801841CA44370958493B205E647DA304DB4CEB08CBBD1BA39494776FB988B47174DCA88C7E2945283A01C8972",
		"0349DC807F4FBF374F4AEADE3BCA95314DD58CEC9F307A54FFC61EFC006D8A2C9D4979C0AC44AEA74FBEBBB9F772AEDCB620B01A7BA7AF1B320430C8591984F601CD4C143EF1C7A3",
		0,
		"020000000000000000000000000000000000000000000000000000000000000000000000131850E1F19A63E4B391A8DB917F4138B630D84BE5D639381E91DEB45CFE778F637C1001",
		"4",
		571,
		C2_K571
		);

	/* Curve B-571 (FIPS PUB 186-2, App. 6) */
	CHAR2_CURVE_TEST
		(
		"NIST curve B-571",
		"80000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000425",
		"000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001",
		"02F40E7E2221F295DE297117B7F3D62F5C6A97FFCB8CEFF1CD6BA8CE4A9A18AD84FFABBD8EFA59332BE7AD6756A66E294AFD185A78FF12AA520E4DE739BACA0C7FFEFF7F2955727A",
		"0303001D34B856296C16C0D40D3CD7750A93D1D2955FA80AA5F40FC8DB7B2ABDBDE53950F4C0D293CDD711A35B67FB1499AE60038614F1394ABFA3B4C850D927E1E7769C8EEC2D19",
		"037BF27342DA639B6DCCFFFEB73D69D78C6C27A6009CBBCA1980F8533921E8A684423E43BAB08A576291AF8F461BB2A8B3531D2F0485C19B16E2F1516E23DD3C1A4827AF1B8AC15B",
		1,
		"03FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE661CE18FF55987308059B186823851EC7DD9CA1161DE93D5174D66E8382E9BB2FE84E47",
		"2",
		571,
		C2_B571
		);

	/* more tests using the last curve */

	if (!EC_POINT_copy(Q, P)) ABORT;
	if (EC_POINT_is_at_infinity(group, Q)) ABORT;
	if (!EC_POINT_dbl(group, P, P, ctx)) ABORT;
	if (!EC_POINT_is_on_curve(group, P, ctx)) ABORT;
	if (!EC_POINT_invert(group, Q, ctx)) ABORT; /* P = -2Q */

	if (!EC_POINT_add(group, R, P, Q, ctx)) ABORT;
	if (!EC_POINT_add(group, R, R, Q, ctx)) ABORT;
	if (!EC_POINT_is_at_infinity(group, R)) ABORT; /* R = P + 2Q */

	{
		const EC_POINT *points[3];
		const BIGNUM *scalars[3];
	
		if (EC_POINT_is_at_infinity(group, Q)) ABORT;
		points[0] = Q;
		points[1] = Q;
		points[2] = Q;

		if (!BN_add(y, z, BN_value_one())) ABORT;
		if (BN_is_odd(y)) ABORT;
		if (!BN_rshift1(y, y)) ABORT;
		scalars[0] = y; /* (group order + 1)/2,  so  y*Q + y*Q = Q */
		scalars[1] = y;

		fprintf(stdout, "combined multiplication ...");
		fflush(stdout);

		/* z is still the group order */
		if (!EC_POINTs_mul(group, P, NULL, 2, points, scalars, ctx)) ABORT;
		if (!EC_POINTs_mul(group, R, z, 2, points, scalars, ctx)) ABORT;
		if (0 != EC_POINT_cmp(group, P, R, ctx)) ABORT;
		if (0 != EC_POINT_cmp(group, R, Q, ctx)) ABORT;

		fprintf(stdout, ".");
		fflush(stdout);

		if (!BN_pseudo_rand(y, BN_num_bits(y), 0, 0)) ABORT;
		if (!BN_add(z, z, y)) ABORT;
		BN_set_negative(z, 1);
		scalars[0] = y;
		scalars[1] = z; /* z = -(order + y) */

		if (!EC_POINTs_mul(group, P, NULL, 2, points, scalars, ctx)) ABORT;
		if (!EC_POINT_is_at_infinity(group, P)) ABORT;

		fprintf(stdout, ".");
		fflush(stdout);

		if (!BN_pseudo_rand(x, BN_num_bits(y) - 1, 0, 0)) ABORT;
		if (!BN_add(z, x, y)) ABORT;
		BN_set_negative(z, 1);
		scalars[0] = x;
		scalars[1] = y;
		scalars[2] = z; /* z = -(x+y) */

		if (!EC_POINTs_mul(group, P, NULL, 3, points, scalars, ctx)) ABORT;
		if (!EC_POINT_is_at_infinity(group, P)) ABORT;

		fprintf(stdout, " ok\n\n");
	}


#if 0
	timings(C2_K163, TIMING_BASE_PT, ctx);
	timings(C2_K163, TIMING_RAND_PT, ctx);
	timings(C2_K163, TIMING_SIMUL, ctx);
	timings(C2_B163, TIMING_BASE_PT, ctx);
	timings(C2_B163, TIMING_RAND_PT, ctx);
	timings(C2_B163, TIMING_SIMUL, ctx);
	timings(C2_K233, TIMING_BASE_PT, ctx);
	timings(C2_K233, TIMING_RAND_PT, ctx);
	timings(C2_K233, TIMING_SIMUL, ctx);
	timings(C2_B233, TIMING_BASE_PT, ctx);
	timings(C2_B233, TIMING_RAND_PT, ctx);
	timings(C2_B233, TIMING_SIMUL, ctx);
	timings(C2_K283, TIMING_BASE_PT, ctx);
	timings(C2_K283, TIMING_RAND_PT, ctx);
	timings(C2_K283, TIMING_SIMUL, ctx);
	timings(C2_B283, TIMING_BASE_PT, ctx);
	timings(C2_B283, TIMING_RAND_PT, ctx);
	timings(C2_B283, TIMING_SIMUL, ctx);
	timings(C2_K409, TIMING_BASE_PT, ctx);
	timings(C2_K409, TIMING_RAND_PT, ctx);
	timings(C2_K409, TIMING_SIMUL, ctx);
	timings(C2_B409, TIMING_BASE_PT, ctx);
	timings(C2_B409, TIMING_RAND_PT, ctx);
	timings(C2_B409, TIMING_SIMUL, ctx);
	timings(C2_K571, TIMING_BASE_PT, ctx);
	timings(C2_K571, TIMING_RAND_PT, ctx);
	timings(C2_K571, TIMING_SIMUL, ctx);
	timings(C2_B571, TIMING_BASE_PT, ctx);
	timings(C2_B571, TIMING_RAND_PT, ctx);
	timings(C2_B571, TIMING_SIMUL, ctx);
#endif


	if (ctx)
		BN_CTX_free(ctx);
	BN_free(p); BN_free(a);	BN_free(b);
	EC_GROUP_free(group);
	EC_POINT_free(P);
	EC_POINT_free(Q);
	EC_POINT_free(R);
	BN_free(x); BN_free(y); BN_free(z); BN_free(cof);

	if (C2_K163) EC_GROUP_free(C2_K163);
	if (C2_B163) EC_GROUP_free(C2_B163);
	if (C2_K233) EC_GROUP_free(C2_K233);
	if (C2_B233) EC_GROUP_free(C2_B233);
	if (C2_K283) EC_GROUP_free(C2_K283);
	if (C2_B283) EC_GROUP_free(C2_B283);
	if (C2_K409) EC_GROUP_free(C2_K409);
	if (C2_B409) EC_GROUP_free(C2_B409);
	if (C2_K571) EC_GROUP_free(C2_K571);
	if (C2_B571) EC_GROUP_free(C2_B571);

	}
예제 #17
0
int verifyRingSignatureAB(data_chunk &keyImage, uint256 &txnHash, int nRingSize, const uint8_t *pPubkeys, const data_chunk &sigC, const uint8_t *pSigS)
{
    // https://bitcointalk.org/index.php?topic=972541.msg10619684

    // forall_{i=1..n} compute e_i=s_i*G+c_i*P_i and E_i=s_i*H(P_i)+c_i*I_j and c_{i+1}=h(P_1,...,P_n,e_i,E_i)
    // check c_{n+1}=c_1

    if (fDebugRingSig)
    {
        //LogPrintf("%s size %d\n", __func__, nRingSize); // happens often
    };

    if (sigC.size() != EC_SECRET_SIZE)
        return errorN(1, "%s: sigC size !=  EC_SECRET_SIZE.", __func__);
    if (keyImage.size() != EC_COMPRESSED_SIZE)
        return errorN(1, "%s: keyImage size !=  EC_COMPRESSED_SIZE.", __func__);

    int rv = 0;

    uint256 tmpPkHash;
    uint256 tmpHash;

    uint8_t tempData[66]; // hold raw point data to hash
    CHashWriter ssPkHash(SER_GETHASH, PROTOCOL_VERSION);
    CHashWriter ssCjHash(SER_GETHASH, PROTOCOL_VERSION);

    for (int i = 0; i < nRingSize; ++i)
    {
        ssPkHash.write((const char*)&pPubkeys[i * EC_COMPRESSED_SIZE], EC_COMPRESSED_SIZE);
    };

    tmpPkHash = ssPkHash.GetHash();

    BN_CTX_start(bnCtx);

    BIGNUM   *bnC  = BN_CTX_get(bnCtx);
    BIGNUM   *bnC1 = BN_CTX_get(bnCtx);
    BIGNUM   *bnT  = BN_CTX_get(bnCtx);
    BIGNUM   *bnS  = BN_CTX_get(bnCtx);
    EC_POINT *ptKi = NULL;
    EC_POINT *ptT1 = NULL;
    EC_POINT *ptT2 = NULL;
    EC_POINT *ptT3 = NULL;
    EC_POINT *ptPk = NULL;
    EC_POINT *ptSi = NULL;

    if (   !(ptKi = EC_POINT_new(ecGrp))
        || !(ptT1 = EC_POINT_new(ecGrp))
        || !(ptT2 = EC_POINT_new(ecGrp))
        || !(ptT3 = EC_POINT_new(ecGrp))
        || !(ptPk = EC_POINT_new(ecGrp))
        || !(ptSi = EC_POINT_new(ecGrp)))
    {
        LogPrintf("%s: EC_POINT_new failed.\n", __func__);
        rv = 1; goto End;
    };

    // get keyimage as point
    if (!EC_POINT_oct2point(ecGrp, ptKi, &keyImage[0], EC_COMPRESSED_SIZE, bnCtx))
    {
        LogPrintf("%s: extract ptKi failed.\n", __func__);
        rv = 1; goto End;
    };

    if (!bnC1 || !BN_bin2bn(&sigC[0], EC_SECRET_SIZE, bnC1))
    {
        LogPrintf("%s: BN_bin2bn failed.\n", __func__);
        rv = 1; goto End;
    };

    if (!BN_copy(bnC, bnC1))
    {
        LogPrintf("%s: BN_copy failed.\n", __func__);
        rv = 1; goto End;
    };

    for (int i = 0; i < nRingSize; ++i)
    {
        if (!bnS || !(BN_bin2bn(&pSigS[i * EC_SECRET_SIZE], EC_SECRET_SIZE, bnS)))
        {
            LogPrintf("%s: BN_bin2bn failed.\n", __func__);
            rv = 1; goto End;
        };

        // ptT2 <- pk
        if (!EC_POINT_oct2point(ecGrp, ptPk, &pPubkeys[i * EC_COMPRESSED_SIZE], EC_COMPRESSED_SIZE, bnCtx))
        {
            LogPrintf("%s: EC_POINT_oct2point failed.\n", __func__);
            rv = 1; goto End;
        };

        // ptT1 = e_i=s_i*G+c_i*P_i
        if (!EC_POINT_mul(ecGrp, ptT1, bnS, ptPk, bnC, bnCtx))
        {
            LogPrintf("%s: EC_POINT_mul failed.\n", __func__);
            rv = 1; goto End;
        };

        if (!(EC_POINT_point2oct(ecGrp, ptT1, POINT_CONVERSION_COMPRESSED, &tempData[0],  33, bnCtx) == (int) EC_COMPRESSED_SIZE))
        {
            LogPrintf("%s: extract ptT1 failed.\n", __func__);
            rv = 1; goto End;
        };

        // ptT2 =E_i=s_i*H(P_i)+c_i*I_j

        // ptT2 =H(P_i)
        if (hashToEC(&pPubkeys[i * EC_COMPRESSED_SIZE], EC_COMPRESSED_SIZE, bnT, ptT2) != 0)
        {
            LogPrintf("%s: hashToEC failed.\n", __func__);
            rv = 1; goto End;
        };

        // DEBUGGING: ------- check if we can find the signer...
        // ptSi = Pi * bnT
        if ((!EC_POINT_mul(ecGrp, ptSi, NULL, ptPk, bnT, bnCtx)
           || false)
        && (rv = errorN(1, "%s: EC_POINT_mul failed.", __func__)))
            goto End;

        if (0 == EC_POINT_cmp(ecGrp, ptSi, ptKi, bnCtx) )
            LogPrintf("signer is index %d\n", i);
        // DEBUGGING: - End - check if we can find the signer...

        // ptT3 = s_i*ptT2
        if (!EC_POINT_mul(ecGrp, ptT3, NULL, ptT2, bnS, bnCtx))
        {
            LogPrintf("%s: EC_POINT_mul failed.\n", __func__);
            rv = 1; goto End;
        };

        // ptT1 = c_i*I_j
        if (!EC_POINT_mul(ecGrp, ptT1, NULL, ptKi, bnC, bnCtx))
        {
            LogPrintf("%s: EC_POINT_mul failed.\n", __func__);
            rv = 1; goto End;
        };

        // ptT2 = ptT3 + ptT1
        if (!EC_POINT_add(ecGrp, ptT2, ptT3, ptT1, bnCtx))
        {
            LogPrintf("%s: EC_POINT_add failed.\n", __func__);
            rv = 1; goto End;
        };

        if (!(EC_POINT_point2oct(ecGrp, ptT2, POINT_CONVERSION_COMPRESSED, &tempData[33], 33, bnCtx) == (int) EC_COMPRESSED_SIZE))
        {
            LogPrintf("%s: extract ptT2 failed.\n", __func__);
            rv = 1; goto End;
        };

        CHashWriter ssCHash(SER_GETHASH, PROTOCOL_VERSION);
        ssCHash.write((const char*)tmpPkHash.begin(), 32);
        ssCHash.write((const char*)&tempData[0], 66);
        tmpHash = ssCHash.GetHash();

        if (!bnC || !(BN_bin2bn(tmpHash.begin(), EC_SECRET_SIZE, bnC))
            || !BN_mod(bnC, bnC, bnOrder, bnCtx))
        {
            LogPrintf("%s: tmpHash -> bnC failed.\n", __func__);
            rv = 1; goto End;
        };
    };

    // bnT = (bnC - bnC1) % N
    if (!BN_mod_sub(bnT, bnC, bnC1, bnOrder, bnCtx))
    {
        LogPrintf("%s: BN_mod_sub failed.\n", __func__);
        rv = 1; goto End;
    };

    // test bnT == 0  (bnC == bnC1)
    if (!BN_is_zero(bnT))
    {
        LogPrintf("%s: signature does not verify.\n", __func__);
        rv = 2;
    };

    End:

    BN_CTX_end(bnCtx);

    EC_POINT_free(ptKi);
    EC_POINT_free(ptT1);
    EC_POINT_free(ptT2);
    EC_POINT_free(ptT3);
    EC_POINT_free(ptPk);
    EC_POINT_free(ptSi);

    return rv;
};
예제 #18
0
void prime_field_tests()
	{	
	BN_CTX *ctx = NULL;
	BIGNUM *p, *a, *b;
	EC_GROUP *group;
	EC_GROUP *P_160 = NULL, *P_192 = NULL, *P_224 = NULL, *P_256 = NULL, *P_384 = NULL, *P_521 = NULL;
	EC_POINT *P, *Q, *R;
	BIGNUM *x, *y, *z;
	unsigned char buf[100];
	size_t i, len;
	int k;
	
#if 1 /* optional */
	ctx = BN_CTX_new();
	if (!ctx) ABORT;
#endif

	p = BN_new();
	a = BN_new();
	b = BN_new();
	if (!p || !a || !b) ABORT;

	if (!BN_hex2bn(&p, "17")) ABORT;
	if (!BN_hex2bn(&a, "1")) ABORT;
	if (!BN_hex2bn(&b, "1")) ABORT;
	
	group = EC_GROUP_new(EC_GFp_mont_method()); /* applications should use EC_GROUP_new_curve_GFp
	                                             * so that the library gets to choose the EC_METHOD */
	if (!group) ABORT;

	if (!EC_GROUP_set_curve_GFp(group, p, a, b, ctx)) ABORT;

	{
		EC_GROUP *tmp;
		tmp = EC_GROUP_new(EC_GROUP_method_of(group));
		if (!tmp) ABORT;
		if (!EC_GROUP_copy(tmp, group)) ABORT;
		EC_GROUP_free(group);
		group = tmp;
	}
	
	if (!EC_GROUP_get_curve_GFp(group, p, a, b, ctx)) ABORT;

	fprintf(stdout, "Curve defined by Weierstrass equation\n     y^2 = x^3 + a*x + b  (mod 0x");
	BN_print_fp(stdout, p);
	fprintf(stdout, ")\n     a = 0x");
	BN_print_fp(stdout, a);
	fprintf(stdout, "\n     b = 0x");
	BN_print_fp(stdout, b);
	fprintf(stdout, "\n");

	P = EC_POINT_new(group);
	Q = EC_POINT_new(group);
	R = EC_POINT_new(group);
	if (!P || !Q || !R) ABORT;
	
	if (!EC_POINT_set_to_infinity(group, P)) ABORT;
	if (!EC_POINT_is_at_infinity(group, P)) ABORT;

	buf[0] = 0;
	if (!EC_POINT_oct2point(group, Q, buf, 1, ctx)) ABORT;

	if (!EC_POINT_add(group, P, P, Q, ctx)) ABORT;
	if (!EC_POINT_is_at_infinity(group, P)) ABORT;

	x = BN_new();
	y = BN_new();
	z = BN_new();
	if (!x || !y || !z) ABORT;

	if (!BN_hex2bn(&x, "D")) ABORT;
	if (!EC_POINT_set_compressed_coordinates_GFp(group, Q, x, 1, ctx)) ABORT;
	if (!EC_POINT_is_on_curve(group, Q, ctx))
		{
		if (!EC_POINT_get_affine_coordinates_GFp(group, Q, x, y, ctx)) ABORT;
		fprintf(stderr, "Point is not on curve: x = 0x");
		BN_print_fp(stderr, x);
		fprintf(stderr, ", y = 0x");
		BN_print_fp(stderr, y);
		fprintf(stderr, "\n");
		ABORT;
		}

	fprintf(stdout, "A cyclic subgroup:\n");
	k = 100;
	do
		{
		if (k-- == 0) ABORT;

		if (EC_POINT_is_at_infinity(group, P))
			fprintf(stdout, "     point at infinity\n");
		else
			{
			if (!EC_POINT_get_affine_coordinates_GFp(group, P, x, y, ctx)) ABORT;

			fprintf(stdout, "     x = 0x");
			BN_print_fp(stdout, x);
			fprintf(stdout, ", y = 0x");
			BN_print_fp(stdout, y);
			fprintf(stdout, "\n");
			}
		
		if (!EC_POINT_copy(R, P)) ABORT;
		if (!EC_POINT_add(group, P, P, Q, ctx)) ABORT;

#if 0 /* optional */
		{
			EC_POINT *points[3];
		
			points[0] = R;
			points[1] = Q;
			points[2] = P;
			if (!EC_POINTs_make_affine(group, 2, points, ctx)) ABORT;
		}
#endif

		}
	while (!EC_POINT_is_at_infinity(group, P));

	if (!EC_POINT_add(group, P, Q, R, ctx)) ABORT;
	if (!EC_POINT_is_at_infinity(group, P)) ABORT;

	len = EC_POINT_point2oct(group, Q, POINT_CONVERSION_COMPRESSED, buf, sizeof buf, ctx);
	if (len == 0) ABORT;
	if (!EC_POINT_oct2point(group, P, buf, len, ctx)) ABORT;
	if (0 != EC_POINT_cmp(group, P, Q, ctx)) ABORT;
	fprintf(stdout, "Generator as octect string, compressed form:\n     ");
	for (i = 0; i < len; i++) fprintf(stdout, "%02X", buf[i]);
	
	len = EC_POINT_point2oct(group, Q, POINT_CONVERSION_UNCOMPRESSED, buf, sizeof buf, ctx);
	if (len == 0) ABORT;
	if (!EC_POINT_oct2point(group, P, buf, len, ctx)) ABORT;
	if (0 != EC_POINT_cmp(group, P, Q, ctx)) ABORT;
	fprintf(stdout, "\nGenerator as octect string, uncompressed form:\n     ");
	for (i = 0; i < len; i++) fprintf(stdout, "%02X", buf[i]);
	
	len = EC_POINT_point2oct(group, Q, POINT_CONVERSION_HYBRID, buf, sizeof buf, ctx);
	if (len == 0) ABORT;
	if (!EC_POINT_oct2point(group, P, buf, len, ctx)) ABORT;
	if (0 != EC_POINT_cmp(group, P, Q, ctx)) ABORT;
	fprintf(stdout, "\nGenerator as octect string, hybrid form:\n     ");
	for (i = 0; i < len; i++) fprintf(stdout, "%02X", buf[i]);
	
	if (!EC_POINT_get_Jprojective_coordinates_GFp(group, R, x, y, z, ctx)) ABORT;
	fprintf(stdout, "\nA representation of the inverse of that generator in\nJacobian projective coordinates:\n     X = 0x");
	BN_print_fp(stdout, x);
	fprintf(stdout, ", Y = 0x");
	BN_print_fp(stdout, y);
	fprintf(stdout, ", Z = 0x");
	BN_print_fp(stdout, z);
	fprintf(stdout, "\n");

	if (!EC_POINT_invert(group, P, ctx)) ABORT;
	if (0 != EC_POINT_cmp(group, P, R, ctx)) ABORT;


	/* Curve secp160r1 (Certicom Research SEC 2 Version 1.0, section 2.4.2, 2000)
	 * -- not a NIST curve, but commonly used */
	
	if (!BN_hex2bn(&p, "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF7FFFFFFF")) ABORT;
	if (1 != BN_is_prime_ex(p, BN_prime_checks, ctx, NULL)) ABORT;
	if (!BN_hex2bn(&a, "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF7FFFFFFC")) ABORT;
	if (!BN_hex2bn(&b, "1C97BEFC54BD7A8B65ACF89F81D4D4ADC565FA45")) ABORT;
	if (!EC_GROUP_set_curve_GFp(group, p, a, b, ctx)) ABORT;

	if (!BN_hex2bn(&x, "4A96B5688EF573284664698968C38BB913CBFC82")) ABORT;
	if (!BN_hex2bn(&y, "23a628553168947d59dcc912042351377ac5fb32")) ABORT;
	if (!EC_POINT_set_affine_coordinates_GFp(group, P, x, y, ctx)) ABORT;
	if (!EC_POINT_is_on_curve(group, P, ctx)) ABORT;
	if (!BN_hex2bn(&z, "0100000000000000000001F4C8F927AED3CA752257")) ABORT;
	if (!EC_GROUP_set_generator(group, P, z, BN_value_one())) ABORT;

	if (!EC_POINT_get_affine_coordinates_GFp(group, P, x, y, ctx)) ABORT;
	fprintf(stdout, "\nSEC2 curve secp160r1 -- Generator:\n     x = 0x");
	BN_print_fp(stdout, x);
	fprintf(stdout, "\n     y = 0x");
	BN_print_fp(stdout, y);
	fprintf(stdout, "\n");
	/* G_y value taken from the standard: */
	if (!BN_hex2bn(&z, "23a628553168947d59dcc912042351377ac5fb32")) ABORT;
	if (0 != BN_cmp(y, z)) ABORT;

	fprintf(stdout, "verify degree ...");
	if (EC_GROUP_get_degree(group) != 160) ABORT;
	fprintf(stdout, " ok\n");
	
	fprintf(stdout, "verify group order ...");
	fflush(stdout);
	if (!EC_GROUP_get_order(group, z, ctx)) ABORT;
	if (!EC_POINT_mul(group, Q, z, NULL, NULL, ctx)) ABORT;
	if (!EC_POINT_is_at_infinity(group, Q)) ABORT;
	fprintf(stdout, ".");
	fflush(stdout);
	if (!EC_GROUP_precompute_mult(group, ctx)) ABORT;
	if (!EC_POINT_mul(group, Q, z, NULL, NULL, ctx)) ABORT;
	if (!EC_POINT_is_at_infinity(group, Q)) ABORT;
	fprintf(stdout, " ok\n");

	if (!(P_160 = EC_GROUP_new(EC_GROUP_method_of(group)))) ABORT;
	if (!EC_GROUP_copy(P_160, group)) ABORT;


	/* Curve P-192 (FIPS PUB 186-2, App. 6) */
	
	if (!BN_hex2bn(&p, "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFF")) ABORT;
	if (1 != BN_is_prime_ex(p, BN_prime_checks, ctx, NULL)) ABORT;
	if (!BN_hex2bn(&a, "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFC")) ABORT;
	if (!BN_hex2bn(&b, "64210519E59C80E70FA7E9AB72243049FEB8DEECC146B9B1")) ABORT;
	if (!EC_GROUP_set_curve_GFp(group, p, a, b, ctx)) ABORT;

	if (!BN_hex2bn(&x, "188DA80EB03090F67CBF20EB43A18800F4FF0AFD82FF1012")) ABORT;
	if (!EC_POINT_set_compressed_coordinates_GFp(group, P, x, 1, ctx)) ABORT;
	if (!EC_POINT_is_on_curve(group, P, ctx)) ABORT;
	if (!BN_hex2bn(&z, "FFFFFFFFFFFFFFFFFFFFFFFF99DEF836146BC9B1B4D22831")) ABORT;
	if (!EC_GROUP_set_generator(group, P, z, BN_value_one())) ABORT;

	if (!EC_POINT_get_affine_coordinates_GFp(group, P, x, y, ctx)) ABORT;
	fprintf(stdout, "\nNIST curve P-192 -- Generator:\n     x = 0x");
	BN_print_fp(stdout, x);
	fprintf(stdout, "\n     y = 0x");
	BN_print_fp(stdout, y);
	fprintf(stdout, "\n");
	/* G_y value taken from the standard: */
	if (!BN_hex2bn(&z, "07192B95FFC8DA78631011ED6B24CDD573F977A11E794811")) ABORT;
	if (0 != BN_cmp(y, z)) ABORT;

	fprintf(stdout, "verify degree ...");
	if (EC_GROUP_get_degree(group) != 192) ABORT;
	fprintf(stdout, " ok\n");
	
	fprintf(stdout, "verify group order ...");
	fflush(stdout);
	if (!EC_GROUP_get_order(group, z, ctx)) ABORT;
	if (!EC_POINT_mul(group, Q, z, NULL, NULL, ctx)) ABORT;
	if (!EC_POINT_is_at_infinity(group, Q)) ABORT;
	fprintf(stdout, ".");
	fflush(stdout);
#if 0
	if (!EC_GROUP_precompute_mult(group, ctx)) ABORT;
#endif
	if (!EC_POINT_mul(group, Q, z, NULL, NULL, ctx)) ABORT;
	if (!EC_POINT_is_at_infinity(group, Q)) ABORT;
	fprintf(stdout, " ok\n");

	if (!(P_192 = EC_GROUP_new(EC_GROUP_method_of(group)))) ABORT;
	if (!EC_GROUP_copy(P_192, group)) ABORT;


	/* Curve P-224 (FIPS PUB 186-2, App. 6) */
	
	if (!BN_hex2bn(&p, "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001")) ABORT;
	if (1 != BN_is_prime_ex(p, BN_prime_checks, ctx, NULL)) ABORT;
	if (!BN_hex2bn(&a, "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFE")) ABORT;
	if (!BN_hex2bn(&b, "B4050A850C04B3ABF54132565044B0B7D7BFD8BA270B39432355FFB4")) ABORT;
	if (!EC_GROUP_set_curve_GFp(group, p, a, b, ctx)) ABORT;

	if (!BN_hex2bn(&x, "B70E0CBD6BB4BF7F321390B94A03C1D356C21122343280D6115C1D21")) ABORT;
	if (!EC_POINT_set_compressed_coordinates_GFp(group, P, x, 0, ctx)) ABORT;
	if (!EC_POINT_is_on_curve(group, P, ctx)) ABORT;
	if (!BN_hex2bn(&z, "FFFFFFFFFFFFFFFFFFFFFFFFFFFF16A2E0B8F03E13DD29455C5C2A3D")) ABORT;
	if (!EC_GROUP_set_generator(group, P, z, BN_value_one())) ABORT;

	if (!EC_POINT_get_affine_coordinates_GFp(group, P, x, y, ctx)) ABORT;
	fprintf(stdout, "\nNIST curve P-224 -- Generator:\n     x = 0x");
	BN_print_fp(stdout, x);
	fprintf(stdout, "\n     y = 0x");
	BN_print_fp(stdout, y);
	fprintf(stdout, "\n");
	/* G_y value taken from the standard: */
	if (!BN_hex2bn(&z, "BD376388B5F723FB4C22DFE6CD4375A05A07476444D5819985007E34")) ABORT;
	if (0 != BN_cmp(y, z)) ABORT;
	
	fprintf(stdout, "verify degree ...");
	if (EC_GROUP_get_degree(group) != 224) ABORT;
	fprintf(stdout, " ok\n");
	
	fprintf(stdout, "verify group order ...");
	fflush(stdout);
	if (!EC_GROUP_get_order(group, z, ctx)) ABORT;
	if (!EC_POINT_mul(group, Q, z, NULL, NULL, ctx)) ABORT;
	if (!EC_POINT_is_at_infinity(group, Q)) ABORT;
	fprintf(stdout, ".");
	fflush(stdout);
#if 0
	if (!EC_GROUP_precompute_mult(group, ctx)) ABORT;
#endif
	if (!EC_POINT_mul(group, Q, z, NULL, NULL, ctx)) ABORT;
	if (!EC_POINT_is_at_infinity(group, Q)) ABORT;
	fprintf(stdout, " ok\n");

	if (!(P_224 = EC_GROUP_new(EC_GROUP_method_of(group)))) ABORT;
	if (!EC_GROUP_copy(P_224, group)) ABORT;


	/* Curve P-256 (FIPS PUB 186-2, App. 6) */
	
	if (!BN_hex2bn(&p, "FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF")) ABORT;
	if (1 != BN_is_prime_ex(p, BN_prime_checks, ctx, NULL)) ABORT;
	if (!BN_hex2bn(&a, "FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFC")) ABORT;
	if (!BN_hex2bn(&b, "5AC635D8AA3A93E7B3EBBD55769886BC651D06B0CC53B0F63BCE3C3E27D2604B")) ABORT;
	if (!EC_GROUP_set_curve_GFp(group, p, a, b, ctx)) ABORT;

	if (!BN_hex2bn(&x, "6B17D1F2E12C4247F8BCE6E563A440F277037D812DEB33A0F4A13945D898C296")) ABORT;
	if (!EC_POINT_set_compressed_coordinates_GFp(group, P, x, 1, ctx)) ABORT;
	if (!EC_POINT_is_on_curve(group, P, ctx)) ABORT;
	if (!BN_hex2bn(&z, "FFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E"
		"84F3B9CAC2FC632551")) ABORT;
	if (!EC_GROUP_set_generator(group, P, z, BN_value_one())) ABORT;

	if (!EC_POINT_get_affine_coordinates_GFp(group, P, x, y, ctx)) ABORT;
	fprintf(stdout, "\nNIST curve P-256 -- Generator:\n     x = 0x");
	BN_print_fp(stdout, x);
	fprintf(stdout, "\n     y = 0x");
	BN_print_fp(stdout, y);
	fprintf(stdout, "\n");
	/* G_y value taken from the standard: */
	if (!BN_hex2bn(&z, "4FE342E2FE1A7F9B8EE7EB4A7C0F9E162BCE33576B315ECECBB6406837BF51F5")) ABORT;
	if (0 != BN_cmp(y, z)) ABORT;
	
	fprintf(stdout, "verify degree ...");
	if (EC_GROUP_get_degree(group) != 256) ABORT;
	fprintf(stdout, " ok\n");
	
	fprintf(stdout, "verify group order ...");
	fflush(stdout);
	if (!EC_GROUP_get_order(group, z, ctx)) ABORT;
	if (!EC_POINT_mul(group, Q, z, NULL, NULL, ctx)) ABORT;
	if (!EC_POINT_is_at_infinity(group, Q)) ABORT;
	fprintf(stdout, ".");
	fflush(stdout);
#if 0
	if (!EC_GROUP_precompute_mult(group, ctx)) ABORT;
#endif
	if (!EC_POINT_mul(group, Q, z, NULL, NULL, ctx)) ABORT;
	if (!EC_POINT_is_at_infinity(group, Q)) ABORT;
	fprintf(stdout, " ok\n");

	if (!(P_256 = EC_GROUP_new(EC_GROUP_method_of(group)))) ABORT;
	if (!EC_GROUP_copy(P_256, group)) ABORT;


	/* Curve P-384 (FIPS PUB 186-2, App. 6) */
	
	if (!BN_hex2bn(&p, "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"
		"FFFFFFFFFFFFFFFFFEFFFFFFFF0000000000000000FFFFFFFF")) ABORT;
	if (1 != BN_is_prime_ex(p, BN_prime_checks, ctx, NULL)) ABORT;
	if (!BN_hex2bn(&a, "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"
		"FFFFFFFFFFFFFFFFFEFFFFFFFF0000000000000000FFFFFFFC")) ABORT;
	if (!BN_hex2bn(&b, "B3312FA7E23EE7E4988E056BE3F82D19181D9C6EFE8141"
		"120314088F5013875AC656398D8A2ED19D2A85C8EDD3EC2AEF")) ABORT;
	if (!EC_GROUP_set_curve_GFp(group, p, a, b, ctx)) ABORT;

	if (!BN_hex2bn(&x, "AA87CA22BE8B05378EB1C71EF320AD746E1D3B628BA79B"
		"9859F741E082542A385502F25DBF55296C3A545E3872760AB7")) ABORT;
	if (!EC_POINT_set_compressed_coordinates_GFp(group, P, x, 1, ctx)) ABORT;
	if (!EC_POINT_is_on_curve(group, P, ctx)) ABORT;
	if (!BN_hex2bn(&z, "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"
		"FFC7634D81F4372DDF581A0DB248B0A77AECEC196ACCC52973")) ABORT;
	if (!EC_GROUP_set_generator(group, P, z, BN_value_one())) ABORT;

	if (!EC_POINT_get_affine_coordinates_GFp(group, P, x, y, ctx)) ABORT;
	fprintf(stdout, "\nNIST curve P-384 -- Generator:\n     x = 0x");
	BN_print_fp(stdout, x);
	fprintf(stdout, "\n     y = 0x");
	BN_print_fp(stdout, y);
	fprintf(stdout, "\n");
	/* G_y value taken from the standard: */
	if (!BN_hex2bn(&z, "3617DE4A96262C6F5D9E98BF9292DC29F8F41DBD289A14"
		"7CE9DA3113B5F0B8C00A60B1CE1D7E819D7A431D7C90EA0E5F")) ABORT;
	if (0 != BN_cmp(y, z)) ABORT;
	
	fprintf(stdout, "verify degree ...");
	if (EC_GROUP_get_degree(group) != 384) ABORT;
	fprintf(stdout, " ok\n");
	
	fprintf(stdout, "verify group order ...");
	fflush(stdout);
	if (!EC_GROUP_get_order(group, z, ctx)) ABORT;
	if (!EC_POINT_mul(group, Q, z, NULL, NULL, ctx)) ABORT;
	if (!EC_POINT_is_at_infinity(group, Q)) ABORT;
	fprintf(stdout, ".");
	fflush(stdout);
#if 0
	if (!EC_GROUP_precompute_mult(group, ctx)) ABORT;
#endif
	if (!EC_POINT_mul(group, Q, z, NULL, NULL, ctx)) ABORT;
	if (!EC_POINT_is_at_infinity(group, Q)) ABORT;
	fprintf(stdout, " ok\n");

	if (!(P_384 = EC_GROUP_new(EC_GROUP_method_of(group)))) ABORT;
	if (!EC_GROUP_copy(P_384, group)) ABORT;


	/* Curve P-521 (FIPS PUB 186-2, App. 6) */
	
	if (!BN_hex2bn(&p, "1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"
		"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"
		"FFFFFFFFFFFFFFFFFFFFFFFFFFFF")) ABORT;
	if (1 != BN_is_prime_ex(p, BN_prime_checks, ctx, NULL)) ABORT;
	if (!BN_hex2bn(&a, "1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"
		"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"
		"FFFFFFFFFFFFFFFFFFFFFFFFFFFC")) ABORT;
	if (!BN_hex2bn(&b, "051953EB9618E1C9A1F929A21A0B68540EEA2DA725B99B"
		"315F3B8B489918EF109E156193951EC7E937B1652C0BD3BB1BF073573"
		"DF883D2C34F1EF451FD46B503F00")) ABORT;
	if (!EC_GROUP_set_curve_GFp(group, p, a, b, ctx)) ABORT;

	if (!BN_hex2bn(&x, "C6858E06B70404E9CD9E3ECB662395B4429C648139053F"
		"B521F828AF606B4D3DBAA14B5E77EFE75928FE1DC127A2FFA8DE3348B"
		"3C1856A429BF97E7E31C2E5BD66")) ABORT;
	if (!EC_POINT_set_compressed_coordinates_GFp(group, P, x, 0, ctx)) ABORT;
	if (!EC_POINT_is_on_curve(group, P, ctx)) ABORT;
	if (!BN_hex2bn(&z, "1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"
		"FFFFFFFFFFFFFFFFFFFFA51868783BF2F966B7FCC0148F709A5D03BB5"
		"C9B8899C47AEBB6FB71E91386409")) ABORT;
	if (!EC_GROUP_set_generator(group, P, z, BN_value_one())) ABORT;

	if (!EC_POINT_get_affine_coordinates_GFp(group, P, x, y, ctx)) ABORT;
	fprintf(stdout, "\nNIST curve P-521 -- Generator:\n     x = 0x");
	BN_print_fp(stdout, x);
	fprintf(stdout, "\n     y = 0x");
	BN_print_fp(stdout, y);
	fprintf(stdout, "\n");
	/* G_y value taken from the standard: */
	if (!BN_hex2bn(&z, "11839296A789A3BC0045C8A5FB42C7D1BD998F54449579"
		"B446817AFBD17273E662C97EE72995EF42640C550B9013FAD0761353C"
		"7086A272C24088BE94769FD16650")) ABORT;
	if (0 != BN_cmp(y, z)) ABORT;
	
	fprintf(stdout, "verify degree ...");
	if (EC_GROUP_get_degree(group) != 521) ABORT;
	fprintf(stdout, " ok\n");
	
	fprintf(stdout, "verify group order ...");
	fflush(stdout);
	if (!EC_GROUP_get_order(group, z, ctx)) ABORT;
	if (!EC_POINT_mul(group, Q, z, NULL, NULL, ctx)) ABORT;
	if (!EC_POINT_is_at_infinity(group, Q)) ABORT;
	fprintf(stdout, ".");
	fflush(stdout);
#if 0
	if (!EC_GROUP_precompute_mult(group, ctx)) ABORT;
#endif
	if (!EC_POINT_mul(group, Q, z, NULL, NULL, ctx)) ABORT;
	if (!EC_POINT_is_at_infinity(group, Q)) ABORT;
	fprintf(stdout, " ok\n");

	if (!(P_521 = EC_GROUP_new(EC_GROUP_method_of(group)))) ABORT;
	if (!EC_GROUP_copy(P_521, group)) ABORT;


	/* more tests using the last curve */

	if (!EC_POINT_copy(Q, P)) ABORT;
	if (EC_POINT_is_at_infinity(group, Q)) ABORT;
	if (!EC_POINT_dbl(group, P, P, ctx)) ABORT;
	if (!EC_POINT_is_on_curve(group, P, ctx)) ABORT;
	if (!EC_POINT_invert(group, Q, ctx)) ABORT; /* P = -2Q */

	if (!EC_POINT_add(group, R, P, Q, ctx)) ABORT;
	if (!EC_POINT_add(group, R, R, Q, ctx)) ABORT;
	if (!EC_POINT_is_at_infinity(group, R)) ABORT; /* R = P + 2Q */

	{
		const EC_POINT *points[3];
		const BIGNUM *scalars[3];
	
		if (EC_POINT_is_at_infinity(group, Q)) ABORT;
		points[0] = Q;
		points[1] = Q;
		points[2] = Q;

		if (!BN_add(y, z, BN_value_one())) ABORT;
		if (BN_is_odd(y)) ABORT;
		if (!BN_rshift1(y, y)) ABORT;
		scalars[0] = y; /* (group order + 1)/2,  so  y*Q + y*Q = Q */
		scalars[1] = y;

		fprintf(stdout, "combined multiplication ...");
		fflush(stdout);

		/* z is still the group order */
		if (!EC_POINTs_mul(group, P, NULL, 2, points, scalars, ctx)) ABORT;
		if (!EC_POINTs_mul(group, R, z, 2, points, scalars, ctx)) ABORT;
		if (0 != EC_POINT_cmp(group, P, R, ctx)) ABORT;
		if (0 != EC_POINT_cmp(group, R, Q, ctx)) ABORT;

		fprintf(stdout, ".");
		fflush(stdout);

		if (!BN_pseudo_rand(y, BN_num_bits(y), 0, 0)) ABORT;
		if (!BN_add(z, z, y)) ABORT;
		BN_set_negative(z, 1);
		scalars[0] = y;
		scalars[1] = z; /* z = -(order + y) */

		if (!EC_POINTs_mul(group, P, NULL, 2, points, scalars, ctx)) ABORT;
		if (!EC_POINT_is_at_infinity(group, P)) ABORT;

		fprintf(stdout, ".");
		fflush(stdout);

		if (!BN_pseudo_rand(x, BN_num_bits(y) - 1, 0, 0)) ABORT;
		if (!BN_add(z, x, y)) ABORT;
		BN_set_negative(z, 1);
		scalars[0] = x;
		scalars[1] = y;
		scalars[2] = z; /* z = -(x+y) */

		if (!EC_POINTs_mul(group, P, NULL, 3, points, scalars, ctx)) ABORT;
		if (!EC_POINT_is_at_infinity(group, P)) ABORT;

		fprintf(stdout, " ok\n\n");
	}


#if 0
	timings(P_160, TIMING_BASE_PT, ctx);
	timings(P_160, TIMING_RAND_PT, ctx);
	timings(P_160, TIMING_SIMUL, ctx);
	timings(P_192, TIMING_BASE_PT, ctx);
	timings(P_192, TIMING_RAND_PT, ctx);
	timings(P_192, TIMING_SIMUL, ctx);
	timings(P_224, TIMING_BASE_PT, ctx);
	timings(P_224, TIMING_RAND_PT, ctx);
	timings(P_224, TIMING_SIMUL, ctx);
	timings(P_256, TIMING_BASE_PT, ctx);
	timings(P_256, TIMING_RAND_PT, ctx);
	timings(P_256, TIMING_SIMUL, ctx);
	timings(P_384, TIMING_BASE_PT, ctx);
	timings(P_384, TIMING_RAND_PT, ctx);
	timings(P_384, TIMING_SIMUL, ctx);
	timings(P_521, TIMING_BASE_PT, ctx);
	timings(P_521, TIMING_RAND_PT, ctx);
	timings(P_521, TIMING_SIMUL, ctx);
#endif


	if (ctx)
		BN_CTX_free(ctx);
	BN_free(p); BN_free(a);	BN_free(b);
	EC_GROUP_free(group);
	EC_POINT_free(P);
	EC_POINT_free(Q);
	EC_POINT_free(R);
	BN_free(x); BN_free(y); BN_free(z);

	if (P_160) EC_GROUP_free(P_160);
	if (P_192) EC_GROUP_free(P_192);
	if (P_224) EC_GROUP_free(P_224);
	if (P_256) EC_GROUP_free(P_256);
	if (P_384) EC_GROUP_free(P_384);
	if (P_521) EC_GROUP_free(P_521);

	}
예제 #19
0
파일: openssl.c 프로젝트: stinb/libssh2
static int
gen_publickey_from_ec_evp(LIBSSH2_SESSION *session,
                          unsigned char **method,
                          size_t *method_len,
                          unsigned char **pubkeydata,
                          size_t *pubkeydata_len,
                          EVP_PKEY *pk)
{
    int rc = 0;
    EC_KEY *ec = NULL;
    unsigned char *p;
    unsigned char *method_buf = NULL;
    unsigned char *key;
    size_t  key_len = 0;
    unsigned char *octal_value = NULL;
    size_t octal_len;
    const EC_POINT *public_key;
    const EC_GROUP *group;
    BN_CTX *bn_ctx;
    libssh2_curve_type type;

    _libssh2_debug(session,
       LIBSSH2_TRACE_AUTH,
       "Computing public key from EC private key envelop");

    bn_ctx = BN_CTX_new();
    if(bn_ctx == NULL)
        return -1;

    ec = EVP_PKEY_get1_EC_KEY(pk);
    if(ec == NULL) {
        rc = -1;
        goto clean_exit;
    }

    public_key = EC_KEY_get0_public_key(ec);
    group = EC_KEY_get0_group(ec);
    type = _libssh2_ecdsa_key_get_curve_type(ec);

    method_buf = LIBSSH2_ALLOC(session, 19);
    if(method_buf == NULL) {
        return _libssh2_error(session, LIBSSH2_ERROR_ALLOC,
            "out of memory");
    }

    if(type == LIBSSH2_EC_CURVE_NISTP256)
        memcpy(method_buf, "ecdsa-sha2-nistp256", 19);
    else if(type == LIBSSH2_EC_CURVE_NISTP384)
        memcpy(method_buf, "ecdsa-sha2-nistp384", 19);
    else if(type == LIBSSH2_EC_CURVE_NISTP521)
        memcpy(method_buf, "ecdsa-sha2-nistp521", 19);
    else {
        _libssh2_debug(session,
            LIBSSH2_TRACE_ERROR,
            "Unsupported EC private key type");
        rc = -1;
        goto clean_exit;
    }

    /* get length */
    octal_len = EC_POINT_point2oct(group, public_key, POINT_CONVERSION_UNCOMPRESSED, NULL, 0, bn_ctx);
    if(octal_len > EC_MAX_POINT_LEN) {
        rc = -1;
        goto clean_exit;
    }

    octal_value = malloc(octal_len);
    if(octal_value == NULL) {
        rc = -1;
        goto clean_exit;
    }

    /* convert to octal */
    if(EC_POINT_point2oct(group, public_key, POINT_CONVERSION_UNCOMPRESSED,
       octal_value, octal_len, bn_ctx) != octal_len) {
           rc = -1;
           goto clean_exit;
    }

    /* Key form is: type_len(4) + type(19) + domain_len(4) + domain(8) + pub_key_len(4) + pub_key(~65). */
    key_len = 4 + 19 + 4 + 8 + 4 + octal_len;
    key = LIBSSH2_ALLOC(session, key_len);
    if(key == NULL) {
        rc = -1;
        goto  clean_exit;
    }

    /* Process key encoding. */
    p = key;

    /* Key type */
    _libssh2_store_str(&p, (const char *)method_buf, 19);

    /* Name domain */
    _libssh2_store_str(&p, (const char *)method_buf + 11, 8);

    /* Public key */
    _libssh2_store_str(&p, (const char *)octal_value, octal_len);

    *method         = method_buf;
    *method_len     = 19;
    *pubkeydata     = key;
    *pubkeydata_len = key_len;

clean_exit:

    if(ec != NULL)
        EC_KEY_free(ec);

    if(bn_ctx != NULL) {
        BN_CTX_free(bn_ctx);
    }

    if(octal_value != NULL)
        free(octal_value);

    if(rc == 0)
        return 0;

    if(method_buf != NULL)
        LIBSSH2_FREE(session, method_buf);

    return -1;
}
예제 #20
0
int generateRingSignatureAB(data_chunk &keyImage, uint256 &txnHash, int nRingSize, int nSecretOffset, ec_secret secret, const uint8_t *pPubkeys, data_chunk &sigC, uint8_t *pSigS)
{
    // https://bitcointalk.org/index.php?topic=972541.msg10619684

    if (fDebugRingSig)
        LogPrintf("%s: Ring size %d.\n", __func__, nRingSize);

    assert(nRingSize < 200);

    RandAddSeedPerfmon();

    memset(pSigS, 0, EC_SECRET_SIZE * nRingSize);

    int rv = 0;
    int nBytes;

    uint256 tmpPkHash;
    uint256 tmpHash;

    uint8_t tempData[66]; // hold raw point data to hash
    ec_secret sAlpha;

    if (0 != GenerateRandomSecret(sAlpha))
        return errorN(1, "%s: GenerateRandomSecret failed.", __func__);

    CHashWriter ssPkHash(SER_GETHASH, PROTOCOL_VERSION);
    CHashWriter ssCjHash(SER_GETHASH, PROTOCOL_VERSION);

    uint256 test;
    for (int i = 0; i < nRingSize; ++i)
    {
        ssPkHash.write((const char*)&pPubkeys[i * EC_COMPRESSED_SIZE], EC_COMPRESSED_SIZE);

        if (i == nSecretOffset)
            continue;

        int k;
        // NOTE: necessary to clamp?
        for (k = 0; k < 32; ++k)
        {
            if (1 != RAND_bytes(&pSigS[i * EC_SECRET_SIZE], 32))
                return errorN(1, "%s: RAND_bytes ERR_get_error %u.", __func__, ERR_get_error());

            memcpy(test.begin(), &pSigS[i * EC_SECRET_SIZE], 32);
            if (test > MIN_SECRET && test < MAX_SECRET)
                break;
        };

        if (k > 31)
            return errorN(1, "%s: Failed to generate a valid key.", __func__);
    };

    tmpPkHash = ssPkHash.GetHash();

    BN_CTX_start(bnCtx);
    BIGNUM   *bnT  = BN_CTX_get(bnCtx);
    BIGNUM   *bnT2 = BN_CTX_get(bnCtx);
    BIGNUM   *bnS  = BN_CTX_get(bnCtx);
    BIGNUM   *bnC  = BN_CTX_get(bnCtx);
    BIGNUM   *bnCj = BN_CTX_get(bnCtx);
    BIGNUM   *bnA  = BN_CTX_get(bnCtx);
    EC_POINT *ptKi = NULL;
    EC_POINT *ptPk = NULL;
    EC_POINT *ptT1 = NULL;
    EC_POINT *ptT2 = NULL;
    EC_POINT *ptT3 = NULL;
    EC_POINT *ptT4 = NULL;

    if (   !(ptKi = EC_POINT_new(ecGrp))
        || !(ptPk = EC_POINT_new(ecGrp))
        || !(ptT1 = EC_POINT_new(ecGrp))
        || !(ptT2 = EC_POINT_new(ecGrp))
        || !(ptT3 = EC_POINT_new(ecGrp))
        || !(ptT4 = EC_POINT_new(ecGrp)))
    {
        LogPrintf("%s: EC_POINT_new failed.\n", __func__);
        rv = 1; goto End;
    };

    // get keyimage as point
    if (!EC_POINT_oct2point(ecGrp, ptKi, &keyImage[0], EC_COMPRESSED_SIZE, bnCtx))
    {
        LogPrintf("%s: extract ptKi failed.\n", __func__);
        rv = 1; goto End;
    };

    // c_{j+1} = h(P_1,...,P_n,alpha*G,alpha*H(P_j))
    if (!bnA || !(BN_bin2bn(&sAlpha.e[0], EC_SECRET_SIZE, bnA)))
    {
        LogPrintf("%s: BN_bin2bn failed.\n", __func__);
        rv = 1; goto End;
    };

    // ptT1 = alpha * G
    if (!EC_POINT_mul(ecGrp, ptT1, bnA, NULL, NULL, bnCtx))
    {
        LogPrintf("%s: EC_POINT_mul failed.\n", __func__);
        rv = 1; goto End;
    };

    // ptT3 = H(Pj)

    if (hashToEC(&pPubkeys[nSecretOffset * EC_COMPRESSED_SIZE], EC_COMPRESSED_SIZE, bnT2, ptT3) != 0)
    {
        LogPrintf("%s: hashToEC failed.\n", __func__);
        rv = 1; goto End;
    };

    ssCjHash.write((const char*)tmpPkHash.begin(), 32);

    // ptT2 = alpha * H(P_j)
    // ptT2 = alpha * ptT3
    if (!EC_POINT_mul(ecGrp, ptT2, NULL, ptT3, bnA, bnCtx))
    {
        LogPrintf("%s: EC_POINT_mul failed.\n", __func__);
        rv = 1; goto End;
    };

    if (   !(EC_POINT_point2oct(ecGrp, ptT1, POINT_CONVERSION_COMPRESSED, &tempData[0],  33, bnCtx) == (int) EC_COMPRESSED_SIZE)
        || !(EC_POINT_point2oct(ecGrp, ptT2, POINT_CONVERSION_COMPRESSED, &tempData[33], 33, bnCtx) == (int) EC_COMPRESSED_SIZE))
    {
        LogPrintf("%s: extract ptL and ptR failed.\n", __func__);
        rv = 1; goto End;
    };

    ssCjHash.write((const char*)&tempData[0], 66);
    tmpHash = ssCjHash.GetHash();

    if (!bnC || !(BN_bin2bn(tmpHash.begin(), EC_SECRET_SIZE, bnC)) // bnC lags i by 1
        || !BN_mod(bnC, bnC, bnOrder, bnCtx))
    {
        LogPrintf("%s: hash -> bnC failed.\n", __func__);
        rv = 1; goto End;
    };


    // c_{j+2} = h(P_1,...,P_n,s_{j+1}*G+c_{j+1}*P_{j+1},s_{j+1}*H(P_{j+1})+c_{j+1}*I_j)
    for (int k = 0, ib = (nSecretOffset + 1) % nRingSize, i = (nSecretOffset + 2) % nRingSize;
        k < nRingSize;
        ++k, ib=i, i=(i+1) % nRingSize)
    {
        if (k == nRingSize - 1)
        {
            // s_j = alpha - c_j*x_j mod n.
            if (!bnT || !BN_bin2bn(&secret.e[0], EC_SECRET_SIZE, bnT))
            {
                LogPrintf("%s: BN_bin2bn failed.\n", __func__);
                rv = 1; goto End;
            };

            if (!BN_mul(bnT2, bnCj, bnT, bnCtx))
            {
                LogPrintf("%s: BN_mul failed.\n", __func__);
                rv = 1; goto End;
            };

            if (!BN_mod_sub(bnS, bnA, bnT2, bnOrder, bnCtx))
            {
                LogPrintf("%s: BN_mod_sub failed.\n", __func__);
                rv = 1; goto End;
            };

            if (!bnS || (nBytes = BN_num_bytes(bnS)) > (int) EC_SECRET_SIZE
                || BN_bn2bin(bnS, &pSigS[nSecretOffset * EC_SECRET_SIZE + (EC_SECRET_SIZE-nBytes)]) != nBytes)
            {
                LogPrintf("%s: bnS -> pSigS failed.\n", __func__);
                rv = 1; goto End;
            };

            if (nSecretOffset != nRingSize - 1)
                break;
        };

        if (!bnS || !(BN_bin2bn(&pSigS[ib * EC_SECRET_SIZE], EC_SECRET_SIZE, bnS)))
        {
            LogPrintf("%s: BN_bin2bn failed.\n", __func__);
            rv = 1; goto End;
        };

        // bnC is from last round (ib)
        if (!EC_POINT_oct2point(ecGrp, ptPk, &pPubkeys[ib * EC_COMPRESSED_SIZE], EC_COMPRESSED_SIZE, bnCtx))
        {
            LogPrintf("%s: EC_POINT_oct2point failed.\n", __func__);
            rv = 1; goto End;
        };

        // ptT1 = s_{j+1}*G+c_{j+1}*P_{j+1}
        if (!EC_POINT_mul(ecGrp, ptT1, bnS, ptPk, bnC, bnCtx))
        {
            LogPrintf("%s: EC_POINT_mul failed.\n", __func__);
            rv = 1; goto End;
        };

        //s_{j+1}*H(P_{j+1})+c_{j+1}*I_j

        if (hashToEC(&pPubkeys[ib * EC_COMPRESSED_SIZE], EC_COMPRESSED_SIZE, bnT2, ptT2) != 0)
        {
            LogPrintf("%s: hashToEC failed.\n", __func__);
            rv = 1; goto End;
        };

        // ptT3 = s_{j+1}*H(P_{j+1})
        if (!EC_POINT_mul(ecGrp, ptT3, NULL, ptT2, bnS, bnCtx))
        {
            LogPrintf("%s: EC_POINT_mul failed.\n", __func__);
            rv = 1; goto End;
        };

        // ptT4 = c_{j+1}*I_j
        if (!EC_POINT_mul(ecGrp, ptT4, NULL, ptKi, bnC, bnCtx))
        {
            LogPrintf("%s: EC_POINT_mul failed.\n", __func__);
            rv = 1; goto End;
        };

        // ptT2 = ptT3 + ptT4
        if (!EC_POINT_add(ecGrp, ptT2, ptT3, ptT4, bnCtx))
        {
            LogPrintf("%s: EC_POINT_add failed.\n", __func__);
            rv = 1; goto End;
        };

        if (   !(EC_POINT_point2oct(ecGrp, ptT1, POINT_CONVERSION_COMPRESSED, &tempData[0],  33, bnCtx) == (int) EC_COMPRESSED_SIZE)
            || !(EC_POINT_point2oct(ecGrp, ptT2, POINT_CONVERSION_COMPRESSED, &tempData[33], 33, bnCtx) == (int) EC_COMPRESSED_SIZE))
        {
            LogPrintf("%s: extract ptL and ptR failed.\n", __func__);
            rv = 1; goto End;
        };

        CHashWriter ssCHash(SER_GETHASH, PROTOCOL_VERSION);
        ssCHash.write((const char*)tmpPkHash.begin(), 32);
        ssCHash.write((const char*)&tempData[0], 66);
        tmpHash = ssCHash.GetHash();

        if (!bnC || !(BN_bin2bn(tmpHash.begin(), EC_SECRET_SIZE, bnC)) // bnC lags i by 1
            || !BN_mod(bnC, bnC, bnOrder, bnCtx))
        {
            LogPrintf("%s: hash -> bnC failed.\n", __func__);
            rv = 1; goto End;
        };

        if (i == nSecretOffset
            && !BN_copy(bnCj, bnC))
        {
            LogPrintf("%s: BN_copy failed.\n", __func__);
            rv = 1; goto End;
        };

        if (i == 0)
        {
            memset(tempData, 0, EC_SECRET_SIZE);
            if ((nBytes = BN_num_bytes(bnC)) > (int) EC_SECRET_SIZE
                || BN_bn2bin(bnC, &tempData[0 + (EC_SECRET_SIZE-nBytes)]) != nBytes)
            {
                LogPrintf("%s: bnC -> sigC failed.\n", __func__);
                rv = 1; goto End;
            };
            try { sigC.resize(32); } catch (std::exception& e)
            {
                LogPrintf("%s: sigC.resize failed.\n", __func__);
                rv = 1; goto End;
            };
            memcpy(&sigC[0], tempData, EC_SECRET_SIZE);
        };
    };

    End:
    EC_POINT_free(ptKi);
    EC_POINT_free(ptPk);
    EC_POINT_free(ptT1);
    EC_POINT_free(ptT2);
    EC_POINT_free(ptT3);
    EC_POINT_free(ptT4);

    BN_CTX_end(bnCtx);

    return rv;
};
예제 #21
0
파일: ec_key.c 프로젝트: Ms2ger/ring
size_t EC_KEY_public_key_to_oct(const EC_KEY *key, uint8_t *out, size_t out_len) {
  return EC_POINT_point2oct(EC_KEY_get0_group(key), EC_KEY_get0_public_key(key),
                            out, out_len, NULL);
}
예제 #22
0
파일: sm9_sign.c 프로젝트: winstard/GmSSL
static SM9Signature *SM9_do_sign_type1curve(SM9PublicParameters *mpk,
	const unsigned char *dgst, size_t dgstlen, SM9PrivateKey *sk)
{
	int e = 1;
	SM9Signature *ret = NULL;
	BN_CTX *bn_ctx = NULL;
	EC_GROUP *group = NULL;
	EC_POINT *point = NULL;
	BN_GFP2 *w = NULL;
	unsigned char *buf = NULL;
	BIGNUM *r;
	BIGNUM *l;
	const EVP_MD *md;
	int point_form = POINT_CONVERSION_UNCOMPRESSED;
	size_t size;

	if (!mpk || !dgst || dgstlen <= 0 || !sk) {
		SM9err(SM9_F_SM9_DO_SIGN_TYPE1CURVE,
			ERR_R_PASSED_NULL_PARAMETER);
		return NULL;
	}
	if (dgstlen > EVP_MAX_MD_SIZE) {
		SM9err(SM9_F_SM9_DO_SIGN_TYPE1CURVE,
			SM9_R_INVALID_DIGEST);
		return NULL;
	}

	/* BN_CTX */
	if (!(bn_ctx = BN_CTX_new())) {
		SM9err(SM9_F_SM9_DO_SIGN_TYPE1CURVE,
			ERR_R_MALLOC_FAILURE);
		goto end;
	}
	BN_CTX_start(bn_ctx);

	/* EC_GROUP */
	if (!(group = EC_GROUP_new_type1curve_ex(mpk->p,
		mpk->a, mpk->b, mpk->pointP1->data, mpk->pointP1->length,
		mpk->order, mpk->cofactor, bn_ctx))) {
		SM9err(SM9_F_SM9_DO_SIGN_TYPE1CURVE, SM9_R_INVALID_TYPE1CURVE);
		goto end;
	}

	/* malloc */
	ret = SM9Signature_new();
	point = EC_POINT_new(group);
	r = BN_CTX_get(bn_ctx);
	l = BN_CTX_get(bn_ctx);

	if (!ret || !point || !r || !l) {
		SM9err(SM9_F_SM9_DO_SIGN_TYPE1CURVE, ERR_R_MALLOC_FAILURE);
		goto end;
	}

	/* md = mpk->hashfcn */
	if (!(md = EVP_get_digestbyobj(mpk->hashfcn))) {
		SM9err(SM9_F_SM9_DO_SIGN_TYPE1CURVE, SM9_R_INVALID_MD);
		goto end;
	}

	do {
		/* rand r in [1, mpk->order - 1] */
		do {
			if (!BN_rand_range(r, mpk->order)) {
				SM9err(SM9_F_SM9_DO_SIGN_TYPE1CURVE, ERR_R_BN_LIB);
				goto end;
			}
		} while (BN_is_zero(r));

		/* get w = mpk->g = e(mpk->pointP1, mpk->pointPpub) */
		if (!BN_bn2gfp2(mpk->g1, w, mpk->p, bn_ctx)) {
			SM9err(SM9_F_SM9_DO_SIGN_TYPE1CURVE, ERR_R_BN_LIB);
			goto end;
		}

		/* w = w^r = (mpk->g)^r in F_p^2 */
		if (!BN_GFP2_exp(w, w, r, mpk->p, bn_ctx)) {
			SM9err(SM9_F_SM9_DO_SIGN_TYPE1CURVE, ERR_R_BN_LIB);
			goto end;
		}

		/* prepare w buf and canonical(w, order=0) */
		if (!BN_GFP2_canonical(w, NULL, &size, 0, mpk->p, bn_ctx)) {
			SM9err(SM9_F_SM9_DO_SIGN_TYPE1CURVE, ERR_R_BN_LIB);
			goto end;
		}
		if (!(buf = OPENSSL_malloc(size))) {
			SM9err(SM9_F_SM9_DO_SIGN_TYPE1CURVE, ERR_R_MALLOC_FAILURE);
			goto end;
		}
		if (!BN_GFP2_canonical(w, buf, &size, 0, mpk->p, bn_ctx)) {
			SM9err(SM9_F_SM9_DO_SIGN_TYPE1CURVE, ERR_R_BN_LIB);
			goto end;
		}

		/* ret->h = H2(H(m)||w) in range defined by mpk->order */
		if (!SM9_hash2(md, &ret->h, dgst, dgstlen, buf, size, mpk->order, bn_ctx)) {
			SM9err(SM9_F_SM9_DO_SIGN_TYPE1CURVE, ERR_R_SM9_LIB);
			goto end;
		}

		/* l = (r - ret->h) (mod mpk->order) */
		if (!BN_mod_sub(l, r, ret->h, mpk->order, bn_ctx)) {
			SM9err(SM9_F_SM9_DO_SIGN_TYPE1CURVE, ERR_R_BN_LIB);
			goto end;
		}

		/* if l == 0, re-generate r */
	} while (BN_is_zero(l));

	/* point = sk->prointPoint */
	if (!EC_POINT_oct2point(group, point,
		sk->privatePoint->data, sk->privatePoint->length, bn_ctx)) {
		SM9err(SM9_F_SM9_DO_SIGN_TYPE1CURVE, ERR_R_EC_LIB);
		goto end;
	}

	/* sig->pointS = sk->privatePoint * l */
	if (!EC_POINT_mul(group, point, NULL, point, l, bn_ctx)) {
		SM9err(SM9_F_SM9_DO_SIGN_TYPE1CURVE, ERR_R_EC_LIB);
		goto end;
	}
	if (!(size = EC_POINT_point2oct(group, point, point_form,
		NULL, 0, bn_ctx))) {
		SM9err(SM9_F_SM9_DO_SIGN_TYPE1CURVE, ERR_R_EC_LIB);
		goto end;
	}
	if (!ASN1_OCTET_STRING_set(ret->pointS, NULL, size)) {
		SM9err(SM9_F_SM9_DO_SIGN_TYPE1CURVE, ERR_R_EC_LIB);
		goto end;
	}
	if (!EC_POINT_point2oct(group, point, point_form,
		ret->pointS->data, ret->pointS->length, bn_ctx)) {
		goto end;
	}

	e = 0;

end:
	if (e && ret) {
		SM9Signature_free(ret);
		ret = NULL;
	}
	if (bn_ctx) {
		BN_CTX_end(bn_ctx);
	}
	BN_CTX_free(bn_ctx);
	EC_GROUP_free(group);
	EC_POINT_free(point);
	BN_GFP2_free(w);
	OPENSSL_free(buf);
	return NULL;
}
예제 #23
0
파일: cpk_lib.c 프로젝트: LiTianjue/GmSSL
static int extract_ec_params(CPK_MASTER_SECRET *master, CPK_PUBLIC_PARAMS *param)
{
	int ret = 0;
	EC_KEY *ec_key = NULL;
	const EC_GROUP *ec_group;
	BIGNUM *bn = BN_new();
	BIGNUM *order = BN_new();
	BN_CTX *ctx = BN_CTX_new();
	EC_POINT *pt = NULL;
	int i, bn_size, pt_size, num_factors;
	const unsigned char *bn_ptr;
	unsigned char *pt_ptr;
	
	if (!bn || !order || !ctx) {
		goto err;
	}
	
	if (!(ec_key = X509_ALGOR_get1_EC_KEY(master->pkey_algor))) {
		goto err;
	}
	ec_group = EC_KEY_get0_group(ec_key);
	if (!(EC_GROUP_get_order(ec_group, order, ctx))) {
		goto err;
	}
	bn_size = BN_num_bytes(order);
	pt_size = bn_size + 1;
	
	if ((num_factors = CPK_MAP_num_factors(master->map_algor)) <= 0) {
		goto err;
	}
	if (M_ASN1_STRING_length(master->secret_factors) != bn_size * num_factors) {
		goto err;
	}
	if (!ASN1_STRING_set(param->public_factors, NULL, pt_size * num_factors)) {
		goto err;
	}
	
	bn_ptr = M_ASN1_STRING_data(master->secret_factors);
	pt_ptr = M_ASN1_STRING_data(param->public_factors);
	memset(pt_ptr, 0, M_ASN1_STRING_length(param->public_factors));
	
	if (!(pt = EC_POINT_new(ec_group))) {
		goto err;			
	}
	for (i = 0; i < num_factors; i++) {
		if (!BN_bin2bn(bn_ptr, bn_size, bn)) {
			goto err;
		}
		if (BN_is_zero(bn) || BN_cmp(bn, order) >= 0) {
			goto err;
		}
		if (!EC_POINT_mul(ec_group, pt, bn, NULL, NULL, ctx)) {
			goto err;
		}
		
		if (!EC_POINT_point2oct(ec_group, pt, 
			POINT_CONVERSION_COMPRESSED, pt_ptr, pt_size, ctx)) {
			goto err;
		}
		bn_ptr += bn_size;
		pt_ptr += pt_size;
	}
	
	ret = 1;
err:	
	if (ec_key) EC_KEY_free(ec_key);
	if (bn) BN_free(bn);
	if (order) BN_free(order);
	if (ctx) BN_CTX_free(ctx);
	if (pt) EC_POINT_free(pt);
	return ret;
}
예제 #24
0
int generateRingSignature(data_chunk &keyImage, uint256 &txnHash, int nRingSize, int nSecretOffset, ec_secret secret, const uint8_t *pPubkeys, uint8_t *pSigc, uint8_t *pSigr)
{
    if (fDebugRingSig)
        LogPrintf("%s: Ring size %d.\n", __func__, nRingSize);

    int rv = 0;
    int nBytes;

    BN_CTX_start(bnCtx);

    BIGNUM   *bnKS  = BN_CTX_get(bnCtx);
    BIGNUM   *bnK1  = BN_CTX_get(bnCtx);
    BIGNUM   *bnK2  = BN_CTX_get(bnCtx);
    BIGNUM   *bnT   = BN_CTX_get(bnCtx);
    BIGNUM   *bnH   = BN_CTX_get(bnCtx);
    BIGNUM   *bnSum = BN_CTX_get(bnCtx);
    EC_POINT *ptT1  = NULL;
    EC_POINT *ptT2  = NULL;
    EC_POINT *ptT3  = NULL;
    EC_POINT *ptPk  = NULL;
    EC_POINT *ptKi  = NULL;
    EC_POINT *ptL   = NULL;
    EC_POINT *ptR   = NULL;

    uint8_t tempData[66]; // hold raw point data to hash
    uint256 commitHash;
    ec_secret scData1, scData2;

    CHashWriter ssCommitHash(SER_GETHASH, PROTOCOL_VERSION);

    ssCommitHash << txnHash;

    // zero signature
    memset(pSigc, 0, EC_SECRET_SIZE * nRingSize);
    memset(pSigr, 0, EC_SECRET_SIZE * nRingSize);


    // ks = random 256 bit int mod P
    if (GenerateRandomSecret(scData1)
    && (rv = errorN(1, "%s: GenerateRandomSecret failed.", __func__)))
        goto End;

    if (!bnKS || !(BN_bin2bn(&scData1.e[0], EC_SECRET_SIZE, bnKS)))
    {
        LogPrintf("%s: BN_bin2bn failed.\n", __func__);
        rv = 1; goto End;
    };

    // zero sum
    if (!bnSum || !(BN_zero(bnSum)))
    {
        LogPrintf("%s: BN_zero failed.\n", __func__);
        rv = 1; goto End;
    };

    if (   !(ptT1 = EC_POINT_new(ecGrp))
        || !(ptT2 = EC_POINT_new(ecGrp))
        || !(ptT3 = EC_POINT_new(ecGrp))
        || !(ptPk = EC_POINT_new(ecGrp))
        || !(ptKi = EC_POINT_new(ecGrp))
        || !(ptL  = EC_POINT_new(ecGrp))
        || !(ptR  = EC_POINT_new(ecGrp)))
    {
        LogPrintf("%s: EC_POINT_new failed.\n", __func__);
        rv = 1; goto End;
    };

    // get keyimage as point
    if (!(bnT = BN_bin2bn(&keyImage[0], EC_COMPRESSED_SIZE, bnT))
        || !(ptKi) || !(ptKi = EC_POINT_bn2point(ecGrp, bnT, ptKi, bnCtx)))
    {
        LogPrintf("%s: extract ptKi failed.\n", __func__);
        rv = 1; goto End;
    };

    for (int i = 0; i < nRingSize; ++i)
    {
        if (i == nSecretOffset)
        {
            // k = random 256 bit int mod P
            // L = k * G
            // R = k * HashToEC(PKi)

            if (!EC_POINT_mul(ecGrp, ptL, bnKS, NULL, NULL, bnCtx))
            {
                LogPrintf("%s: EC_POINT_mul failed.\n", __func__);
                rv = 1; goto End;
            };

            if (hashToEC(&pPubkeys[i * EC_COMPRESSED_SIZE], EC_COMPRESSED_SIZE, bnT, ptT1) != 0)
            {
                LogPrintf("%s: hashToEC failed.\n", __func__);
                rv = 1; goto End;
            };

            if (!EC_POINT_mul(ecGrp, ptR, NULL, ptT1, bnKS, bnCtx))
            {
                LogPrintf("%s: EC_POINT_mul failed.\n", __func__);
                rv = 1; goto End;
            };

        } else
        {
            // k1 = random 256 bit int mod P
            // k2 = random 256 bit int mod P
            // Li = k1 * Pi + k2 * G
            // Ri = k1 * I + k2 * Hp(Pi)
            // ci = k1
            // ri = k2

            if (GenerateRandomSecret(scData1) != 0
                || !bnK1 || !(BN_bin2bn(&scData1.e[0], EC_SECRET_SIZE, bnK1))
                || GenerateRandomSecret(scData2) != 0
                || !bnK2 || !(BN_bin2bn(&scData2.e[0], EC_SECRET_SIZE, bnK2)))
            {
                LogPrintf("%s: k1 and k2 failed.\n", __func__);
                rv = 1; goto End;
            };

            // get Pk i as point
            if (!(bnT = BN_bin2bn(&pPubkeys[i * EC_COMPRESSED_SIZE], EC_COMPRESSED_SIZE, bnT))
                || !(ptPk) || !(ptPk = EC_POINT_bn2point(ecGrp, bnT, ptPk, bnCtx)))
            {
                LogPrintf("%s: extract ptPk failed.\n", __func__);
                rv = 1; goto End;
            };

            // ptT1 = k1 * Pi
            if (!EC_POINT_mul(ecGrp, ptT1, NULL, ptPk, bnK1, bnCtx))
            {
                LogPrintf("%s: EC_POINT_mul failed.\n", __func__);
                rv = 1; goto End;
            };

            // ptT2 = k2 * G
            if (!EC_POINT_mul(ecGrp, ptT2, bnK2, NULL, NULL, bnCtx))
            {
                LogPrintf("%s: EC_POINT_mul failed.\n", __func__);
                rv = 1; goto End;
            };

            // ptL = ptT1 + ptT2
            if (!EC_POINT_add(ecGrp, ptL, ptT1, ptT2, bnCtx))
            {
                LogPrintf("%s: EC_POINT_add failed.\n", __func__);
                rv = 1; goto End;
            };

            // ptT3 = Hp(Pi)
            if (hashToEC(&pPubkeys[i * EC_COMPRESSED_SIZE], EC_COMPRESSED_SIZE, bnT, ptT3) != 0)
            {
                LogPrintf("%s: hashToEC failed.\n", __func__);
                rv = 1; goto End;
            };

            // ptT1 = k1 * I
            if (!EC_POINT_mul(ecGrp, ptT1, NULL, ptKi, bnK1, bnCtx))
            {
                LogPrintf("%s: EC_POINT_mul failed.\n", __func__);
                rv = 1; goto End;
            };

            // ptT2 = k2 * ptT3
            if (!EC_POINT_mul(ecGrp, ptT2, NULL, ptT3, bnK2, bnCtx))
            {
                LogPrintf("%s: EC_POINT_mul failed.\n", __func__);
                rv = 1; goto End;
            };

            // ptR = ptT1 + ptT2
            if (!EC_POINT_add(ecGrp, ptR, ptT1, ptT2, bnCtx))
            {
                LogPrintf("%s: EC_POINT_add failed.\n", __func__);
                rv = 1; goto End;
            };

            memcpy(&pSigc[i * EC_SECRET_SIZE], &scData1.e[0], EC_SECRET_SIZE);
            memcpy(&pSigr[i * EC_SECRET_SIZE], &scData2.e[0], EC_SECRET_SIZE);

            // sum = (sum + sigc) % N , sigc == bnK1
            if (!BN_mod_add(bnSum, bnSum, bnK1, bnOrder, bnCtx))
            {
                LogPrintf("%s: BN_mod_add failed.\n", __func__);
                rv = 1; goto End;
            };
        };

        // -- add ptL and ptR to hash
        if (   !(EC_POINT_point2oct(ecGrp, ptL, POINT_CONVERSION_COMPRESSED, &tempData[0],  33, bnCtx) == (int) EC_COMPRESSED_SIZE)
            || !(EC_POINT_point2oct(ecGrp, ptR, POINT_CONVERSION_COMPRESSED, &tempData[33], 33, bnCtx) == (int) EC_COMPRESSED_SIZE))
        {
            LogPrintf("%s: extract ptL and ptR failed.\n", __func__);
            rv = 1; goto End;
        };

        ssCommitHash.write((const char*)&tempData[0], 66);
    };

    commitHash = ssCommitHash.GetHash();

    if (!(bnH) || !(bnH = BN_bin2bn(commitHash.begin(), EC_SECRET_SIZE, bnH)))
    {
        LogPrintf("%s: commitHash -> bnH failed.\n", __func__);
        rv = 1; goto End;
    };


    if (!BN_mod(bnH, bnH, bnOrder, bnCtx)) // this is necessary
    {
        LogPrintf("%s: BN_mod failed.\n", __func__);
        rv = 1; goto End;
    };

    // sigc[nSecretOffset] = (bnH - bnSum) % N
    if (!BN_mod_sub(bnT, bnH, bnSum, bnOrder, bnCtx))
    {
        LogPrintf("%s: BN_mod_sub failed.\n", __func__);
        rv = 1; goto End;
    };

    if ((nBytes = BN_num_bytes(bnT)) > (int)EC_SECRET_SIZE
        || BN_bn2bin(bnT, &pSigc[nSecretOffset * EC_SECRET_SIZE + (EC_SECRET_SIZE-nBytes)]) != nBytes)
    {
        LogPrintf("%s: bnT -> pSigc failed.\n", __func__);
        rv = 1; goto End;
    };

    // sigr[nSecretOffset] = (bnKS - sigc[nSecretOffset] * bnSecret) % N
    // reuse bnH for bnSecret
    if (!bnH || !(BN_bin2bn(&secret.e[0], EC_SECRET_SIZE, bnH)))
    {
        LogPrintf("%s: BN_bin2bn failed.\n", __func__);
        rv = 1; goto End;
    };

    // bnT = sigc[nSecretOffset] * bnSecret , TODO: mod N ?
    if (!BN_mul(bnT, bnT, bnH, bnCtx))
    {
        LogPrintf("%s: BN_mul failed.\n", __func__);
        rv = 1; goto End;
    };

    if (!BN_mod_sub(bnT, bnKS, bnT, bnOrder, bnCtx))
    {
        LogPrintf("%s: BN_mod_sub failed.\n", __func__);
        rv = 1; goto End;
    };

    if ((nBytes = BN_num_bytes(bnT)) > (int) EC_SECRET_SIZE
        || BN_bn2bin(bnT, &pSigr[nSecretOffset * EC_SECRET_SIZE + (EC_SECRET_SIZE-nBytes)]) != nBytes)
    {
        LogPrintf("%s: bnT -> pSigr failed.\n", __func__);
        rv = 1; goto End;
    };

    End:
    EC_POINT_free(ptT1);
    EC_POINT_free(ptT2);
    EC_POINT_free(ptT3);
    EC_POINT_free(ptPk);
    EC_POINT_free(ptKi);
    EC_POINT_free(ptL);
    EC_POINT_free(ptR);

    BN_CTX_end(bnCtx);

    return rv;
};
예제 #25
0
파일: ecdh.c 프로젝트: caidongyun/libssh
int ssh_server_ecdh_init(ssh_session session, ssh_buffer packet){
    /* ECDH keys */
    ssh_string q_c_string;
    ssh_string q_s_string;
    EC_KEY *ecdh_key;
    const EC_GROUP *group;
    const EC_POINT *ecdh_pubkey;
    bignum_CTX ctx;
    /* SSH host keys (rsa,dsa,ecdsa) */
    ssh_key privkey;
    ssh_string sig_blob = NULL;
    int len;
    int rc;

    /* Extract the client pubkey from the init packet */
    q_c_string = ssh_buffer_get_ssh_string(packet);
    if (q_c_string == NULL) {
        ssh_set_error(session,SSH_FATAL, "No Q_C ECC point in packet");
        return SSH_ERROR;
    }
    session->next_crypto->ecdh_client_pubkey = q_c_string;

    /* Build server's keypair */

    ctx = BN_CTX_new();
    ecdh_key = EC_KEY_new_by_curve_name(NISTP256);
    if (ecdh_key == NULL) {
        ssh_set_error_oom(session);
        BN_CTX_free(ctx);
        return SSH_ERROR;
    }

    group = EC_KEY_get0_group(ecdh_key);
    EC_KEY_generate_key(ecdh_key);

    ecdh_pubkey = EC_KEY_get0_public_key(ecdh_key);
    len = EC_POINT_point2oct(group,
                             ecdh_pubkey,
                             POINT_CONVERSION_UNCOMPRESSED,
                             NULL,
                             0,
                             ctx);

    q_s_string = ssh_string_new(len);
    if (q_s_string == NULL) {
        EC_KEY_free(ecdh_key);
        BN_CTX_free(ctx);
        return SSH_ERROR;
    }

    EC_POINT_point2oct(group,
                       ecdh_pubkey,
                       POINT_CONVERSION_UNCOMPRESSED,
                       ssh_string_data(q_s_string),
                       len,
                       ctx);
    BN_CTX_free(ctx);

    session->next_crypto->ecdh_privkey = ecdh_key;
    session->next_crypto->ecdh_server_pubkey = q_s_string;

    /* build k and session_id */
    rc = ecdh_build_k(session);
    if (rc < 0) {
        ssh_set_error(session, SSH_FATAL, "Cannot build k number");
        return SSH_ERROR;
    }

    /* privkey is not allocated */
    rc = ssh_get_key_params(session, &privkey);
    if (rc == SSH_ERROR) {
        return SSH_ERROR;
    }

    rc = ssh_make_sessionid(session);
    if (rc != SSH_OK) {
        ssh_set_error(session, SSH_FATAL, "Could not create a session id");
        return SSH_ERROR;
    }

    sig_blob = ssh_srv_pki_do_sign_sessionid(session, privkey);
    if (sig_blob == NULL) {
        ssh_set_error(session, SSH_FATAL, "Could not sign the session id");
        return SSH_ERROR;
    }

    rc = ssh_buffer_pack(session->out_buffer,
                         "bSSS",
                         SSH2_MSG_KEXDH_REPLY,
                         session->next_crypto->server_pubkey, /* host's pubkey */
                         q_s_string, /* ecdh public key */
                         sig_blob); /* signature blob */

    ssh_string_free(sig_blob);

    if (rc != SSH_OK) {
        ssh_set_error_oom(session);
        return SSH_ERROR;
    }

    SSH_LOG(SSH_LOG_PROTOCOL, "SSH_MSG_KEXDH_REPLY sent");
    rc = ssh_packet_send(session);
    if (rc == SSH_ERROR) {
        return SSH_ERROR;
    }

    /* Send the MSG_NEWKEYS */
    rc = ssh_buffer_add_u8(session->out_buffer, SSH2_MSG_NEWKEYS);
    if (rc < 0) {
        return SSH_ERROR;;
    }

    session->dh_handshake_state = DH_STATE_NEWKEYS_SENT;
    rc = ssh_packet_send(session);
    SSH_LOG(SSH_LOG_PROTOCOL, "SSH_MSG_NEWKEYS sent");

    return rc;
}
예제 #26
0
파일: sbag.c 프로젝트: runeksvendsen/sbag
/* creates a bitcoin address+private key from the SHA256
 *  hash of string. converts to base58 if base58 is 'true'
 *  returns 1 if successful, 0 if not*/
int create_address_from_string(const unsigned char *string,
		unsigned char *address,
		unsigned char *priv_key,
		EC_GROUP *precompgroup,
		bool base58,
		bool debug) {

    u_int8_t * hash = malloc(SHA256_DIGEST_LENGTH);
    BIGNUM * n = BN_new();

    //first we hash the string
    SHA256 (string, strlen(string), hash);
	//then we convert the hash to the BIGNUM n
    n = BN_bin2bn(hash, SHA256_DIGEST_LENGTH, n);

    BIGNUM * order = BN_new();
    BIGNUM * nmodorder = BN_new();
	BN_CTX *bnctx;
	bnctx = BN_CTX_new();

    //then we create a new EC group with the curve secp256k1
	EC_GROUP * pgroup;
	pgroup = EC_GROUP_new_by_curve_name(NID_secp256k1);

    if (!pgroup) {
    	printf("ERROR: Couldn't get new group\n");
    	return 0;
    }

    //now we need to get the order of the group, and make sure that
    //the number we use for the private key is less than or equal to
    //the group order by using "nmodorder = n % order"
    EC_GROUP_get_order(pgroup, order, NULL);
    BN_mod(nmodorder, n, order, bnctx);

    if (BN_is_zero(nmodorder)) {
    	printf("ERROR: SHA256(string) % order == 0. Pick another string.\n");
    	return 0;
    }

    if (debug)
    	printf ("Secret number: %s\n", BN_bn2dec(nmodorder));

    //now we create a new EC point, ecpoint, and place in it the secp256k1
    //generator point multiplied by nmodorder. this newly created
    //point is the public key

    EC_POINT * ecpoint = EC_POINT_new(pgroup);

	if (!EC_POINT_mul(pgroup, ecpoint, nmodorder, NULL, NULL, NULL))
	{
    	printf("ERROR: Couldn't multiply the generator point with n\n");
    	return 0;
    }


    if (debug) {
        BIGNUM *x=NULL, *y=NULL;
        x=BN_new();
        y=BN_new();

        if (!EC_POINT_get_affine_coordinates_GFp(pgroup, ecpoint, x, y, NULL)) {
        	printf("ERROR: Failed getting coordinates.");
        	//don't fail on debug fail
        	//return 0;
        }

    	printf ("Public key coordinates. x: %s, y: %s\n", BN_bn2dec(x), BN_bn2dec(y));

        BN_free(x);
        BN_free(y);
    }

    //then we need to convert the public key point to data
    //first we get the required size of the buffer in which the data is placed
    //by passing NULL as the buffer argument to EC_POINT_point2oct
    unsigned int bufsize = EC_POINT_point2oct (pgroup, ecpoint, POINT_CONVERSION_UNCOMPRESSED, NULL, 0, NULL);
    u_int8_t * buffer = malloc(bufsize);
    //then we place the data in the buffer
    int len = EC_POINT_point2oct (pgroup, ecpoint, POINT_CONVERSION_UNCOMPRESSED, buffer, bufsize, NULL);
    if (len == 0) {
    	printf("ERROR: Couldn't convert point to octet string.");
    	return 0;
    }

    if (debug) {
    	printf("DER encoded public key: ");
    	print_hex(buffer, len);
    }

    //next we need to hash the public key data. first with SHA256, then with RIPEMD160
    SHA256(buffer, len, hash);
    if (debug) {
    	printf("SHA256 hash of public key: ");
    	print_hex(hash, SHA256_DIGEST_LENGTH);
    }

    u_int8_t * ripemd = malloc(RIPEMD160_DIGEST_LENGTH+1+4);
    RIPEMD160(hash, SHA256_DIGEST_LENGTH, ripemd);

    if (debug) {
    	printf("RIPEMD160 hash of SHA256 hash: ");
    	print_hex(ripemd, RIPEMD160_DIGEST_LENGTH);
    }

    if (base58 == true) {
		//here we add the version byte to the beginning of the public key and four checksum
		//bytes at the end
		prepare_for_address(ripemd, RIPEMD160_DIGEST_LENGTH, 0);

		if (debug) {
			printf("Address in hex with version byte and checksum: ");
			print_hex(ripemd, RIPEMD160_DIGEST_LENGTH+1+4);
		}

		//and we convert the resulting data to base58
		base58_encode(ripemd, RIPEMD160_DIGEST_LENGTH+1+4, address);
    } else {
    	memcpy(address, ripemd, RIPEMD160_DIGEST_LENGTH);
    }

    //now we need to convert the big number nmodorder (private key) to data
    int buflen = BN_num_bytes(nmodorder);
    u_int8_t * buf = malloc(buflen+1+4);
    int datalen;

    //nmodorder is converted to binary representation
    datalen = BN_bn2bin(nmodorder, buf);

    if (debug) {
    	printf("Private key: ");
    	print_hex(buf, datalen);
    }

    if (base58 == true) {
		//and we add version byte and four byte checksum to the data
		prepare_for_address(buf, datalen, 0x80);

        //and convert this to base58
        base58_encode(buf, datalen+5, priv_key);
    } else {
    	memcpy(priv_key, buf, datalen+5);
    }

    free(hash);
    free(buffer);
    free(ripemd);
    free(buf);
    BN_free(n);
    BN_free(order);
    BN_free(nmodorder);
    if (precompgroup == NULL)
    	EC_GROUP_free(pgroup);
    EC_POINT_free(ecpoint);
    BN_CTX_free(bnctx);

    return 1;
}
void *
vg_thread_loop(void *arg)
{
	unsigned char hash_buf[128];
	unsigned char *eckey_buf;
	unsigned char hash1[32];

	int i, c, len, output_interval;
	int hash_len;

	const BN_ULONG rekey_max = 10000000;
	BN_ULONG npoints, rekey_at, nbatch;

	vg_context_t *vcp = (vg_context_t *) arg;
	EC_KEY *pkey = NULL;
	const EC_GROUP *pgroup;
	const EC_POINT *pgen;
	const int ptarraysize = 256;
	EC_POINT *ppnt[ptarraysize];
	EC_POINT *pbatchinc;

	vg_test_func_t test_func = vcp->vc_test;
	vg_exec_context_t ctx;
	vg_exec_context_t *vxcp;

	struct timeval tvstart;


	memset(&ctx, 0, sizeof(ctx));
	vxcp = &ctx;

	vg_exec_context_init(vcp, &ctx);

	pkey = vxcp->vxc_key;
	pgroup = EC_KEY_get0_group(pkey);
	pgen = EC_GROUP_get0_generator(pgroup);

	for (i = 0; i < ptarraysize; i++) {
		ppnt[i] = EC_POINT_new(pgroup);
		if (!ppnt[i]) {
			fprintf(stderr, "ERROR: out of memory?\n");
			exit(1);
		}
	}
	pbatchinc = EC_POINT_new(pgroup);
	if (!pbatchinc) {
		fprintf(stderr, "ERROR: out of memory?\n");
		exit(1);
	}

	BN_set_word(&vxcp->vxc_bntmp, ptarraysize);
	EC_POINT_mul(pgroup, pbatchinc, &vxcp->vxc_bntmp, NULL, NULL,
		     vxcp->vxc_bnctx);
	EC_POINT_make_affine(pgroup, pbatchinc, vxcp->vxc_bnctx);

	npoints = 0;
	rekey_at = 0;
	nbatch = 0;
	vxcp->vxc_key = pkey;
	vxcp->vxc_binres[0] = vcp->vc_addrtype;
	c = 0;
	output_interval = 1000;
	gettimeofday(&tvstart, NULL);

	if (vcp->vc_format == VCF_SCRIPT) {
		hash_buf[ 0] = 0x51;  // OP_1
		hash_buf[ 1] = 0x41;  // pubkey length
		// gap for pubkey
		hash_buf[67] = 0x51;  // OP_1
		hash_buf[68] = 0xae;  // OP_CHECKMULTISIG
		eckey_buf = hash_buf + 2;
		hash_len = 69;

	} else {
		eckey_buf = hash_buf;
		hash_len = 65;
	}

	while (!vcp->vc_halt) {
		if (++npoints >= rekey_at) {
			vg_exec_context_upgrade_lock(vxcp);
			/* Generate a new random private key */
			EC_KEY_generate_key(pkey);
			npoints = 0;

			/* Determine rekey interval */
			EC_GROUP_get_order(pgroup, &vxcp->vxc_bntmp,
					   vxcp->vxc_bnctx);
			BN_sub(&vxcp->vxc_bntmp2,
			       &vxcp->vxc_bntmp,
			       EC_KEY_get0_private_key(pkey));
			rekey_at = BN_get_word(&vxcp->vxc_bntmp2);
			if ((rekey_at == BN_MASK2) || (rekey_at > rekey_max))
				rekey_at = rekey_max;
			assert(rekey_at > 0);

			EC_POINT_copy(ppnt[0], EC_KEY_get0_public_key(pkey));
			vg_exec_context_downgrade_lock(vxcp);

			npoints++;
			vxcp->vxc_delta = 0;

			if (vcp->vc_pubkey_base)
				EC_POINT_add(pgroup,
					     ppnt[0],
					     ppnt[0],
					     vcp->vc_pubkey_base,
					     vxcp->vxc_bnctx);

			for (nbatch = 1;
			     (nbatch < ptarraysize) && (npoints < rekey_at);
			     nbatch++, npoints++) {
				EC_POINT_add(pgroup,
					     ppnt[nbatch],
					     ppnt[nbatch-1],
					     pgen, vxcp->vxc_bnctx);
			}

		} else {
			/*
			 * Common case
			 *
			 * EC_POINT_add() can skip a few multiplies if
			 * one or both inputs are affine (Z_is_one).
			 * This is the case for every point in ppnt, as
			 * well as pbatchinc.
			 */
			assert(nbatch == ptarraysize);
			for (nbatch = 0;
			     (nbatch < ptarraysize) && (npoints < rekey_at);
			     nbatch++, npoints++) {
				EC_POINT_add(pgroup,
					     ppnt[nbatch],
					     ppnt[nbatch],
					     pbatchinc,
					     vxcp->vxc_bnctx);
			}
		}

		/*
		 * The single most expensive operation performed in this
		 * loop is modular inversion of ppnt->Z.  There is an
		 * algorithm implemented in OpenSSL to do batched inversion
		 * that only does one actual BN_mod_inverse(), and saves
		 * a _lot_ of time.
		 *
		 * To take advantage of this, we batch up a few points,
		 * and feed them to EC_POINTs_make_affine() below.
		 */

		EC_POINTs_make_affine(pgroup, nbatch, ppnt, vxcp->vxc_bnctx);

		for (i = 0; i < nbatch; i++, vxcp->vxc_delta++) {
			/* Hash the public key */
			len = EC_POINT_point2oct(pgroup, ppnt[i],
						 POINT_CONVERSION_UNCOMPRESSED,
						 eckey_buf,
						 65,
						 vxcp->vxc_bnctx);
			assert(len == 65);

			SHA256(hash_buf, hash_len, hash1);
			RIPEMD160(hash1, sizeof(hash1), &vxcp->vxc_binres[1]);

			switch (test_func(vxcp)) {
			case 1:
				npoints = 0;
				rekey_at = 0;
				i = nbatch;
				break;
			case 2:
				goto out;
			default:
				break;
			}
		}

		c += i;
		if (c >= output_interval) {
			output_interval = vg_output_timing(vcp, c, &tvstart);
			if (output_interval > 250000)
				output_interval = 250000;
			c = 0;
		}

		vg_exec_context_yield(vxcp);
	}

out:
	vg_exec_context_del(&ctx);
	vg_context_thread_exit(vcp);

	for (i = 0; i < ptarraysize; i++)
		if (ppnt[i])
			EC_POINT_free(ppnt[i]);
	if (pbatchinc)
		EC_POINT_free(pbatchinc);
	return NULL;
}
예제 #28
0
jbyteArray
Java_ru_ivanovpv_gorets_psm_nativelib_NativeLib_getECSharedKey( JNIEnv* env, jobject thiz,
                                                    jbyteArray privKey, jbyteArray pubKey, jint ecGroup)
{
    EC_GROUP * ec_group = NULL;
    EC_POINT * ec_pub = NULL;
    EC_POINT * ec_res = NULL;
    BN_CTX * bn_ctx = NULL;
    BIGNUM * bn_priv = NULL;
    jbyte * privKeyArr = NULL;
    jbyte * pubKeyArr = NULL;
    jbyteArray resKey = NULL;
    jbyte resKeyArr[MAX_EC_KEY_SIZE];
    jint privKeySize = 0;
    jint pubKeySize = 0;
    size_t resKeySize = 0;

    if (  ((ecGroup != 1) && (ecGroup != 2) && (ecGroup != 3)) || (privKey == NULL) || (pubKey == NULL) )
    {
        goto cleanup;
    }

    privKeySize = (*env)->GetArrayLength(env, privKey);
    pubKeySize = (*env)->GetArrayLength(env, pubKey);
    if ( (privKeySize <= 0) || (pubKeySize <= 0) )
    {
        goto cleanup;
    }

    switch(ecGroup)
    {
    case 1:
        if ( ( privKeySize < (112/8) ) || ( pubKeySize < (112/8+1) ) )
            goto cleanup;
        ec_group = EC_GROUP_new_by_curve_name(NID_secp112r1);
        break;
    case 2:
        if ( ( privKeySize < (256/8) ) || ( pubKeySize < (256/8+1) ) )
            goto cleanup;
        ec_group = EC_GROUP_new_by_curve_name(NID_secp256k1);
        break;
    case 3:
        if ( ( privKeySize < (384/8) ) || ( pubKeySize < (384/8+1) ) )
            goto cleanup;
        ec_group = EC_GROUP_new_by_curve_name(NID_secp384r1);
        break;
    default:
        goto cleanup;
    }

    if (!ec_group)
    {
        goto cleanup;
    }

    if( (bn_priv = BN_new()) == NULL)
    {
        goto cleanup;
    }

    if( (privKeyArr = (*env)->GetByteArrayElements(env, privKey, NULL)) == NULL )
    {
        goto cleanup;
    }

    if ( BN_bin2bn((const unsigned char *)privKeyArr, (int) privKeySize, bn_priv) == NULL )
    {
        goto cleanup;
    }

    if ( (bn_ctx = BN_CTX_new()) == NULL )
    {
        goto cleanup;
    }

    if ( (ec_pub = EC_POINT_new(ec_group)) == NULL)
    {
        goto cleanup;
    }

    if( (pubKeyArr = (*env)->GetByteArrayElements(env, pubKey, NULL)) == NULL )
    {
            goto cleanup;
    }

    if ( EC_POINT_oct2point((const EC_GROUP *) ec_group, (EC_POINT *) ec_pub,
        (unsigned char *) pubKeyArr, (size_t) pubKeySize, bn_ctx) == 0 )
    {
        goto cleanup;
    }

    if ( (ec_res = EC_POINT_new(ec_group)) == NULL)
    {
            goto cleanup;
    }


    if (!EC_POINT_mul((const EC_GROUP *) ec_group, ec_res, (const BIGNUM *)NULL, ec_pub, bn_priv, bn_ctx))
    {
        goto cleanup;
    }


    if ( (resKeySize = EC_POINT_point2oct((const EC_GROUP *) ec_group, (const EC_POINT *) ec_res,
        	POINT_CONVERSION_COMPRESSED, (unsigned char *) resKeyArr, (size_t) MAX_EC_KEY_SIZE, bn_ctx)) == 0 )
    {
        goto cleanup;
    }

    resKey  =  (*env)->NewByteArray(env, resKeySize);
    if (resKey == NULL)
    {
        goto cleanup;
    }

    (*env)->SetByteArrayRegion(env, resKey,
                0, resKeySize, (const jbyte*)resKeyArr);

    memset (resKeyArr, 0, resKeySize);


cleanup:

    if ( ec_group )
        EC_GROUP_clear_free( ec_group );

    if ( ec_pub )
        EC_POINT_clear_free( ec_pub );

    if ( ec_res )
        EC_POINT_clear_free( ec_res );

    if ( bn_priv )
        BN_clear_free( bn_priv );

    if ( privKeyArr )
        (*env)->ReleaseByteArrayElements(env, privKey, privKeyArr, JNI_ABORT);

    if ( pubKeyArr )
        (*env)->ReleaseByteArrayElements(env, pubKey, pubKeyArr, JNI_ABORT);

    return resKey;
}
예제 #29
0
파일: sm2_enc.c 프로젝트: cuiwm/GmSSL
int SM2_do_decrypt(const EVP_MD *kdf_md, const EVP_MD *mac_md,
	const SM2_CIPHERTEXT_VALUE *cv, unsigned char *out, size_t *outlen,
	EC_KEY *ec_key)
{
	int ret = 0;
	const EC_GROUP *ec_group = EC_KEY_get0_group(ec_key);
	const BIGNUM *pri_key = EC_KEY_get0_private_key(ec_key);
	KDF_FUNC kdf = KDF_get_x9_63(kdf_md);
	EC_POINT *point = NULL;
	BIGNUM *n = NULL;
	BIGNUM *h = NULL;
	BN_CTX *bn_ctx = NULL;
	EVP_MD_CTX *md_ctx = NULL;
	unsigned char buf[(OPENSSL_ECC_MAX_FIELD_BITS + 7)/4 + 1];
	unsigned char mac[EVP_MAX_MD_SIZE];
	unsigned int maclen;
	int nbytes;
	size_t size;
	int i;

	OPENSSL_assert(kdf_md && mac_md && cv && ec_key);
	OPENSSL_assert(cv->ephem_point && cv->ciphertext);

	if (!ec_group || !pri_key) {
		goto end;
	}
	if (!kdf) {
		goto end;
	}

	if (!out) {
		*outlen = cv->ciphertext_size;
		return 1;
	}
	if (*outlen < cv->ciphertext_size) {
		goto end;
	}

	/* init vars */
	point = EC_POINT_new(ec_group);
	n = BN_new();
	h = BN_new();
	bn_ctx = BN_CTX_new();
	md_ctx = EVP_MD_CTX_create();
	if (!point || !n || !h || !bn_ctx || !md_ctx) {
		goto end;
	}
	
	/* init ec domain parameters */
	if (!EC_GROUP_get_order(ec_group, n, bn_ctx)) {
		goto end;
	}
	if (!EC_GROUP_get_cofactor(ec_group, h, bn_ctx)) {
		goto end;
	}
	nbytes = (EC_GROUP_get_degree(ec_group) + 7) / 8;
	OPENSSL_assert(nbytes == BN_num_bytes(n));

#if 0
	/* check sm2 curve and md is 256 bits */
	OPENSSL_assert(nbytes == 32);
	OPENSSL_assert(EVP_MD_size(kdf_md) == 32);
	OPENSSL_assert(EVP_MD_size(mac_md) == 32);
#endif

	/* B2: check [h]C1 != O */
	if (!EC_POINT_mul(ec_group, point, NULL, cv->ephem_point, h, bn_ctx)) {
		goto end;
	}
	if (EC_POINT_is_at_infinity(ec_group, point)) {
		goto end;
	}

	/* B3: compute ECDH [d]C1 = (x2, y2) */	
	if (!EC_POINT_mul(ec_group, point, NULL, cv->ephem_point, pri_key, bn_ctx)) {
		goto end;
	}
	if (!(size = EC_POINT_point2oct(ec_group, point,
		POINT_CONVERSION_UNCOMPRESSED, buf, sizeof(buf), bn_ctx))) {
		goto end;
	}
	OPENSSL_assert(size == 1 + nbytes * 2);

	/* B4: compute t = KDF(x2 || y2, clen) */

	*outlen = cv->ciphertext_size; //FIXME: duplicated code
	kdf(buf + 1, size - 1, out, outlen);


	/* B5: compute M = C2 xor t */
	for (i = 0; i < cv->ciphertext_size; i++) {
		out[i] ^= cv->ciphertext[i];
	}
	*outlen = cv->ciphertext_size;

	/* B6: check Hash(x2 || M || y2) == C3 */
	if (!EVP_DigestInit_ex(md_ctx, mac_md, NULL)) {
		goto end;
	}
	if (!EVP_DigestUpdate(md_ctx, buf + 1, nbytes)) {
		goto end;
	}
	if (!EVP_DigestUpdate(md_ctx, out, *outlen)) {
		goto end;
	}
	if (!EVP_DigestUpdate(md_ctx, buf + 1 + nbytes, nbytes)) {
		goto end;
	}
	if (!EVP_DigestFinal_ex(md_ctx, mac, &maclen)) {
		goto end;
	}
	if (cv->mactag_size != maclen ||
		memcmp(cv->mactag, mac, maclen)) {
		goto end;
	}

	ret = 1;
end:
	if (point) EC_POINT_free(point);
	if (n) BN_free(n);	
	if (h) BN_free(h);
	if (bn_ctx) BN_CTX_free(bn_ctx);
	if (md_ctx) EVP_MD_CTX_destroy(md_ctx);

	return ret;
}
예제 #30
0
    ECPV1_KeyPair *keypair = (ECPV1_KeyPair*)obj;
    ret = EC_KEY_generate_key(keypair->eckey);
    if (ret == 0)
    {
        ret = -1;
        goto final;
    }

    const EC_GROUP *grp = EC_KEY_get0_group(keypair->eckey);
    keypair->group = grp;
    EC_GROUP_get_order(grp, keypair->group_order, bnctx);
    keypair->sk = EC_KEY_get0_private_key(keypair->eckey);
    keypair->PK = EC_KEY_get0_public_key(keypair->eckey);
    keypair->bytelen_go = BN_num_bytes(keypair->group_order);
    keypair->bytelen_point = EC_POINT_point2oct(
            grp, keypair->PK, POINT_CONVERSION_COMPRESSED, NULL, 0, bnctx);
    ret = 0;

final:
    return ret;
}


const char *ECPV1_get_name()
{
    return "ECPV-aes256cbc";
}


void *ECPV1_signsess_new(void *keyobj, int bitlen_clr, int bitlen_rec, int bitlen_red)
{