예제 #1
0
void HCI_Process(void)
{
  uint8_t data_len;
  uint8_t buffer[HCI_READ_PACKET_SIZE];
  tHciDataPacket * hciReadPacket = NULL;
  
  Disable_SPI_IRQ();
  uint8_t list_empty = list_is_empty(&hciReadPktRxQueue);        
  /* process any pending events read */
  while(list_empty == FALSE)
  {
    list_remove_head (&hciReadPktRxQueue, (tListNode **)&hciReadPacket);
    Enable_SPI_IRQ();
    HCI_Event_CB(hciReadPacket->dataBuff);
    Disable_SPI_IRQ();
    list_insert_tail(&hciReadPktPool, (tListNode *)hciReadPacket);
    list_empty = list_is_empty(&hciReadPktRxQueue);
  }
  if (readPacketListFull) {
    while(BlueNRG_DataPresent()) {
      data_len = BlueNRG_SPI_Read_All(&SpiHandle, buffer, HCI_READ_PACKET_SIZE);
      if(data_len > 0)
        HCI_Event_CB(buffer);
    }
    readPacketListFull = FALSE;
  }
  
  Enable_SPI_IRQ();    
}
예제 #2
0
int hci_send_req(struct hci_request *r, BOOL async)
{
  uint8_t *ptr;
  uint16_t opcode = htobs(cmd_opcode_pack(r->ogf, r->ocf));
  hci_event_pckt *event_pckt;
  hci_uart_pckt *hci_hdr;
  int to = DEFAULT_TIMEOUT;
  struct timer t;
  tHciDataPacket * hciReadPacket = NULL;
  tListNode hciTempQueue;
  
  list_init_head(&hciTempQueue);
  
  hci_send_cmd(r->ogf, r->ocf, r->clen, r->cparam);
  
  if(async){
    goto done;
  }
  
  /* Minimum timeout is 1. */
  if(to == 0)
    to = 1;
  
  Timer_Set(&t, to);
  
  while(1) {
    evt_cmd_complete *cc;
    evt_cmd_status *cs;
    evt_le_meta_event *me;
    int len;
      
#if ENABLE_MICRO_SLEEP    
    while(1){
      ATOMIC_SECTION_BEGIN();
      if(Timer_Expired(&t)){
        ATOMIC_SECTION_END();
        goto failed;
      }
      if(!HCI_Queue_Empty()){
        ATOMIC_SECTION_END();
        break;
      }
      Enter_Sleep_Mode();
      ATOMIC_SECTION_END();
    }
#else
    while(1){
      if(Timer_Expired(&t)){
        goto failed;
      }
      if(!HCI_Queue_Empty()){
        break;
      }
    }
#endif
    
    /* Extract packet from HCI event queue. */
    Disable_SPI_IRQ();
    list_remove_head(&hciReadPktRxQueue, (tListNode **)&hciReadPacket);    
    
    hci_hdr = (void *)hciReadPacket->dataBuff;
    if(hci_hdr->type != HCI_EVENT_PKT){
      list_insert_tail(&hciTempQueue, (tListNode *)hciReadPacket); // See comment below
      Enable_SPI_IRQ();
      continue;
    }
    
    event_pckt = (void *) (hci_hdr->data);
    
    ptr = hciReadPacket->dataBuff + (1 + HCI_EVENT_HDR_SIZE);
    len = hciReadPacket->data_len - (1 + HCI_EVENT_HDR_SIZE);
    
    switch (event_pckt->evt) {
      
    case EVT_CMD_STATUS:
      cs = (void *) ptr;
      
      if (cs->opcode != opcode)
        goto failed;
      
      if (r->event != EVT_CMD_STATUS) {
        if (cs->status) {
          goto failed;
        }
        break;
      }
      
      r->rlen = MIN(len, r->rlen);
      Osal_MemCpy(r->rparam, ptr, r->rlen);
      goto done;
      
    case EVT_CMD_COMPLETE:
      cc = (void *) ptr;
      
      if (cc->opcode != opcode)
        goto failed;
      
      ptr += EVT_CMD_COMPLETE_SIZE;
      len -= EVT_CMD_COMPLETE_SIZE;
      
      r->rlen = MIN(len, r->rlen);
      Osal_MemCpy(r->rparam, ptr, r->rlen);
      goto done;
      
    case EVT_LE_META_EVENT:
      me = (void *) ptr;
      
      if (me->subevent != r->event)
        break;
      
      len -= 1;
      r->rlen = MIN(len, r->rlen);
      Osal_MemCpy(r->rparam, me->data, r->rlen);
      goto done;
      
    case EVT_HARDWARE_ERROR:            
      goto failed;
      
    default:      
      break;
    }
    
    /* In the meantime there could be other events from the controller.
    In this case, insert the packet in a different queue. These packets will be
    inserted back in the main queue just before exiting from send_req().
    */
    list_insert_tail(&hciTempQueue, (tListNode *)hciReadPacket);
    /* Be sure there is at list one packet in the pool to process the expected event. */
    if(list_is_empty(&hciReadPktPool)){
      pListNode tmp_node;      
      list_remove_head(&hciReadPktRxQueue, &tmp_node);
      list_insert_tail(&hciReadPktPool, tmp_node);      
    }
    
    Enable_SPI_IRQ();
    
  }
  
failed: 
  move_list(&hciReadPktRxQueue, &hciTempQueue);  
  Enable_SPI_IRQ();
  return -1;
  
done:
  // Insert the packet back into the pool.
  list_insert_head(&hciReadPktPool, (tListNode *)hciReadPacket); 
  move_list(&hciReadPktRxQueue, &hciTempQueue);
  
  Enable_SPI_IRQ();
  return 0;
}
/*******************************************************************************
* @brief  Writes data from local buffer to SPI.
*
* @param  hspi     : Handle of the STM32Cube HAL SPI interface
* @param  data1    : First data buffer to be written
* @param  data2    : Second data buffer to be written
* @param  Nb_bytes1: Size of first data buffer to be written
* @param  Nb_bytes2: Size of second data buffer to be written
* @retval Number of read bytes
*
* Called by:  Hal_Write_Serial
*
*
* _All_ those routines call this using a hardcoded pointer to &SpiHandle.
* CALLERs:  aci_write_hal_config -> hci_send_cmd -> hci_write -> Hal_Write_Serial()
*           aci_gatt_init  -> hci_send_cmd -> hci_write -> Hal_Write_Serial()
*           aci_gap_init  -> hci_send_cmd -> hci_write -> Hal_Write_Serial()
*******************************************************************************/
int32_t  BlueNRG_SPI_Write (SPI_HandleTypeDef *hspi, uint8_t* data1,
                            uint8_t* data2, uint8_t Nb_bytes1, uint8_t Nb_bytes2)
{
    int32_t  result = 0;

    int32_t  spi_fix_enabled = 0;

#ifdef ENABLE_SPI_FIX
    spi_fix_enabled = 1;
#endif //ENABLE_SPI_FIX

  unsigned char  header_master[HEADER_SIZE] = {0x0a, 0x00, 0x00, 0x00, 0x00};
  unsigned char  header_slave[HEADER_SIZE]  = {0xaa, 0x00, 0x00, 0x00, 0x00};

  unsigned char  read_char_buf [MAX_BUFFER_SIZE];

    Disable_SPI_IRQ();

      /*
      ** If the SPI_FIX is enabled, the IRQ is set in Output mode, then it is pulled
      ** high and, after a delay of at least 112us, the CS line is asserted and the
      ** header transmit/receive operations are started.
      ** After these transmit/receive operations the IRQ is reset in input mode.
      */
  if (spi_fix_enabled)
     {
       set_irq_as_output();

// VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV
// WVD  ??? !!!  CROSS_PLATFORM EXPOSURE - esp for FASTER DEVICES  !!! ???
// VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV
             /* Wait to Assert CS line until after at least 112us */
       us150Delay();
     }

       /* ASSERT CS line */
////HAL_GPIO_WritePin (BNRG_SPI_CS_PORT, BNRG_SPI_CS_PIN, GPIO_PIN_RESET);
    ASSERT_CS_BlueNRG();           // Ensure CS is set to ACTIVE

      /* Exchange header with BlueNRG */
////HAL_SPI_TransmitReceive (hspi, header_master, header_slave, HEADER_SIZE, TIMEOUT_DURATION); // WORKS
    spi_Write_Read (BLE_BLUENRG_SPI_ID, header_master, header_slave,
                    HEADER_SIZE, 0);

  if (spi_fix_enabled)
     {
       set_irq_as_input();
     }

  if (header_slave[0] == 0x02)
     {
             /* SPI is ready */
       if (header_slave[1] >= (Nb_bytes1+Nb_bytes2))
          {
                  /*  ensure Buffer is big enough */
           if (Nb_bytes1 > 0)
              {
////            HAL_SPI_TransmitReceive (hspi, data1, read_char_buf, Nb_bytes1, TIMEOUT_DURATION);
                spi_Write_Read (BLE_BLUENRG_SPI_ID,
                                data1, read_char_buf,
                                Nb_bytes1, 0);

              }
           if (Nb_bytes2 > 0)
              {
////            HAL_SPI_TransmitReceive (hspi, data2, read_char_buf, Nb_bytes2, TIMEOUT_DURATION);
                spi_Write_Read (BLE_BLUENRG_SPI_ID,
                                data2, read_char_buf,
                                Nb_bytes2, 0);
              }
     }
    else {
              /* Buffer is too small */
           result = -2;
         }
    }
   else {
              /* SPI is not ready */
            result = -1;
        }

              /* Release CS line */
////HAL_GPIO_WritePin (BNRG_SPI_CS_PORT, BNRG_SPI_CS_PIN, GPIO_PIN_SET);
    DEASSERT_CS_BlueNRG();                     // Ensure CS is set to NOT active

    Enable_SPI_IRQ();

    return result;
}
예제 #4
0
/**
* @brief  Writes data from local buffer to SPI.
* @param  hspi     : Handle of the STM32Cube HAL SPI interface
* @param  data1    : First data buffer to be written
* @param  data2    : Second data buffer to be written
* @param  Nb_bytes1: Size of first data buffer to be written
* @param  Nb_bytes2: Size of second data buffer to be written
* @retval Number of read bytes
*/
int32_t BlueNRG_SPI_Write(SPI_HandleTypeDef * hspi, uint8_t * data1,
			  uint8_t * data2, uint8_t Nb_bytes1, uint8_t Nb_bytes2)
{
	int32_t result = 0;

	int32_t spi_fix_enabled = 0;

#ifdef ENABLE_SPI_FIX
	spi_fix_enabled = 1;
#endif //ENABLE_SPI_FIX

	unsigned char header_master[HEADER_SIZE] =
	    { 0x0a, 0x00, 0x00, 0x00, 0x00 };
	unsigned char header_slave[HEADER_SIZE] =
	    { 0xaa, 0x00, 0x00, 0x00, 0x00 };

	unsigned char read_char_buf[MAX_BUFFER_SIZE];

	Disable_SPI_IRQ();

	/*
	   If the SPI_FIX is enabled the IRQ is set in Output mode, then it is pulled
	   high and, after a delay of at least 112us, the CS line is asserted and the
	   header transmit/receive operations are started.
	   After these transmit/receive operations the IRQ is reset in input mode.
	 */
	if (spi_fix_enabled) {
		set_irq_as_output();

		/* Assert CS line after at least 112us */
		us150Delay();
	}

	/* CS reset */
	HAL_GPIO_WritePin(BNRG_SPI_CS_PORT, BNRG_SPI_CS_PIN, GPIO_PIN_RESET);

	/* Exchange header */
	HAL_SPI_TransmitReceive(hspi, header_master, header_slave, HEADER_SIZE,
				TIMEOUT_DURATION);

	if (spi_fix_enabled) {
		set_irq_as_input();
	}

	if (header_slave[0] == 0x02) {
		/* SPI is ready */
		if (header_slave[1] >= (Nb_bytes1 + Nb_bytes2)) {

			/*  Buffer is big enough */
			if (Nb_bytes1 > 0) {
				HAL_SPI_TransmitReceive(hspi, data1,
							read_char_buf,
							Nb_bytes1,
							TIMEOUT_DURATION);
			}
			if (Nb_bytes2 > 0) {
				HAL_SPI_TransmitReceive(hspi, data2,
							read_char_buf,
							Nb_bytes2,
							TIMEOUT_DURATION);
			}

		} else {
			/* Buffer is too small */
			result = -2;
		}
	} else {
		/* SPI is not ready */
		result = -1;
	}

	/* Release CS line */
	HAL_GPIO_WritePin(BNRG_SPI_CS_PORT, BNRG_SPI_CS_PIN, GPIO_PIN_SET);

	Enable_SPI_IRQ();

	return result;
}
예제 #5
0
/* 'to' is timeout in system clock ticks.  */
int hci_send_req(struct hci_request *r)
{
	uint8_t *ptr;
	uint16_t opcode = htobs(cmd_opcode_pack(r->ogf, r->ocf));
	hci_event_pckt *event_pckt;
	hci_uart_pckt *hci_hdr;
	int try;
    int to = DEFAULT_TIMEOUT;
    
	new_packet = FALSE;
	hci_set_packet_complete_callback(new_hci_event);
	if (hci_send_cmd(r->ogf, r->ocf, r->clen, r->cparam) < 0)
		goto failed;
    
	try = 10;
	while (try--) {
		evt_cmd_complete *cc;
		evt_cmd_status *cs;
		evt_le_meta_event *me;
		int len;
        
        /* Minimum timeout is 1. */
        if(to == 0)
            to = 1;
        
		if (to > 0) {
			struct timer t;
            
			Timer_Set(&t, to);
            
			while(1){
				if(Timer_Expired(&t)){
					goto failed;
				}
				if(new_packet){
					break;
				}
			}
		}
        
		hci_hdr = (void *)hci_buffer;
		if(hci_hdr->type != HCI_EVENT_PKT){
            new_packet = FALSE;
            Enable_SPI_IRQ();
            continue;
        }
        
		event_pckt = (void *) (hci_hdr->data);
        
		ptr = hci_buffer + (1 + HCI_EVENT_HDR_SIZE);
		len = hci_pckt_len - (1 + HCI_EVENT_HDR_SIZE);
        
		switch (event_pckt->evt) {
            
		case EVT_CMD_STATUS:
			cs = (void *) ptr;
            
			if (cs->opcode != opcode)
				break;
            
			if (r->event != EVT_CMD_STATUS) {
				if (cs->status) {
					goto failed;
				}
				break;
			}
            
			r->rlen = MIN(len, r->rlen);
			Osal_MemCpy(r->rparam, ptr, r->rlen);
			goto done;
            
		case EVT_CMD_COMPLETE:
			cc = (void *) ptr;
            
			if (cc->opcode != opcode)
				break;
            
			ptr += EVT_CMD_COMPLETE_SIZE;
			len -= EVT_CMD_COMPLETE_SIZE;
            
			r->rlen = MIN(len, r->rlen);
			Osal_MemCpy(r->rparam, ptr, r->rlen);
			goto done;
            
		case EVT_LE_META_EVENT:
			me = (void *) ptr;
            
			if (me->subevent != r->event)
				break;
            
			len -= 1;
			r->rlen = MIN(len, r->rlen);
			Osal_MemCpy(r->rparam, me->data, r->rlen);
			goto done;
            
        case EVT_HARDWARE_ERROR:            
            goto failed;
            
		default:
            break; // In the meantime there could be other events from the controller.
		}
        
		new_packet = FALSE;
		Enable_SPI_IRQ();
        
	}
    
failed:
	hci_set_packet_complete_callback(NULL);
	Enable_SPI_IRQ();
	return -1;
    
done:
	hci_set_packet_complete_callback(NULL);
	Enable_SPI_IRQ();
	return 0;
}

int hci_reset()
{
  	struct hci_request rq;
	uint8_t status;

	Osal_MemSet(&rq, 0, sizeof(rq));
	rq.ogf = OGF_HOST_CTL;
	rq.ocf = OCF_RESET;
	rq.rparam = &status;
	rq.rlen = 1;

	if (hci_send_req(&rq) < 0)
		return -1;

	if (status) {
		return -1;
	}

	return 0;  
}

int hci_disconnect(uint16_t	handle, uint8_t reason)
{
  struct hci_request rq;
	disconnect_cp cp;
	uint8_t status;
  
	cp.handle = handle;
	cp.reason = reason;

	Osal_MemSet(&rq, 0, sizeof(rq));
	rq.ogf = OGF_LINK_CTL;
	rq.ocf = OCF_DISCONNECT;
    rq.cparam = &cp;
	rq.clen = DISCONNECT_CP_SIZE;
    rq.event = EVT_CMD_STATUS;
	rq.rparam = &status;
	rq.rlen = 1;

	if (hci_send_req(&rq) < 0)
		return -1;

	if (status) {
		return -1;
	}

	return 0;  
}

int hci_le_read_local_version(uint8_t *hci_version, uint16_t *hci_revision, uint8_t *lmp_pal_version, 
			      uint16_t *manufacturer_name, uint16_t *lmp_pal_subversion)
{
	struct hci_request rq;
	read_local_version_rp resp;

	Osal_MemSet(&resp, 0, sizeof(resp));

	Osal_MemSet(&rq, 0, sizeof(rq));
	rq.ogf = OGF_INFO_PARAM;
	rq.ocf = OCF_READ_LOCAL_VERSION;
	rq.cparam = NULL;
	rq.clen = 0;
	rq.rparam = &resp;
	rq.rlen = READ_LOCAL_VERSION_RP_SIZE;

	if (hci_send_req(&rq) < 0)
		return -1;

	if (resp.status) {
		return -1;
	}


	*hci_version = resp.hci_version;
	*hci_revision =  btohs(resp.hci_revision);
	*lmp_pal_version = resp.lmp_pal_version;
	*manufacturer_name = btohs(resp.manufacturer_name);
	*lmp_pal_subversion = btohs(resp.lmp_pal_subversion);

	return 0;
}

int hci_le_read_buffer_size(uint16_t *pkt_len, uint8_t *max_pkt)
{
	struct hci_request rq;
	le_read_buffer_size_rp resp;

	Osal_MemSet(&resp, 0, sizeof(resp));

	Osal_MemSet(&rq, 0, sizeof(rq));
	rq.ogf = OGF_LE_CTL;
	rq.ocf = OCF_LE_READ_BUFFER_SIZE;
	rq.cparam = NULL;
	rq.clen = 0;
	rq.rparam = &resp;
	rq.rlen = LE_READ_BUFFER_SIZE_RP_SIZE;

	if (hci_send_req(&rq) < 0)
		return -1;

	if (resp.status) {
		return -1;
	}
	
	*pkt_len = resp.pkt_len;
	*max_pkt = resp.max_pkt;

	return 0;
}

int hci_le_set_advertising_parameters(uint16_t min_interval, uint16_t max_interval, uint8_t advtype,
		uint8_t own_bdaddr_type, uint8_t direct_bdaddr_type, tBDAddr direct_bdaddr, uint8_t chan_map,
		uint8_t filter)
{
	struct hci_request rq;
	le_set_adv_parameters_cp adv_cp;
	uint8_t status;

	Osal_MemSet(&adv_cp, 0, sizeof(adv_cp));
	adv_cp.min_interval = min_interval;
	adv_cp.max_interval = max_interval;
	adv_cp.advtype = advtype;
	adv_cp.own_bdaddr_type = own_bdaddr_type;
	adv_cp.direct_bdaddr_type = direct_bdaddr_type;
    Osal_MemCpy(adv_cp.direct_bdaddr,direct_bdaddr,sizeof(adv_cp.direct_bdaddr));
	adv_cp.chan_map = chan_map;
	adv_cp.filter = filter;

	Osal_MemSet(&rq, 0, sizeof(rq));
	rq.ogf = OGF_LE_CTL;
	rq.ocf = OCF_LE_SET_ADV_PARAMETERS;
	rq.cparam = &adv_cp;
	rq.clen = LE_SET_ADV_PARAMETERS_CP_SIZE;
	rq.rparam = &status;
	rq.rlen = 1;

	if (hci_send_req(&rq) < 0)
		return -1;

	if (status) {
		return -1;
	}

	return 0;
}

int hci_le_set_advertising_data(uint8_t length, const uint8_t data[])
{
	struct hci_request rq;
	le_set_adv_data_cp adv_cp;
	uint8_t status;

	Osal_MemSet(&adv_cp, 0, sizeof(adv_cp));
	adv_cp.length = length;
	Osal_MemCpy(adv_cp.data, data, MIN(31,length));

	Osal_MemSet(&rq, 0, sizeof(rq));
	rq.ogf = OGF_LE_CTL;
	rq.ocf = OCF_LE_SET_ADV_DATA;
	rq.cparam = &adv_cp;
	rq.clen = LE_SET_ADV_DATA_CP_SIZE;
	rq.rparam = &status;
	rq.rlen = 1;

	if (hci_send_req(&rq) < 0)
		return -1;

	if (status) {
		return -1;
	}

	return 0;
}

int hci_le_set_advertise_enable(uint8_t enable)
{
	struct hci_request rq;
	le_set_advertise_enable_cp adv_cp;
	uint8_t status;

	Osal_MemSet(&adv_cp, 0, sizeof(adv_cp));
	adv_cp.enable = enable?1:0;

	Osal_MemSet(&rq, 0, sizeof(rq));
	rq.ogf = OGF_LE_CTL;
	rq.ocf = OCF_LE_SET_ADVERTISE_ENABLE;
	rq.cparam = &adv_cp;
	rq.clen = LE_SET_ADVERTISE_ENABLE_CP_SIZE;
	rq.rparam = &status;
	rq.rlen = 1;

	if (hci_send_req(&rq) < 0)
		return -1;

	if (status) {
		return -1;
	}

	return 0;
}

int hci_le_rand(uint8_t random_number[8])
{
	struct hci_request rq;
	le_rand_rp resp;

	Osal_MemSet(&resp, 0, sizeof(resp));

	Osal_MemSet(&rq, 0, sizeof(rq));
	rq.ogf = OGF_LE_CTL;
	rq.ocf = OCF_LE_RAND;
	rq.cparam = NULL;
	rq.clen = 0;
	rq.rparam = &resp;
	rq.rlen = LE_RAND_RP_SIZE;

	if (hci_send_req(&rq) < 0)
		return -1;

	if (resp.status) {
		return -1;
	}
    
    Osal_MemCpy(random_number, resp.random, 8);

	return 0;
}

int hci_le_set_scan_resp_data(uint8_t length, const uint8_t data[])
{
	struct hci_request rq;
	le_set_scan_response_data_cp scan_resp_cp;
	uint8_t status;

	Osal_MemSet(&scan_resp_cp, 0, sizeof(scan_resp_cp));
	scan_resp_cp.length = length;
	Osal_MemCpy(scan_resp_cp.data, data, MIN(31,length));

	Osal_MemSet(&rq, 0, sizeof(rq));
	rq.ogf = OGF_LE_CTL;
	rq.ocf = OCF_LE_SET_SCAN_RESPONSE_DATA;
	rq.cparam = &scan_resp_cp;
	rq.clen = LE_SET_SCAN_RESPONSE_DATA_CP_SIZE;
	rq.rparam = &status;
	rq.rlen = 1;

	if (hci_send_req(&rq) < 0)
		return -1;

	if (status) {
		return -1;
	}

	return 0;
}

int hci_le_read_advertising_channel_tx_power(int8_t *tx_power_level)
{
	struct hci_request rq;
	le_read_adv_channel_tx_power_rp resp;

	Osal_MemSet(&resp, 0, sizeof(resp));

	Osal_MemSet(&rq, 0, sizeof(rq));
	rq.ogf = OGF_LE_CTL;
	rq.ocf = OCF_LE_READ_ADV_CHANNEL_TX_POWER;
	rq.cparam = NULL;
	rq.clen = 0;
	rq.rparam = &resp;
	rq.rlen = LE_RAND_RP_SIZE;

	if (hci_send_req(&rq) < 0)
		return -1;

	if (resp.status) {
		return -1;
	}

	*tx_power_level = resp.level;

	return 0;
}

int hci_le_set_random_address(tBDAddr bdaddr)
{
	struct hci_request rq;
	le_set_random_address_cp set_rand_addr_cp;
	uint8_t status;

	Osal_MemSet(&set_rand_addr_cp, 0, sizeof(set_rand_addr_cp));
	Osal_MemCpy(set_rand_addr_cp.bdaddr, bdaddr, sizeof(tBDAddr));

	Osal_MemSet(&rq, 0, sizeof(rq));
	rq.ogf = OGF_LE_CTL;
	rq.ocf = OCF_LE_SET_RANDOM_ADDRESS;
	rq.cparam = &set_rand_addr_cp;
	rq.clen = LE_SET_RANDOM_ADDRESS_CP_SIZE;
	rq.rparam = &status;
	rq.rlen = 1;

	if (hci_send_req(&rq) < 0)
		return -1;

	if (status) {
		return -1;
	}

	return 0;
}

int hci_read_bd_addr(tBDAddr bdaddr)
{
	struct hci_request rq;
	read_bd_addr_rp resp;

	Osal_MemSet(&resp, 0, sizeof(resp));

	Osal_MemSet(&rq, 0, sizeof(rq));
	rq.ogf = OGF_INFO_PARAM;
	rq.ocf = OCF_READ_BD_ADDR;
	rq.cparam = NULL;
	rq.clen = 0;
	rq.rparam = &resp;
	rq.rlen = READ_BD_ADDR_RP_SIZE;

	if (hci_send_req(&rq) < 0)
		return -1;

	if (resp.status) {
		return -1;
	}
	Osal_MemCpy(bdaddr, resp.bdaddr, sizeof(tBDAddr));

	return 0;
}

int hci_le_create_connection(uint16_t interval,	uint16_t window, uint8_t initiator_filter, uint8_t peer_bdaddr_type,
                             const tBDAddr peer_bdaddr,	uint8_t	own_bdaddr_type, uint16_t min_interval,	uint16_t max_interval,
                             uint16_t latency,	uint16_t supervision_timeout, uint16_t min_ce_length, uint16_t max_ce_length)
{
	struct hci_request rq;
	le_create_connection_cp create_cp;
	uint8_t status;

	Osal_MemSet(&create_cp, 0, sizeof(create_cp));
	create_cp.interval = interval;
	create_cp.window =  window;
	create_cp.initiator_filter = initiator_filter;
	create_cp.peer_bdaddr_type = peer_bdaddr_type;
	Osal_MemCpy(create_cp.peer_bdaddr, peer_bdaddr, sizeof(tBDAddr));
	create_cp.own_bdaddr_type = own_bdaddr_type;
	create_cp.min_interval=min_interval;
	create_cp.max_interval=max_interval;
	create_cp.latency = latency;
	create_cp.supervision_timeout=supervision_timeout;
	create_cp.min_ce_length=min_ce_length;
	create_cp.max_ce_length=max_ce_length;

	Osal_MemSet(&rq, 0, sizeof(rq));
	rq.ogf = OGF_LE_CTL;
	rq.ocf = OCF_LE_CREATE_CONN;
	rq.cparam = &create_cp;
	rq.clen = LE_CREATE_CONN_CP_SIZE;
    rq.event = EVT_CMD_STATUS;
	rq.rparam = &status;
	rq.rlen = 1;

	if (hci_send_req(&rq) < 0)
		return -1;

	if (status) {
		return -1;
	}

	return 0;
}

int hci_le_encrypt(uint8_t key[16], uint8_t plaintextData[16], uint8_t encryptedData[16])
{
	struct hci_request rq;
	le_encrypt_cp params;
	le_encrypt_rp resp;
	
	Osal_MemSet(&resp, 0, sizeof(resp));

	Osal_MemCpy(params.key, key, 16);
	Osal_MemCpy(params.plaintext, plaintextData, 16);

	Osal_MemSet(&rq, 0, sizeof(rq));
	rq.ogf = OGF_LE_CTL;
	rq.ocf = OCF_LE_ENCRYPT;
	rq.cparam = &params;
	rq.clen = LE_ENCRYPT_CP_SIZE;
	rq.rparam = &resp;
	rq.rlen = LE_ENCRYPT_RP_SIZE;

	if (hci_send_req(&rq) < 0){
		return -1;
	}

	if (resp.status) {
		return -1;
	}
	
	Osal_MemCpy(encryptedData, resp.encdata, 16);

	return 0;
}

int hci_le_ltk_request_reply(uint8_t key[16])
{
	struct hci_request rq;
	le_ltk_reply_cp params;
	le_ltk_reply_rp resp;
	
	Osal_MemSet(&resp, 0, sizeof(resp));

	params.handle = 1;
	Osal_MemCpy(params.key, key, 16);

	Osal_MemSet(&rq, 0, sizeof(rq));
	rq.ogf = OGF_LE_CTL;
	rq.ocf = OCF_LE_LTK_REPLY;
	rq.cparam = &params;
	rq.clen = LE_LTK_REPLY_CP_SIZE;
	rq.rparam = &resp;
	rq.rlen = LE_LTK_REPLY_RP_SIZE;

	if (hci_send_req(&rq) < 0)
		return -1;

	if (resp.status) {
		return -1;
	}

	return 0;
}

int hci_le_ltk_request_neg_reply()
{
	struct hci_request rq;
	le_ltk_neg_reply_cp params;
	le_ltk_neg_reply_rp resp;
	
	Osal_MemSet(&resp, 0, sizeof(resp));

	params.handle = 1;

	Osal_MemSet(&rq, 0, sizeof(rq));
	rq.ogf = OGF_LE_CTL;
	rq.ocf = OCF_LE_LTK_NEG_REPLY;
	rq.cparam = &params;
	rq.clen = LE_LTK_NEG_REPLY_CP_SIZE;
	rq.rparam = &resp;
	rq.rlen = LE_LTK_NEG_REPLY_RP_SIZE;

	if (hci_send_req(&rq) < 0)
		return -1;

	if (resp.status) {
		return -1;
	}

	return 0;
}

int hci_le_read_white_list_size(uint8_t *size)
{
	struct hci_request rq;
    le_read_white_list_size_rp resp;
	
	Osal_MemSet(&resp, 0, sizeof(resp));

	Osal_MemSet(&rq, 0, sizeof(rq));
	rq.ogf = OGF_LE_CTL;
	rq.ocf = OCF_LE_READ_WHITE_LIST_SIZE;
	rq.rparam = &resp;
	rq.rlen = LE_READ_WHITE_LIST_SIZE_RP_SIZE;

	if (hci_send_req(&rq) < 0){
		return -1;
	}

	if (resp.status) {
		return -1;
	}
    
    *size = resp.size;

	return 0;
}

int hci_le_clear_white_list()
{
	struct hci_request rq;
	uint8_t status;

	Osal_MemSet(&rq, 0, sizeof(rq));
	rq.ogf = OGF_LE_CTL;
	rq.ocf = OCF_LE_CLEAR_WHITE_LIST;
	rq.rparam = &status;
	rq.rlen = 1;

	if (hci_send_req(&rq) < 0){
		return -1;
	}

	if (status) {
		return -1;
	}

	return 0;
}

int hci_le_add_device_to_white_list(uint8_t	bdaddr_type, tBDAddr bdaddr)
{
	struct hci_request rq;
	le_add_device_to_white_list_cp params;
	uint8_t status;

	params.bdaddr_type = bdaddr_type;
	Osal_MemCpy(params.bdaddr, bdaddr, 6);

	Osal_MemSet(&rq, 0, sizeof(rq));
	rq.ogf = OGF_LE_CTL;
	rq.ocf = OCF_LE_ADD_DEVICE_TO_WHITE_LIST;
	rq.cparam = &params;
	rq.clen = LE_ADD_DEVICE_TO_WHITE_LIST_CP_SIZE;
	rq.rparam = &status;
	rq.rlen = 1;

	if (hci_send_req(&rq) < 0){
		return -1;
	}

	if (status) {
		return -1;
	}

	return 0;
}

int hci_le_remove_device_from_white_list(uint8_t bdaddr_type, tBDAddr bdaddr)
{
	struct hci_request rq;
	le_remove_device_from_white_list_cp params;
	uint8_t status;

	params.bdaddr_type = bdaddr_type;
	Osal_MemCpy(params.bdaddr, bdaddr, 6);

	Osal_MemSet(&rq, 0, sizeof(rq));
	rq.ogf = OGF_LE_CTL;
	rq.ocf = OCF_LE_REMOVE_DEVICE_FROM_WHITE_LIST;
	rq.cparam = &params;
	rq.clen = LE_REMOVE_DEVICE_FROM_WHITE_LIST_CP_SIZE;
	rq.rparam = &status;
	rq.rlen = 1;

	if (hci_send_req(&rq) < 0){
		return -1;
	}

	if (status) {
		return -1;
	}

	return 0;
}

int hci_read_transmit_power_level(uint16_t *conn_handle, uint8_t type, int8_t * tx_level)
{
    struct hci_request rq;
	read_transmit_power_level_cp params;
	read_transmit_power_level_rp resp;
	
	Osal_MemSet(&resp, 0, sizeof(resp));

	params.handle = *conn_handle;
	params.type = type;

	Osal_MemSet(&rq, 0, sizeof(rq));
	rq.ogf = OGF_HOST_CTL;
	rq.ocf = OCF_READ_TRANSMIT_POWER_LEVEL;
	rq.cparam = &params;
	rq.clen = READ_TRANSMIT_POWER_LEVEL_CP_SIZE;
	rq.rparam = &resp;
	rq.rlen = READ_TRANSMIT_POWER_LEVEL_RP_SIZE;

	if (hci_send_req(&rq) < 0){
		return -1;
	}

	if (resp.status) {
		return -1;
	}
	
    *conn_handle = resp.handle;
    *tx_level = resp.handle;

	return 0;
}

int hci_read_rssi(uint16_t *conn_handle, int8_t * rssi)
{
    struct hci_request rq;
	read_rssi_cp params;
	read_rssi_rp resp;
	
	Osal_MemSet(&resp, 0, sizeof(resp));

	params.handle = *conn_handle;

	Osal_MemSet(&rq, 0, sizeof(rq));
	rq.ogf = OGF_STATUS_PARAM;
	rq.ocf = OCF_READ_RSSI;
	rq.cparam = &params;
	rq.clen = READ_RSSI_CP_SIZE;
	rq.rparam = &resp;
	rq.rlen = READ_RSSI_RP_SIZE;

	if (hci_send_req(&rq) < 0){
		return -1;
	}

	if (resp.status) {
		return -1;
	}
	
    *conn_handle = resp.handle;
    *rssi = resp.rssi;

	return 0;
}

int hci_le_read_local_supported_features(uint8_t *features)
{
	struct hci_request rq;
    le_read_local_supported_features_rp resp;
	
	Osal_MemSet(&resp, 0, sizeof(resp));

	Osal_MemSet(&rq, 0, sizeof(rq));
	rq.ogf = OGF_LE_CTL;
	rq.ocf = OCF_LE_READ_LOCAL_SUPPORTED_FEATURES;
	rq.rparam = &resp;
	rq.rlen = LE_READ_LOCAL_SUPPORTED_FEATURES_RP_SIZE;

	if (hci_send_req(&rq) < 0){
		return -1;
	}

	if (resp.status) {
		return -1;
	}
    
    Osal_MemCpy(features, resp.features, sizeof(resp.features));

	return 0;
}

int hci_le_read_channel_map(uint16_t conn_handle, uint8_t ch_map[5])
{
    struct hci_request rq;
	le_read_channel_map_cp params;
	le_read_channel_map_rp resp;
	
	Osal_MemSet(&resp, 0, sizeof(resp));

	params.handle = conn_handle;

	Osal_MemSet(&rq, 0, sizeof(rq));
	rq.ogf = OGF_LE_CTL;
	rq.ocf = OCF_LE_READ_CHANNEL_MAP;
	rq.cparam = &params;
	rq.clen = LE_READ_CHANNEL_MAP_CP_SIZE;
	rq.rparam = &resp;
	rq.rlen = LE_READ_CHANNEL_MAP_RP_SIZE;

	if (hci_send_req(&rq) < 0){
		return -1;
	}

	if (resp.status) {
		return -1;
	}
    
    Osal_MemCpy(ch_map, resp.map, 5);

	return 0;
}

int hci_le_read_supported_states(uint8_t states[8])
{
	struct hci_request rq;
    le_read_supported_states_rp resp;
	
	Osal_MemSet(&resp, 0, sizeof(resp));

	Osal_MemSet(&rq, 0, sizeof(rq));
	rq.ogf = OGF_LE_CTL;
	rq.ocf = OCF_LE_READ_SUPPORTED_STATES;
	rq.rparam = &resp;
	rq.rlen = LE_READ_SUPPORTED_STATES_RP_SIZE;

	if (hci_send_req(&rq) < 0){
		return -1;
	}

	if (resp.status) {
		return -1;
	}
    
    Osal_MemCpy(states, resp.states, 8);

	return 0;
}

int hci_le_receiver_test(uint8_t frequency)
{
	struct hci_request rq;
	le_receiver_test_cp params;
	uint8_t status;

	params.frequency = frequency;

	Osal_MemSet(&rq, 0, sizeof(rq));
	rq.ogf = OGF_LE_CTL;
	rq.ocf = OCF_LE_RECEIVER_TEST;
	rq.cparam = &params;
	rq.clen = LE_RECEIVER_TEST_CP_SIZE;
	rq.rparam = &status;
	rq.rlen = 1;

	if (hci_send_req(&rq) < 0){
		return -1;
	}

	if (status) {
		return -1;
	}

	return 0;
}

int hci_le_transmitter_test(uint8_t frequency, uint8_t length, uint8_t payload)
{
	struct hci_request rq;
	le_transmitter_test_cp params;
	uint8_t status;

	params.frequency = frequency;
    params.length = length;
    params.payload = payload;

	Osal_MemSet(&rq, 0, sizeof(rq));
	rq.ogf = OGF_LE_CTL;
	rq.ocf = OCF_LE_TRANSMITTER_TEST;
	rq.cparam = &params;
	rq.clen = LE_TRANSMITTER_TEST_CP_SIZE;
	rq.rparam = &status;
	rq.rlen = 1;

	if (hci_send_req(&rq) < 0){
		return -1;
	}

	if (status) {
		return -1;
	}

	return 0;
}

int hci_le_test_end(uint16_t *num_pkts)
{
	struct hci_request rq;
    le_test_end_rp resp;
	
	Osal_MemSet(&resp, 0, sizeof(resp));

	Osal_MemSet(&rq, 0, sizeof(rq));
	rq.ogf = OGF_LE_CTL;
	rq.ocf = OCF_LE_TEST_END;
	rq.rparam = &resp;
	rq.rlen = LE_TEST_END_RP_SIZE;

	if (hci_send_req(&rq) < 0){
		return -1;
	}

	if (resp.status) {
		return -1;
	}
    
    *num_pkts = resp.num_pkts;

	return 0;
}