예제 #1
0
void time_Tevd_v(
               int variant, int type, int n_repeats, int m, int k_accum, int b_alg, int n_iter_max,
               FLA_Obj A_orig, FLA_Obj d, FLA_Obj e, FLA_Obj G, FLA_Obj R, FLA_Obj W, FLA_Obj A, FLA_Obj l,
               double *dtime, double *diff1, double* diff2, double *gflops )
{
  int irep;

  double
    k, dtime_old = 1.0e9;

  FLA_Obj
    A_save, G_save, d_save, e_save;

  if (
       //( variant == 0 ) ||
       //( variant == 1 && type == FLA_ALG_UNB_OPT ) ||
       //( variant == 2 && type == FLA_ALG_UNB_OPT ) ||
       FALSE
     )
  {
    *dtime  = 0.0;
    *gflops = 0.0;
    *diff1  = 0.0;
    *diff2  = 0.0;
    return;
  }

  FLA_Obj_create_conf_to( FLA_NO_TRANSPOSE, A, &A_save );
  FLA_Obj_create_conf_to( FLA_NO_TRANSPOSE, G, &G_save );
  FLA_Obj_create_conf_to( FLA_NO_TRANSPOSE, d, &d_save );
  FLA_Obj_create_conf_to( FLA_NO_TRANSPOSE, e, &e_save );

  FLA_Copy_external( A, A_save );
  FLA_Copy_external( G, G_save );
  FLA_Copy_external( d, d_save );
  FLA_Copy_external( e, e_save );

  for ( irep = 0 ; irep < n_repeats; irep++ ){

    FLA_Copy_external( A_save, A );
    FLA_Copy_external( G_save, G );
    FLA_Copy_external( d_save, d );
    FLA_Copy_external( e_save, e );

    *dtime = FLA_Clock();

    switch( variant ){

    case 0:
      REF_Tevd_v( d, e, A );
      break;

    // Time variant 1
    case 1:
    {
      switch( type ){
      case FLA_ALG_UNB_OPT:
        FLA_Tevd_v_opt_var1( n_iter_max, d, e, G, A, b_alg );
        break;
      }
      break;
    }

    // Time variant 2
    case 2:
    {
      switch( type ){
      case FLA_ALG_UNB_OPT:
        FLA_Tevd_v_opt_var2( n_iter_max, d, e, G, R, W, A, b_alg );
        break;
      }
      break;
    }

    }

    *dtime = FLA_Clock() - *dtime;
    dtime_old = min( *dtime, dtime_old );

  }
  {
    FLA_Obj V, A_rev_evd, norm, eye;

	FLA_Copy( d, l );

//FLA_Obj_show( "A_save", A_save, "%9.2e + %9.2e ", "" );
//FLA_Obj_show( "A_evd", A, "%9.2e + %9.2e ", "" );
	FLA_Sort_evd( FLA_FORWARD, l, A );

    FLA_Obj_create_copy_of( FLA_NO_TRANSPOSE, A, &V ); 
    FLA_Obj_create_conf_to( FLA_NO_TRANSPOSE, A, &A_rev_evd ); 
    FLA_Obj_create_conf_to( FLA_NO_TRANSPOSE, A, &eye ); 
    FLA_Obj_create( FLA_Obj_datatype_proj_to_real( A ), 1, 1, 0, 0, &norm );


    FLA_Apply_diag_matrix( FLA_RIGHT, FLA_NO_CONJUGATE, l, A );

    FLA_Gemm( FLA_NO_TRANSPOSE, FLA_CONJ_TRANSPOSE,
              FLA_ONE, A, V, FLA_ZERO, A_rev_evd );
    FLA_Triangularize( FLA_LOWER_TRIANGULAR, FLA_NONUNIT_DIAG, A_rev_evd );

/*
    FLA_Gemm( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE,
              FLA_ONE, A, D, FLA_ZERO, A_rev_evd );
    FLA_Copy( A_rev_evd, D );
    FLA_Gemm( FLA_NO_TRANSPOSE, FLA_CONJ_TRANSPOSE,
              FLA_ONE, D, V, FLA_ZERO, A_rev_evd );
    FLA_Triangularize( FLA_LOWER_TRIANGULAR, FLA_NONUNIT_DIAG, A_rev_evd );
*/
//FLA_Obj_show( "A_rev_evd", A_rev_evd, "%9.2e + %9.2e ", "" );
 
    FLA_Axpy( FLA_MINUS_ONE, A_orig, A_rev_evd );
    FLA_Norm_frob( A_rev_evd, norm );
    FLA_Obj_extract_real_scalar( norm, diff1 );
    //*diff = FLA_Max_elemwise_diff( A_orig, A_rev_evd );

    FLA_Set_to_identity( eye );
	FLA_Copy( V, A_rev_evd );
    FLA_Gemm( FLA_NO_TRANSPOSE, FLA_CONJ_TRANSPOSE,
              FLA_ONE, V, A_rev_evd, FLA_MINUS_ONE, eye );
    FLA_Norm_frob( eye, norm );
    FLA_Obj_extract_real_scalar( norm, diff2 );

/*
FLA_Obj_free( &EL );
FLA_Obj_free( &EU );
FLA_Obj_free( &D );
FLA_Obj_free( &dc );
FLA_Obj_free( &ec );
*/

    FLA_Obj_free( &V );
    FLA_Obj_free( &A_rev_evd );
    FLA_Obj_free( &eye );
    FLA_Obj_free( &norm );
  }

  k = 2.00;

  if ( FLA_Obj_is_complex( A ) )
  {
    *gflops = (
                      (       4.5 * k * m * m     ) +
                2.0 * (       3.0 * k * m * m * m ) ) / 
              dtime_old / 1e9;
  }
  else 
  {
    *gflops = (
                      (       4.5 * k * m * m     ) +
                1.0 * (       3.0 * k * m * m * m ) ) / 
              dtime_old / 1e9;
  }

  *dtime = dtime_old;

  FLA_Copy_external( A_save, A );
  FLA_Copy_external( G_save, G );
  FLA_Copy_external( d_save, d );
  FLA_Copy_external( e_save, e );

  FLA_Obj_free( &A_save );
  FLA_Obj_free( &G_save );
  FLA_Obj_free( &d_save );
  FLA_Obj_free( &e_save );
}
예제 #2
0
FLA_Error FLA_Svd_ext_u_unb_var1( FLA_Svd_type jobu, FLA_Svd_type jobv,
                                  dim_t n_iter_max,
                                  FLA_Obj A, FLA_Obj s, FLA_Obj U, FLA_Obj V,
                                  dim_t k_accum,
                                  dim_t b_alg )
{
    FLA_Error    r_val = FLA_SUCCESS;
    FLA_Datatype dt;
    FLA_Datatype dt_real;
    FLA_Datatype dt_comp;
    FLA_Obj      scale, T, S, rL, rR, d, e, G, H, C; // C is dummy.
    dim_t        m_A, n_A, min_m_n;
    dim_t        n_GH;
    double       crossover_ratio = 17.0 / 9.0;
    FLA_Bool     u_is_formed = FALSE, 
                 v_is_formed = FALSE;
    int          apply_scale;

    n_GH    = k_accum;

    m_A     = FLA_Obj_length( A );
    n_A     = FLA_Obj_width( A );
    min_m_n = min( m_A, n_A );
    dt      = FLA_Obj_datatype( A );
    dt_real = FLA_Obj_datatype_proj_to_real( A );
    dt_comp = FLA_Obj_datatype_proj_to_complex( A );

    // Create matrices to hold block Householder transformations.
    FLA_Bidiag_UT_create_T( A, &T, &S );

    // Create vectors to hold the realifying scalars.
    if ( FLA_Obj_is_complex( A ) )
    {
        FLA_Obj_create( dt,      min_m_n,      1, 0, 0, &rL );
        FLA_Obj_create( dt,      min_m_n,      1, 0, 0, &rR );
    }

    // Create vectors to hold the diagonal and sub-diagonal.
    FLA_Obj_create( dt_real, min_m_n,      1, 0, 0, &d );
    FLA_Obj_create( dt_real, min_m_n-1,    1, 0, 0, &e );

    // Create matrices to hold the left and right Givens scalars.
    FLA_Obj_create( dt_comp, min_m_n-1, n_GH, 0, 0, &G );
    FLA_Obj_create( dt_comp, min_m_n-1, n_GH, 0, 0, &H );

    // Create a real scaling factor.
    FLA_Obj_create( dt_real, 1, 1, 0, 0, &scale );

    // Scale matrix A if necessary. 
    FLA_Max_abs_value( A, scale );
    apply_scale =
      ( FLA_Obj_gt( scale, FLA_OVERFLOW_SQUARE_THRES  ) == TRUE ) -     
      ( FLA_Obj_lt( scale, FLA_UNDERFLOW_SQUARE_THRES ) == TRUE ); 
    
    if ( apply_scale )
      FLA_Scal( apply_scale > 0 ? FLA_SAFE_MIN : FLA_SAFE_INV_MIN, A );   

    if ( m_A < crossover_ratio * n_A )
    {
        // Reduce the matrix to bidiagonal form.
        // Apply scalars to rotate elements on the superdiagonal to the real domain.
        // Extract the diagonal and superdiagonal from A.
        FLA_Bidiag_UT( A, T, S );
        if ( FLA_Obj_is_complex( A ) )
            FLA_Bidiag_UT_realify( A, rL, rR );
        FLA_Bidiag_UT_extract_real_diagonals( A, d, e );

        // Form U and V.
        if ( u_is_formed == FALSE )
        {
            switch ( jobu )
            {
            case FLA_SVD_VECTORS_MIN_OVERWRITE:
                if ( jobv != FLA_SVD_VECTORS_NONE )
                    FLA_Bidiag_UT_form_V_ext( FLA_UPPER_TRIANGULAR, A, S, FLA_NO_TRANSPOSE, V );
                v_is_formed = TRUE; // For this case, V should be formed here.
                U = A;
            case FLA_SVD_VECTORS_ALL:
            case FLA_SVD_VECTORS_MIN_COPY:
                FLA_Bidiag_UT_form_U_ext( FLA_UPPER_TRIANGULAR, A, T, FLA_NO_TRANSPOSE, U );
                u_is_formed = TRUE;
                break;
            case FLA_SVD_VECTORS_NONE:
                // Do nothing
                break;
            }
        }
        if ( v_is_formed == FALSE )
        {
            if ( jobv == FLA_SVD_VECTORS_MIN_OVERWRITE )
            {
                FLA_Bidiag_UT_form_V_ext( FLA_UPPER_TRIANGULAR, A, S, FLA_CONJ_TRANSPOSE, A );
                v_is_formed = TRUE; /* and */
                V = A; // This V is actually V^H.

                // V^H -> V
                FLA_Obj_flip_base( &V );
                FLA_Obj_flip_view( &V );
                if ( FLA_Obj_is_complex( A ) )
                    FLA_Conjugate( V );
            }
            else if ( jobv != FLA_SVD_VECTORS_NONE )
            {
                FLA_Bidiag_UT_form_V_ext( FLA_UPPER_TRIANGULAR, A, S, FLA_NO_TRANSPOSE, V );
                v_is_formed = TRUE;
            }
        }

        // For complex matrices, apply realification transformation.
        if ( FLA_Obj_is_complex( A ) && jobu != FLA_SVD_VECTORS_NONE )
        {
            FLA_Obj UL, UR;
            FLA_Part_1x2( U,   &UL, &UR,   min_m_n, FLA_LEFT );
            FLA_Apply_diag_matrix( FLA_RIGHT, FLA_CONJUGATE,    rL, UL );
        }
        if ( FLA_Obj_is_complex( A ) && jobv != FLA_SVD_VECTORS_NONE )
        {
            FLA_Obj VL, VR;
            FLA_Part_1x2( V,   &VL, &VR,   min_m_n, FLA_LEFT );
            FLA_Apply_diag_matrix( FLA_RIGHT, FLA_NO_CONJUGATE, rR, VL );
        }

        // Perform a singular value decomposition on the upper bidiagonal matrix.
        r_val = FLA_Bsvd_ext_opt_var1( n_iter_max,
                                       d, e, G, H,
                                       jobu, U, jobv, V,
                                       FALSE, C, // C is not referenced
                                       b_alg );
    }
    else // if ( crossover_ratio * n_A <= m_A )
    {
        FLA_Obj TQ, R;
        FLA_Obj AT,
                AB;

        // Perform a QR factorization on A.
        FLA_QR_UT_create_T( A, &TQ );
        FLA_QR_UT( A, TQ );

        // Set the lower triangle of R to zero and then copy the upper
        // triangle of A to R.
        FLA_Part_2x1( A,   &AT,
                           &AB,   n_A, FLA_TOP );
        FLA_Obj_create( dt, n_A, n_A, 0, 0, &R );
        FLA_Setr( FLA_LOWER_TRIANGULAR, FLA_ZERO, R );
        FLA_Copyr( FLA_UPPER_TRIANGULAR, AT, R );

        // Form U; if necessary overwrite on A.
        if ( u_is_formed == FALSE )
        {
            switch ( jobu )
            {
            case FLA_SVD_VECTORS_MIN_OVERWRITE:
                U = A;
            case FLA_SVD_VECTORS_ALL:
            case FLA_SVD_VECTORS_MIN_COPY:
                FLA_QR_UT_form_Q( A, TQ, U );
                u_is_formed = TRUE;
                break;
            case FLA_SVD_VECTORS_NONE:
                // Do nothing
                break;
            }
        }
        FLA_Obj_free( &TQ );

        // Reduce the matrix to bidiagonal form.
        // Apply scalars to rotate elements on the superdiagonal to the real domain.
        // Extract the diagonal and superdiagonal from A.
        FLA_Bidiag_UT( R, T, S );
        if ( FLA_Obj_is_complex( R ) )
            FLA_Bidiag_UT_realify( R, rL, rR );
        FLA_Bidiag_UT_extract_real_diagonals( R, d, e );

        if ( v_is_formed == FALSE )
        {
            if ( jobv == FLA_SVD_VECTORS_MIN_OVERWRITE )
            {
                FLA_Bidiag_UT_form_V_ext( FLA_UPPER_TRIANGULAR, R, S, FLA_CONJ_TRANSPOSE, AT );
                v_is_formed = TRUE; /* and */
                V = AT; // This V is actually V^H.

                // V^H -> V
                FLA_Obj_flip_base( &V );
                FLA_Obj_flip_view( &V );
                if ( FLA_Obj_is_complex( A ) )
                    FLA_Conjugate( V );
            }
            else if ( jobv != FLA_SVD_VECTORS_NONE )
            {
                FLA_Bidiag_UT_form_V_ext( FLA_UPPER_TRIANGULAR, R, S, FLA_NO_TRANSPOSE, V );
                v_is_formed = TRUE;
            }
        }

        // Apply householder vectors U in R.
        FLA_Bidiag_UT_form_U_ext( FLA_UPPER_TRIANGULAR, R, T, FLA_NO_TRANSPOSE, R );

        // Apply the realifying scalars in rL and rR to U and V, respectively.
        if ( FLA_Obj_is_complex( A ) && jobu != FLA_SVD_VECTORS_NONE )
        {
            FLA_Obj RL, RR;
            FLA_Part_1x2( R,   &RL, &RR,   min_m_n, FLA_LEFT );
            FLA_Apply_diag_matrix( FLA_RIGHT, FLA_CONJUGATE,    rL, RL );
        }
        if ( FLA_Obj_is_complex( A ) && jobv != FLA_SVD_VECTORS_NONE )
        {
            FLA_Obj VL, VR;
            FLA_Part_1x2( V,   &VL, &VR,   min_m_n, FLA_LEFT );
            FLA_Apply_diag_matrix( FLA_RIGHT, FLA_NO_CONJUGATE, rR, VL );
        }

        // Perform a singular value decomposition on the bidiagonal matrix.
        r_val = FLA_Bsvd_ext_opt_var1( n_iter_max,
                                       d, e, G, H,
                                       jobu, R, jobv, V,
                                       FALSE, C,
                                       b_alg );

        // Multiply R into U, storing the result in A and then copying back
        // to U.
        if ( jobu != FLA_SVD_VECTORS_NONE )
        {
            FLA_Obj UL, UR;
            FLA_Part_1x2( U,   &UL, &UR,   min_m_n, FLA_LEFT );

            if ( jobu == FLA_SVD_VECTORS_MIN_OVERWRITE || 
                 jobv == FLA_SVD_VECTORS_MIN_OVERWRITE )
            {
                FLA_Obj_create_conf_to( FLA_NO_TRANSPOSE, UL, &C );
                FLA_Gemm( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE,
                          FLA_ONE, UL, R, FLA_ZERO, C );
                FLA_Copy( C, UL );
                FLA_Obj_free( &C );
            }
            else
            {
                FLA_Gemm( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE,
                          FLA_ONE, UL, R, FLA_ZERO, A );
                FLA_Copy( A, UL );
            }
        }
        FLA_Obj_free( &R );
    }

    // Copy the converged eigenvalues to the output vector.
    FLA_Copy( d, s );

    // No sort is required as it is applied on FLA_Bsvd.

    if ( apply_scale ) 
      FLA_Scal( apply_scale < 0 ? FLA_SAFE_MIN : FLA_SAFE_INV_MIN, s ); 

    // When V is overwritten, flip it again.
    if ( jobv == FLA_SVD_VECTORS_MIN_OVERWRITE )
    {
        // Always apply conjugation first wrt dimensions used; then, flip base.
        if ( FLA_Obj_is_complex( V ) )
            FLA_Conjugate( V );
        FLA_Obj_flip_base( &V );
    }

    FLA_Obj_free( &scale );
    FLA_Obj_free( &T );
    FLA_Obj_free( &S );

    if ( FLA_Obj_is_complex( A ) )
    {
        FLA_Obj_free( &rL );
        FLA_Obj_free( &rR );
    }

    FLA_Obj_free( &d );
    FLA_Obj_free( &e );
    FLA_Obj_free( &G );
    FLA_Obj_free( &H );

    return r_val;
}
예제 #3
0
int main(int argc, char *argv[])
{
  int m, n, k, nfirst, nlast, ninc, i, irep,
    nrepeats, nb_alg, check;;

  double
    dtime,
    dtime_best,
    gflops,
    max_gflops,
    diff,
    d_n;

  FLA_Obj
    A, B, C, Cref, Cold;
  
  /* Initialize FLAME */
  FLA_Init( );

  /* Every time trial is repeated "repeat" times */
  printf( "%% number of repeats:" );
  scanf( "%d", &nrepeats );
  printf( "%% %d\n", nrepeats );

  /* Enter the max GFLOPS attainable */
  printf( "%% enter max GFLOPS:" );
  scanf( "%lf", &max_gflops );
  printf( "%% %lf\n", max_gflops );

  /* Enter the algorithmic block size */
  printf( "%% enter nb_alg:" );
  scanf( "%d", &nb_alg );
  printf( "%% %d\n", nb_alg );

  /* Timing trials for matrix sizes n=nfirst to nlast in increments 
     of ninc will be performed */
  printf( "%% enter nfirst, nlast, ninc:" );
  scanf( "%d%d%d", &nfirst, &nlast, &ninc );
  printf( "%% %d %d %d\n", nfirst, nlast, ninc );

  i = 1;
  for ( n=nfirst; n<= nlast; n+=ninc ){
   
    /* Allocate space for the matrices */

    FLA_Obj_create( FLA_DOUBLE, n, n, 1, n, &A );
    FLA_Obj_create( FLA_DOUBLE, n, n, 1, n, &B );
    FLA_Obj_create( FLA_DOUBLE, n, n, 1, n, &C );
    FLA_Obj_create( FLA_DOUBLE, n, n, 1, n, &Cref );
    FLA_Obj_create( FLA_DOUBLE, n, n, 1, n, &Cold );

    /* Generate random matrices L and B */
    FLA_Random_matrix( A );
    FLA_Random_matrix( B );
    FLA_Random_matrix( Cold );

    gflops = 2.0 * n * n * n * 1.0e-09;

    /* Time FLA_Symm */

    for ( irep=0; irep<nrepeats; irep++ ){
      FLA_Copy( Cold, Cref );

      dtime = FLA_Clock();

      FLA_Symm( FLA_LEFT, FLA_LOWER_TRIANGULAR, 
		FLA_ONE, A, B, FLA_ONE, Cref );

      dtime = FLA_Clock() - dtime;

      if ( irep == 0 ) 
	dtime_best = dtime;
      else
	dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
    }

    printf( "data_FLAME( %d, 1:2 ) = [ %d %le ];\n", i, n,
            gflops / dtime_best );
    fflush( stdout );


    /* Time the your implementations */


#if TEST_UNB_VAR1==TRUE
    /* Variant 1 unblocked */

    for ( irep=0; irep<nrepeats; irep++ ){

      FLA_Copy( Cold, C );
    
      dtime = FLA_Clock();

      Symm_unb_var1( A, B, C );

      dtime = FLA_Clock() - dtime;

      if ( irep == 0 ) 
	dtime_best = dtime;
      else
	dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
    }    

    diff = FLA_Max_elemwise_diff( C, Cref );

    printf( "data_unb_var1( %d, 1:3 ) = [ %d %le  %le];\n", i, n,
            gflops / dtime_best, diff );
    fflush( stdout );
#endif

#if TEST_BLK_VAR1==TRUE
    /* Variant 1 blocked */

    for ( irep=0; irep<nrepeats; irep++ ){
      FLA_Copy( Cold, C );
    
      dtime = FLA_Clock();

      Symm_blk_var1( A, B, C, nb_alg );

      dtime = FLA_Clock() - dtime;

      if ( irep == 0 ) 
	dtime_best = dtime;
      else
	dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
    }

    diff = FLA_Max_elemwise_diff( C, Cref );

    printf( "data_blk_var1( %d, 1:3 ) = [ %d %le  %le];\n", i, n,
            gflops / dtime_best, diff );
    fflush( stdout );
#endif

#if TEST_UNB_VAR2==TRUE
    /* Variant 2 unblocked */

    for ( irep=0; irep<nrepeats; irep++ ){

      FLA_Copy( Cold, C );
    
      dtime = FLA_Clock();

      Symm_unb_var2( A, B, C );

      dtime = FLA_Clock() - dtime;

      if ( irep == 0 ) 
	dtime_best = dtime;
      else
	dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
    }    

    diff = FLA_Max_elemwise_diff( C, Cref );

    printf( "data_unb_var2( %d, 1:3 ) = [ %d %le  %le];\n", i, n,
            gflops / dtime_best, diff );
    fflush( stdout );
#endif

#if TEST_BLK_VAR2==TRUE
    /* Variant 2 blocked */

    for ( irep=0; irep<nrepeats; irep++ ){
      FLA_Copy( Cold, C );
    
      dtime = FLA_Clock();

      Symm_blk_var2( A, B, C, nb_alg );

      dtime = FLA_Clock() - dtime;

      if ( irep == 0 ) 
	dtime_best = dtime;
      else
	dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
    }

    diff = FLA_Max_elemwise_diff( C, Cref );

    printf( "data_blk_var2( %d, 1:3 ) = [ %d %le  %le];\n", i, n,
            gflops / dtime_best, diff );
    fflush( stdout );
#endif

#if TEST_UNB_VAR3==TRUE
    /* Variant 3 unblocked */

    for ( irep=0; irep<nrepeats; irep++ ){

      FLA_Copy( Cold, C );
    
      dtime = FLA_Clock();

      Symm_unb_var3( A, B, C );

      dtime = FLA_Clock() - dtime;

      if ( irep == 0 ) 
	dtime_best = dtime;
      else
	dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
    }    

    diff = FLA_Max_elemwise_diff( C, Cref );

    printf( "data_unb_var3( %d, 1:3 ) = [ %d %le  %le];\n", i, n,
            gflops / dtime_best, diff );
    fflush( stdout );
#endif

#if TEST_BLK_VAR3==TRUE
    /* Variant 3 blocked */

    for ( irep=0; irep<nrepeats; irep++ ){
      FLA_Copy( Cold, C );
    
      dtime = FLA_Clock();

      Symm_blk_var3( A, B, C, nb_alg );

      dtime = FLA_Clock() - dtime;

      if ( irep == 0 ) 
	dtime_best = dtime;
      else
	dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
    }

    diff = FLA_Max_elemwise_diff( C, Cref );

    printf( "data_blk_var3( %d, 1:3 ) = [ %d %le  %le];\n", i, n,
            gflops / dtime_best, diff );
    fflush( stdout );
#endif

#if TEST_UNB_VAR4==TRUE
    /* Variant 4 unblocked */

    for ( irep=0; irep<nrepeats; irep++ ){

      FLA_Copy( Cold, C );
    
      dtime = FLA_Clock();

      Symm_unb_var4( A, B, C );

      dtime = FLA_Clock() - dtime;

      if ( irep == 0 ) 
	dtime_best = dtime;
      else
	dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
    }    

    diff = FLA_Max_elemwise_diff( C, Cref );

    printf( "data_unb_var4( %d, 1:3 ) = [ %d %le  %le];\n", i, n,
            gflops / dtime_best, diff );
    fflush( stdout );
#endif

#if TEST_BLK_VAR4==TRUE
    /* Variant 4 blocked */

    for ( irep=0; irep<nrepeats; irep++ ){
      FLA_Copy( Cold, C );
    
      dtime = FLA_Clock();

      Symm_blk_var4( A, B, C, nb_alg );

      dtime = FLA_Clock() - dtime;

      if ( irep == 0 ) 
	dtime_best = dtime;
      else
	dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
    }

    diff = FLA_Max_elemwise_diff( C, Cref );

    printf( "data_blk_var4( %d, 1:3 ) = [ %d %le  %le];\n", i, n,
            gflops / dtime_best, diff );
    fflush( stdout );
#endif


#if TEST_UNB_VAR5==TRUE
    /* Variant 5 unblocked */

    for ( irep=0; irep<nrepeats; irep++ ){

      FLA_Copy( Cold, C );
    
      dtime = FLA_Clock();

      Symm_unb_var5( A, B, C );

      dtime = FLA_Clock() - dtime;

      if ( irep == 0 ) 
	dtime_best = dtime;
      else
	dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
    }    

    diff = FLA_Max_elemwise_diff( C, Cref );

    printf( "data_unb_var5( %d, 1:3 ) = [ %d %le  %le];\n", i, n,
            gflops / dtime_best, diff );
    fflush( stdout );
#endif

#if TEST_BLK_VAR5==TRUE
    /* Variant 5 blocked */

    for ( irep=0; irep<nrepeats; irep++ ){
      FLA_Copy( Cold, C );
    
      dtime = FLA_Clock();

      Symm_blk_var5( A, B, C, nb_alg );

      dtime = FLA_Clock() - dtime;

      if ( irep == 0 ) 
	dtime_best = dtime;
      else
	dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
    }

    diff = FLA_Max_elemwise_diff( C, Cref );

    printf( "data_blk_var5( %d, 1:3 ) = [ %d %le  %le];\n", i, n,
            gflops / dtime_best, diff );
    fflush( stdout );
#endif


#if TEST_UNB_VAR6==TRUE
    /* Variant 6 unblocked */

    for ( irep=0; irep<nrepeats; irep++ ){

      FLA_Copy( Cold, C );
    
      dtime = FLA_Clock();

      Symm_unb_var6( A, B, C );

      dtime = FLA_Clock() - dtime;

      if ( irep == 0 ) 
	dtime_best = dtime;
      else
	dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
    }    

    diff = FLA_Max_elemwise_diff( C, Cref );

    printf( "data_unb_var6( %d, 1:3 ) = [ %d %le  %le];\n", i, n,
            gflops / dtime_best, diff );
    fflush( stdout );
#endif

#if TEST_BLK_VAR6==TRUE
    /* Variant 6 blocked */

    for ( irep=0; irep<nrepeats; irep++ ){
      FLA_Copy( Cold, C );
    
      dtime = FLA_Clock();

      Symm_blk_var6( A, B, C, nb_alg );

      dtime = FLA_Clock() - dtime;

      if ( irep == 0 ) 
	dtime_best = dtime;
      else
	dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
    }

    diff = FLA_Max_elemwise_diff( C, Cref );

    printf( "data_blk_var6( %d, 1:3 ) = [ %d %le  %le];\n", i, n,
            gflops / dtime_best, diff );
    fflush( stdout );
#endif


#if TEST_UNB_VAR7==TRUE
    /* Variant 7 unblocked */

    for ( irep=0; irep<nrepeats; irep++ ){

      FLA_Copy( Cold, C );
    
      dtime = FLA_Clock();

      Symm_unb_var7( A, B, C );

      dtime = FLA_Clock() - dtime;

      if ( irep == 0 ) 
	dtime_best = dtime;
      else
	dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
    }    

    diff = FLA_Max_elemwise_diff( C, Cref );

    printf( "data_unb_var7( %d, 1:3 ) = [ %d %le  %le];\n", i, n,
            gflops / dtime_best, diff );
    fflush( stdout );
#endif

#if TEST_BLK_VAR7==TRUE
    /* Variant 4 blocked */

    for ( irep=0; irep<nrepeats; irep++ ){
      FLA_Copy( Cold, C );
    
      dtime = FLA_Clock();

      Symm_blk_var7( A, B, C, nb_alg );

      dtime = FLA_Clock() - dtime;

      if ( irep == 0 ) 
	dtime_best = dtime;
      else
	dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
    }

    diff = FLA_Max_elemwise_diff( C, Cref );

    printf( "data_blk_var7( %d, 1:3 ) = [ %d %le  %le];\n", i, n,
            gflops / dtime_best, diff );
    fflush( stdout );
#endif


#if TEST_UNB_VAR8==TRUE
    /* Variant 8 unblocked */

    for ( irep=0; irep<nrepeats; irep++ ){

      FLA_Copy( Cold, C );
    
      dtime = FLA_Clock();

      Symm_unb_var8( A, B, C );

      dtime = FLA_Clock() - dtime;

      if ( irep == 0 ) 
	dtime_best = dtime;
      else
	dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
    }    

    diff = FLA_Max_elemwise_diff( C, Cref );

    printf( "data_unb_var8( %d, 1:3 ) = [ %d %le  %le];\n", i, n,
            gflops / dtime_best, diff );
    fflush( stdout );
#endif

#if TEST_BLK_VAR8==TRUE
    /* Variant 4 blocked */

    for ( irep=0; irep<nrepeats; irep++ ){
      FLA_Copy( Cold, C );
    
      dtime = FLA_Clock();

      Symm_blk_var8( A, B, C, nb_alg );

      dtime = FLA_Clock() - dtime;

      if ( irep == 0 ) 
	dtime_best = dtime;
      else
	dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
    }

    diff = FLA_Max_elemwise_diff( C, Cref );

    printf( "data_blk_var8( %d, 1:3 ) = [ %d %le  %le];\n", i, n,
            gflops / dtime_best, diff );
    fflush( stdout );
#endif


    FLA_Obj_free( &A );
    FLA_Obj_free( &B );
    FLA_Obj_free( &C );
    FLA_Obj_free( &Cref );
    FLA_Obj_free( &Cold );
    printf( "\n" );

    i++;
  }

  /* Print the MATLAB commands to plot the data */

  /* Delete all existing figures */
  printf( "close all\n" );

  /* Plot the performance of FLAME */
  printf( "plot( data_FLAME( :,1 ), data_FLAME( :, 2 ), 'k--' ); \n" );

  /* Indicate that you want to add to the existing plot */
  printf( "hold on\n" );

  /* Plot the performance of the reference implementation */
  //  printf( "plot( data_REF( :,1 ), data_REF( :, 2 ), 'k-' ); \n" );

  /* Plot the performance of your implementations */

#if TEST_UNB_VAR1==TRUE
  printf( "plot( data_unb_var1( :,1 ), data_unb_var1( :, 2 ), 'r-.' ); \n" );
#endif
#if TEST_UNB_VAR2==TRUE
  printf( "plot( data_unb_var2( :,1 ), data_unb_var2( :, 2 ), 'g-.' ); \n" );
#endif
#if TEST_UNB_VAR3==TRUE
  printf( "plot( data_unb_var3( :,1 ), data_unb_var3( :, 2 ), 'b-.' ); \n" );
#endif
#if TEST_UNB_VAR4==TRUE
  printf( "plot( data_unb_var4( :,1 ), data_unb_var4( :, 2 ), 'm-.' ); \n" );
#endif
#if TEST_UNB_VAR5==TRUE
  printf( "plot( data_unb_var5( :,1 ), data_unb_var5( :, 2 ), 'c-.' ); \n" );
#endif
#if TEST_UNB_VAR6==TRUE
  printf( "plot( data_unb_var6( :,1 ), data_unb_var6( :, 2 ), 'y-.' ); \n" );
#endif
#if TEST_UNB_VAR7==TRUE
  printf( "plot( data_unb_var7( :,1 ), data_unb_var7( :, 2 ), 'k-.' ); \n" );
#endif
#if TEST_UNB_VAR8==TRUE
  printf( "plot( data_unb_var8( :,1 ), data_unb_var8( :, 2 ), 'm:' ); \n" );
#endif
#if TEST_BLK_VAR1==TRUE
  printf( "plot( data_blk_var1( :,1 ), data_blk_var1( :, 2 ), 'r--' ); \n" );
#endif
#if TEST_BLK_VAR2==TRUE
  printf( "plot( data_blk_var2( :,1 ), data_blk_var2( :, 2 ), 'g--' ); \n" );
#endif
#if TEST_BLK_VAR3==TRUE
  printf( "plot( data_blk_var3( :,1 ), data_blk_var3( :, 2 ), 'b--' ); \n" );
#endif
#if TEST_BLK_VAR4==TRUE
  printf( "plot( data_blk_var4( :,1 ), data_blk_var4( :, 2 ), 'm--' ); \n" );
#endif
#if TEST_BLK_VAR5==TRUE
  printf( "plot( data_blk_var5( :,1 ), data_blk_var5( :, 2 ), 'c--' ); \n" );
#endif
#if TEST_BLK_VAR6==TRUE
  printf( "plot( data_blk_var6( :,1 ), data_blk_var6( :, 2 ), 'y--' ); \n" );
#endif
#if TEST_BLK_VAR7==TRUE
  printf( "plot( data_blk_var7( :,1 ), data_blk_var7( :, 2 ), 'k--' ); \n" );
#endif
#if TEST_BLK_VAR8==TRUE
  printf( "plot( data_blk_var8( :,1 ), data_blk_var8( :, 2 ), 'm-' ); \n" );
#endif

  printf( "hold on \n");

  printf( "xlabel( 'matrix dimension m=n' );\n");
  printf( "ylabel( 'GFLOPS/sec.' );\n");
  //  printf( "axis( [ 0 %d 0 %3.1f ] ); \n", nlast, max_gflops );
  printf( "legend( 'FLA Trsm', ...\n");
#if TEST_UNB_VAR1==TRUE
  printf( "        'unb var1', ...\n");
#endif
#if TEST_UNB_VAR2==TRUE
  printf( "        'unb var2', ...\n");
#endif
#if TEST_UNB_VAR3==TRUE
  printf( "        'unb var3', ...\n");
#endif
#if TEST_UNB_VAR4==TRUE
  printf( "        'unb var4', ...\n");
#endif
#if TEST_UNB_VAR5==TRUE
  printf( "        'unb var5', ...\n");
#endif
#if TEST_UNB_VAR6==TRUE
  printf( "        'unb var6', ...\n");
#endif
#if TEST_UNB_VAR7==TRUE
  printf( "        'unb var7', ...\n");
#endif
#if TEST_UNB_VAR8==TRUE
  printf( "        'unb var8', ...\n");
#endif
#if TEST_BLK_VAR1==TRUE
  printf( "        'blk var1', ...\n");
#endif
#if TEST_BLK_VAR2==TRUE
  printf( "        'blk var2', ...\n");
#endif
#if TEST_BLK_VAR3==TRUE
  printf( "        'blk var3', ...\n");
#endif
#if TEST_BLK_VAR4==TRUE
  printf( "        'blk var4', ...\n");
#endif
#if TEST_BLK_VAR5==TRUE
  printf( "        'blk var5', ...\n");
#endif
#if TEST_BLK_VAR6==TRUE
  printf( "        'blk var6', ...\n");
#endif
#if TEST_BLK_VAR7==TRUE
  printf( "        'blk var7', ...\n");
#endif
#if TEST_BLK_VAR8==TRUE
  printf( "        'blk var8', ...\n");
#endif
  printf( "         2 );\n");

  FLA_Finalize( );
}
예제 #4
0
FLA_Error FLA_Svd_uv_unb_var1( dim_t n_iter_max, FLA_Obj A, FLA_Obj s, FLA_Obj U, FLA_Obj V, dim_t k_accum, dim_t b_alg )
{
    FLA_Error    r_val = FLA_SUCCESS;
    FLA_Datatype dt;
    FLA_Datatype dt_real;
    FLA_Datatype dt_comp;
    FLA_Obj      scale, T, S, rL, rR, d, e, G, H;
    dim_t        m_A, n_A;
    dim_t        min_m_n;
    dim_t        n_GH;
    double       crossover_ratio = 17.0 / 9.0;

    n_GH    = k_accum;

    m_A     = FLA_Obj_length( A );
    n_A     = FLA_Obj_width( A );
    min_m_n = FLA_Obj_min_dim( A );
    dt      = FLA_Obj_datatype( A );
    dt_real = FLA_Obj_datatype_proj_to_real( A );
    dt_comp = FLA_Obj_datatype_proj_to_complex( A );

    // Create matrices to hold block Householder transformations.
    FLA_Bidiag_UT_create_T( A, &T, &S );

    // Create vectors to hold the realifying scalars.
    FLA_Obj_create( dt,      min_m_n,      1, 0, 0, &rL );
    FLA_Obj_create( dt,      min_m_n,      1, 0, 0, &rR );

    // Create vectors to hold the diagonal and sub-diagonal.
    FLA_Obj_create( dt_real, min_m_n,      1, 0, 0, &d );
    FLA_Obj_create( dt_real, min_m_n-1,    1, 0, 0, &e );

    // Create matrices to hold the left and right Givens scalars.
    FLA_Obj_create( dt_comp, min_m_n-1, n_GH, 0, 0, &G );
    FLA_Obj_create( dt_comp, min_m_n-1, n_GH, 0, 0, &H );

    // Create a real scaling factor.
    FLA_Obj_create( dt_real, 1, 1, 0, 0, &scale );

    // Compute a scaling factor; If none is needed, sigma will be set to one.
    FLA_Svd_compute_scaling( A, scale );

    // Scale the matrix if scale is non-unit.
    if ( !FLA_Obj_equals( scale, FLA_ONE ) )
        FLA_Scal( scale, A );

    if ( m_A < crossover_ratio * n_A )
    {
        // Reduce the matrix to bidiagonal form.
        // Apply scalars to rotate elements on the superdiagonal to the real domain.
        // Extract the diagonal and superdiagonal from A.
        FLA_Bidiag_UT( A, T, S );
        FLA_Bidiag_UT_realify( A, rL, rR );
        FLA_Bidiag_UT_extract_real_diagonals( A, d, e );

        // Form U and V.
        FLA_Bidiag_UT_form_U( A, T, U );
        FLA_Bidiag_UT_form_V( A, S, V );

        // Apply the realifying scalars in rL and rR to U and V, respectively.
        {
            FLA_Obj UL, UR;
            FLA_Obj VL, VR;

            FLA_Part_1x2( U,   &UL, &UR,   min_m_n, FLA_LEFT );
            FLA_Part_1x2( V,   &VL, &VR,   min_m_n, FLA_LEFT );

            FLA_Apply_diag_matrix( FLA_RIGHT, FLA_CONJUGATE,    rL, UL );
            FLA_Apply_diag_matrix( FLA_RIGHT, FLA_NO_CONJUGATE, rR, VL );
        }

        // Perform a singular value decomposition on the bidiagonal matrix.
        r_val = FLA_Bsvd_v_opt_var1( n_iter_max, d, e, G, H, U, V, b_alg );
    }
    else // if ( crossover_ratio * n_A <= m_A )
    {
        FLA_Obj TQ, R;
        FLA_Obj AT,
                AB;
        FLA_Obj UL, UR;

        // Perform a QR factorization on A and form Q in U.
        FLA_QR_UT_create_T( A, &TQ );
        FLA_QR_UT( A, TQ );
        FLA_QR_UT_form_Q( A, TQ, U );
        FLA_Obj_free( &TQ );

        // Set the lower triangle of R to zero and then copy the upper
        // triangle of A to R.
        FLA_Part_2x1( A,   &AT,
                           &AB,   n_A, FLA_TOP );
        FLA_Obj_create( dt, n_A, n_A, 0, 0, &R );
        FLA_Setr( FLA_LOWER_TRIANGULAR, FLA_ZERO, R );
        FLA_Copyr( FLA_UPPER_TRIANGULAR, AT, R );

        // Reduce the matrix to bidiagonal form.
        // Apply scalars to rotate elements on the superdiagonal to the real domain.
        // Extract the diagonal and superdiagonal from A.
        FLA_Bidiag_UT( R, T, S );
        FLA_Bidiag_UT_realify( R, rL, rR );
        FLA_Bidiag_UT_extract_real_diagonals( R, d, e );

        // Form V from right Householder vectors in upper triangle of R.
        FLA_Bidiag_UT_form_V( R, S, V );

        // Form U in R.
        FLA_Bidiag_UT_form_U( R, T, R );

        // Apply the realifying scalars in rL and rR to U and V, respectively.
        FLA_Apply_diag_matrix( FLA_RIGHT, FLA_CONJUGATE,    rL, R );
        FLA_Apply_diag_matrix( FLA_RIGHT, FLA_NO_CONJUGATE, rR, V );

        // Perform a singular value decomposition on the bidiagonal matrix.
        r_val = FLA_Bsvd_v_opt_var1( n_iter_max, d, e, G, H, R, V, b_alg );

        // Multiply R into U, storing the result in A and then copying back
        // to U.
        FLA_Part_1x2( U,   &UL, &UR,   n_A, FLA_LEFT );
        FLA_Gemm( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE,
                  FLA_ONE, UL, R, FLA_ZERO, A );
        FLA_Copy( A, UL );

        FLA_Obj_free( &R );
    }

    // Copy the converged eigenvalues to the output vector.
    FLA_Copy( d, s );

    // Sort the singular values and singular vectors in descending order.
    FLA_Sort_svd( FLA_BACKWARD, s, U, V );

    // If the matrix was scaled, rescale the singular values.
    if ( !FLA_Obj_equals( scale, FLA_ONE ) )
        FLA_Inv_scal( scale, s );

    FLA_Obj_free( &scale );
    FLA_Obj_free( &T );
    FLA_Obj_free( &S );
    FLA_Obj_free( &rL );
    FLA_Obj_free( &rR );
    FLA_Obj_free( &d );
    FLA_Obj_free( &e );
    FLA_Obj_free( &G );
    FLA_Obj_free( &H );

    return r_val;
}
예제 #5
0
파일: FLA_Sort.c 프로젝트: pgawron/tlash
FLA_Error FLA_Sort( FLA_Direct direct, FLA_Obj x )
{
	FLA_Datatype datatype;
	FLA_Obj      x_use;
	dim_t        m_x;
	dim_t        inc_x;

	if ( FLA_Check_error_level() >= FLA_MIN_ERROR_CHECKING )
		FLA_Sort_check( direct, x );

	datatype = FLA_Obj_datatype( x );

	m_x      = FLA_Obj_vector_dim( x );
	inc_x    = FLA_Obj_vector_inc( x );

	// If the vector does not have unit stride, copy it to a temporary vector
	// that does have unit stride.
	if ( inc_x != 1 )
	{
		FLA_Obj_create_copy_of( FLA_NO_TRANSPOSE, x, &x_use );
		inc_x = FLA_Obj_vector_inc( x_use );
	}
	else
	{
		x_use = x;
	}

	switch ( datatype )
	{
		case FLA_FLOAT:
		{
			float* x_p = ( float* ) FLA_FLOAT_PTR( x_use );

			if ( direct == FLA_FORWARD )
				FLA_Sort_f_ops( m_x,
				                x_p, inc_x );
			else // if ( direct == FLA_BACKWARD )
				FLA_Sort_b_ops( m_x,
				                x_p, inc_x );

			break;
		}

		case FLA_DOUBLE:
		{
			double* x_p = ( double* ) FLA_DOUBLE_PTR( x_use );

			if ( direct == FLA_FORWARD )
				FLA_Sort_f_opd( m_x,
				                x_p, inc_x );
			else // if ( direct == FLA_BACKWARD )
				FLA_Sort_b_opd( m_x,
				                x_p, inc_x );

			break;
		}

	}

	if ( inc_x != 1 )
	{
		FLA_Copy( x_use, x );
		FLA_Obj_free( &x_use );
	}

	return FLA_SUCCESS;
}
예제 #6
0
void time_Apply_G_rf(
               int variant, int type, int n_repeats, int m, int k, int n, int b_alg,
               FLA_Obj A, FLA_Obj A_ref, FLA_Obj G, FLA_Obj P,
               double *dtime, double *diff, double *gflops )
{
  int irep;

  double
    dtime_old = 1.0e9;

  FLA_Obj
    A_save, G_save, norm;

  if ( FLA_Obj_is_real( A ) )
  {
    if (
       //( variant == 1 && type == FLA_ALG_UNB_OPT ) ||
       //( variant == 1 && type == FLA_ALG_UNB_ASM ) ||
       //( variant == 1 && type == FLA_ALG_BLOCKED ) ||
       //( variant == 2 && type == FLA_ALG_UNB_OPT ) ||
       //( variant == 2 && type == FLA_ALG_UNB_ASM ) ||
       //( variant == 2 && type == FLA_ALG_BLOCKED ) ||

       //( variant == 3 && type == FLA_ALG_UNB_OPT ) ||
       //( variant == 3 && type == FLA_ALG_UNB_ASM ) ||
       //( variant == 3 && type == FLA_ALG_BLOCKED ) ||
       //( variant == 6 && type == FLA_ALG_UNB_OPT ) ||
       //( variant == 6 && type == FLA_ALG_UNB_ASM ) ||
       //( variant == 6 && type == FLA_ALG_BLOCKED ) ||
       //( variant == 9 && type == FLA_ALG_UNB_OPT ) ||
       //( variant == 9 && type == FLA_ALG_UNB_ASM ) ||
       //( variant == 9 && type == FLA_ALG_BLOCKED ) ||

       ( variant == 4 ) ||
       ( variant == 5 ) ||
       ( variant == 7 ) ||
       ( variant == 8 ) ||
       FALSE
    ) 
    {
      *gflops = 0.0;
      *diff   = 0.0;
      return;
    }
  }
  else if ( FLA_Obj_is_complex( A ) )
  {
    if (
       //( variant == 1 && type == FLA_ALG_UNB_OPT ) ||
       //( variant == 1 && type == FLA_ALG_UNB_ASM ) ||
       //( variant == 1 && type == FLA_ALG_BLOCKED ) ||
       //( variant == 2 && type == FLA_ALG_UNB_OPT ) ||
       //( variant == 2 && type == FLA_ALG_UNB_ASM ) ||
       //( variant == 2 && type == FLA_ALG_BLOCKED ) ||

       //( variant == 3 && type == FLA_ALG_UNB_OPT ) ||
       //( variant == 3 && type == FLA_ALG_UNB_ASM ) ||
       //( variant == 3 && type == FLA_ALG_BLOCKED ) ||
       //( variant == 6 && type == FLA_ALG_UNB_OPT ) ||
       //( variant == 6 && type == FLA_ALG_UNB_ASM ) ||
       //( variant == 6 && type == FLA_ALG_BLOCKED ) ||
       //( variant == 9 && type == FLA_ALG_UNB_OPT ) ||
       //( variant == 9 && type == FLA_ALG_UNB_ASM ) ||
       //( variant == 9 && type == FLA_ALG_BLOCKED ) ||

       ( variant == 4 ) ||
       ( variant == 5 ) ||
       ( variant == 7 ) ||
       ( variant == 8 ) ||
       FALSE
    )
    {
      *gflops = 0.0;
      *diff   = 0.0;
      return;
    }
  }

  FLA_Obj_create_conf_to( FLA_NO_TRANSPOSE, A, &A_save );
  FLA_Obj_create_conf_to( FLA_NO_TRANSPOSE, G, &G_save );
  FLA_Obj_create( FLA_Obj_datatype_proj_to_real( A ), 1, 1, 0, 0, &norm );

  //dim_t b_flash_m = b_alg;
  //dim_t b_flash_n = n;
  //FLASH_Obj_create_hier_copy_of_flat_ext( A, 1, &b_flash_m, &b_flash_n, &AH ); 

//printf ( "flash dims: %d x %d\n", FLA_Obj_length( AH ), FLA_Obj_width( AH ) );

  FLA_Copy_external( A, A_save );
  FLA_Copy_external( G, G_save );

  for ( irep = 0 ; irep < n_repeats; irep++ ){

    FLA_Copy_external( A_save, A );
    FLA_Copy_external( G_save, G );
    //FLASH_Obj_hierarchify( A_save, AH );

    *dtime = FLA_Clock();

    switch( variant ){

    case 0:
      break;

    // Time variant 1
    case 1:
    {
      switch( type ){
      case FLA_ALG_UNB_OPT:
        FLA_Apply_G_rf_opt_var1( G, A );
        break;
      case FLA_ALG_UNB_ASM:
        FLA_Apply_G_rf_asm_var1( G, A );
        break;
      case FLA_ALG_BLOCKED:
        FLA_Apply_G_rf_blk_var1( G, A, b_alg );
        break;
      }
      break;
    }

    // Time variant 2
    case 2:
    {
      switch( type ){
      case FLA_ALG_UNB_OPT:
        FLA_Apply_G_rf_opt_var2( G, A );
        break;
      case FLA_ALG_UNB_ASM:
        FLA_Apply_G_rf_asm_var2( G, A );
        break;
      case FLA_ALG_BLOCKED:
        FLA_Apply_G_rf_blk_var2( G, A, b_alg );
        break;
      }
      break;
    }

    // Time variant 3
    case 3:
    {
      switch( type ){
      case FLA_ALG_UNB_OPT:
        FLA_Apply_G_rf_opt_var3( G, A );
        break;
      case FLA_ALG_UNB_ASM:
        FLA_Apply_G_rf_asm_var3( G, A );
        break;
      case FLA_ALG_BLOCKED:
        FLA_Apply_G_rf_blk_var3( G, A, b_alg );
        break;
      }
      break;
    }

    // Time variant 6
    case 6:
    {
      switch( type ){
      case FLA_ALG_UNB_OPT:
        FLA_Apply_G_rf_opt_var6( G, A );
        break;
      case FLA_ALG_UNB_ASM:
        FLA_Apply_G_rf_asm_var6( G, A );
        break;
      case FLA_ALG_BLOCKED:
        FLA_Apply_G_rf_blk_var6( G, A, b_alg );
        break;
      }
      break;
    }

    // Time variant 9
    case 9:
    {
      switch( type ){
      case FLA_ALG_UNB_OPT:
        FLA_Apply_G_rf_opt_var9( G, A );
        break;
      case FLA_ALG_UNB_ASM:
        FLA_Apply_G_rf_asm_var9( G, A );
        break;
      case FLA_ALG_BLOCKED:
        FLA_Apply_G_rf_blk_var9( G, A, b_alg );
        break;
      }
      break;
    }


    }

    *dtime = FLA_Clock() - *dtime;
    dtime_old = min( *dtime, dtime_old );

  }

  if ( variant == 1 && type == FLA_ALG_UNB_OPT )
  {
    //FLA_Obj_show( "A_ref", A, "%9.2e + %9.2e ", "" );
    //FLA_Obj_show( "A", A, "%9.2e ", "" );

    FLA_Copy( A, A_ref );
    *diff = 0.0;
  }
  else
  {
    //FLA_Obj_show( "A", A, "%9.2e + %9.2e ", "" );

//if ( variant == 7 && type == FLA_ALG_UNB_ASM )
    //FLA_Obj_show( "A", A, "%9.2e", "" );

    //if ( variant == 9 ) FLASH_Obj_flatten( AH, A );

    FLA_Axpy( FLA_MINUS_ONE, A_ref, A );
    FLA_Norm_frob( A, norm );
    FLA_Obj_extract_real_scalar( norm, diff );

    //*diff = FLA_Max_elemwise_diff( A_ref, A );
  }


  *gflops = 6.0 * k * m * ( n - 1 ) /
            dtime_old / 1e9;

  if ( FLA_Obj_is_complex( A ) )
    *gflops *= 2.0;

  *dtime = dtime_old;

  FLA_Copy_external( A_save, A );
  FLA_Copy_external( G_save, G );

  //FLASH_Obj_free( &AH );

  FLA_Obj_free( &A_save );
  FLA_Obj_free( &G_save );
  FLA_Obj_free( &norm );
}
예제 #7
0
FLA_Error FLA_Svd_uv_var2_components( dim_t n_iter_max, dim_t k_accum, dim_t b_alg,
                                      FLA_Obj A, FLA_Obj s, FLA_Obj U, FLA_Obj V,
                                      double* dtime_bred, double* dtime_bsvd, double* dtime_appq,
                                      double* dtime_qrfa, double* dtime_gemm )
{
	FLA_Error    r_val = FLA_SUCCESS;
	FLA_Datatype dt;
	FLA_Datatype dt_real;
	FLA_Datatype dt_comp;
	FLA_Obj      T, S, rL, rR, d, e, G, H, RG, RH, W;
	dim_t        m_A, n_A;
	dim_t        min_m_n;
	dim_t        n_GH;
	double       crossover_ratio = 17.0 / 9.0;
	double       dtime_temp;

	n_GH    = k_accum;

	m_A     = FLA_Obj_length( A );
	n_A     = FLA_Obj_width( A );
	min_m_n = FLA_Obj_min_dim( A );
	dt      = FLA_Obj_datatype( A );
	dt_real = FLA_Obj_datatype_proj_to_real( A );
	dt_comp = FLA_Obj_datatype_proj_to_complex( A );

	// If the matrix is a scalar, then the SVD is easy.
	if ( min_m_n == 1 )
	{
		FLA_Copy( A, s );
		FLA_Set_to_identity( U );
		FLA_Set_to_identity( V );

		return FLA_SUCCESS;
	}

	// Create matrices to hold block Householder transformations.
	FLA_Bidiag_UT_create_T( A, &T, &S );

	// Create vectors to hold the realifying scalars.
	FLA_Obj_create( dt,      min_m_n,      1, 0, 0, &rL );
	FLA_Obj_create( dt,      min_m_n,      1, 0, 0, &rR );

	// Create vectors to hold the diagonal and sub-diagonal.
	FLA_Obj_create( dt_real, min_m_n,      1, 0, 0, &d );
	FLA_Obj_create( dt_real, min_m_n-1,    1, 0, 0, &e );

	// Create matrices to hold the left and right Givens scalars.
	FLA_Obj_create( dt_comp, min_m_n-1, n_GH, 0, 0, &G );
	FLA_Obj_create( dt_comp, min_m_n-1, n_GH, 0, 0, &H );

	// Create matrices to hold the left and right Givens matrices.
	FLA_Obj_create( dt_real, min_m_n, min_m_n, 0, 0, &RG );
	FLA_Obj_create( dt_real, min_m_n, min_m_n, 0, 0, &RH );
	FLA_Obj_create( dt,      m_A,     n_A,     0, 0, &W );

	if ( m_A >= n_A )
	{
		if ( m_A < crossover_ratio * n_A )
		{
			dtime_temp = FLA_Clock();
			{
			// Reduce the matrix to bidiagonal form.
			// Apply scalars to rotate elements on the sub-diagonal to the real domain.
			// Extract the diagonal and sub-diagonal from A.
			FLA_Bidiag_UT( A, T, S );
			FLA_Bidiag_UT_realify( A, rL, rR );
			FLA_Bidiag_UT_extract_diagonals( A, d, e );
			}
			*dtime_bred = FLA_Clock() - dtime_temp;

			dtime_temp = FLA_Clock();
			{
			// Form U and V.
			FLA_Bidiag_UT_form_U( A, T, U );
			FLA_Bidiag_UT_form_V( A, S, V );
			}
			*dtime_appq = FLA_Clock() - dtime_temp;

			// Apply the realifying scalars in rL and rR to U and V, respectively.
			{
				FLA_Obj UL, UR;
				FLA_Obj VL, VR;

				FLA_Part_1x2( U,   &UL, &UR,   min_m_n, FLA_LEFT );
				FLA_Part_1x2( V,   &VL, &VR,   min_m_n, FLA_LEFT );

				FLA_Apply_diag_matrix( FLA_RIGHT, FLA_CONJUGATE,    rL, UL );
				FLA_Apply_diag_matrix( FLA_RIGHT, FLA_NO_CONJUGATE, rR, VL );
			}

			dtime_temp = FLA_Clock();
			{
			// Perform a singular value decomposition on the bidiagonal matrix.
			r_val = FLA_Bsvd_v_opt_var2( n_iter_max, d, e, G, H, RG, RH, W, U, V, b_alg );
			}
			*dtime_bsvd = FLA_Clock() - dtime_temp;
		}
		else // if ( crossover_ratio * n_A <= m_A )
		{
			FLA_Obj TQ, R;
			FLA_Obj AT,
			        AB;
			FLA_Obj UL, UR;

			//FLA_QR_UT_create_T( A, &TQ );
			FLA_Obj_create( dt, 32, n_A, 0, 0, &TQ );

			dtime_temp = FLA_Clock();
			{
			// Perform a QR factorization on A and form Q in U.
			FLA_QR_UT( A, TQ );
			}
			*dtime_qrfa = FLA_Clock() - dtime_temp;

			dtime_temp = FLA_Clock();
			{
			FLA_QR_UT_form_Q( A, TQ, U );
			}
			*dtime_appq = FLA_Clock() - dtime_temp;

			FLA_Obj_free( &TQ );

			// Set the lower triangle of R to zero and then copy the upper
			// triangle of A to R.
			FLA_Part_2x1( A,   &AT,
			                   &AB,   n_A, FLA_TOP );
			FLA_Obj_create( dt, n_A, n_A, 0, 0, &R );
			FLA_Setr( FLA_LOWER_TRIANGULAR, FLA_ZERO, R );
			FLA_Copyr( FLA_UPPER_TRIANGULAR, AT, R );

			dtime_temp = FLA_Clock();
			{
			// Reduce the matrix to bidiagonal form.
			// Apply scalars to rotate elements on the superdiagonal to the real domain.
			// Extract the diagonal and superdiagonal from A.
			FLA_Bidiag_UT( R, T, S );
			FLA_Bidiag_UT_realify( R, rL, rR );
			FLA_Bidiag_UT_extract_diagonals( R, d, e );
			}
			*dtime_bred = FLA_Clock() - dtime_temp;

			dtime_temp = FLA_Clock();
			{
			// Form V from right Householder vectors in upper triangle of R.
			FLA_Bidiag_UT_form_V( R, S, V );

			// Form U in R.
			FLA_Bidiag_UT_form_U( R, T, R );
			}
			*dtime_appq += FLA_Clock() - dtime_temp;

			// Apply the realifying scalars in rL and rR to U and V, respectively.
			FLA_Apply_diag_matrix( FLA_RIGHT, FLA_CONJUGATE,    rL, R );
			FLA_Apply_diag_matrix( FLA_RIGHT, FLA_NO_CONJUGATE, rR, V );

			dtime_temp = FLA_Clock();
			{
			// Perform a singular value decomposition on the bidiagonal matrix.
			r_val = FLA_Bsvd_v_opt_var2( n_iter_max, d, e, G, H, RG, RH, W, R, V, b_alg );
			}
			*dtime_bsvd = FLA_Clock() - dtime_temp;

			dtime_temp = FLA_Clock();
			{
			// Multiply R into U, storing the result in A and then copying back
			// to U.
			FLA_Part_1x2( U,   &UL, &UR,   n_A, FLA_LEFT );
			FLA_Gemm( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE,
			          FLA_ONE, UL, R, FLA_ZERO, A );
			FLA_Copy( A, UL );
			}
			*dtime_gemm = FLA_Clock() - dtime_temp;

			FLA_Obj_free( &R );
		}
	}
	else // if ( m_A < n_A )
	{
		FLA_Check_error_code( FLA_NOT_YET_IMPLEMENTED );
	}

	// Copy the converged eigenvalues to the output vector.
	FLA_Copy( d, s );

	// Sort the singular values and singular vectors in descending order.
	FLA_Sort_svd( FLA_BACKWARD, s, U, V );

	FLA_Obj_free( &T );
	FLA_Obj_free( &S );
	FLA_Obj_free( &rL );
	FLA_Obj_free( &rR );
	FLA_Obj_free( &d );
	FLA_Obj_free( &e );
	FLA_Obj_free( &G );
	FLA_Obj_free( &H );
	FLA_Obj_free( &RG );
	FLA_Obj_free( &RH );
	FLA_Obj_free( &W );

	return r_val;
}
예제 #8
0
void time_Hess_UT(
                 int variant, int type, int nrepeats, int m,
                 FLA_Obj A, FLA_Obj A_ref, FLA_Obj t, FLA_Obj T, FLA_Obj W,
                 double *dtime, double *diff, double *gflops )
{
  int
    irep;

  double
    dtime_old = 1.0e9;

  FLA_Obj
    A_save, norm;


  FLA_Obj_create_conf_to( FLA_NO_TRANSPOSE, A, &A_save );

  FLA_Obj_create( FLA_Obj_datatype_proj_to_real( A ), 1, 1, 0, 0, &norm );

  FLA_Copy_external( A, A_save );

  for ( irep = 0 ; irep < nrepeats; irep++ ){

    FLA_Copy_external( A_save, A );

    *dtime = FLA_Clock();

    switch( variant ){

    case 0:{
      switch( type ){
      case FLA_ALG_REFERENCE:
        REF_Hess_UT( A, t );
        break;
      case FLA_ALG_FRONT:
        FLA_Hess_UT( A, T );
        break;
      default:
        printf("trouble\n");
      }

      break;
    }

    }

    *dtime = FLA_Clock() - *dtime;
    dtime_old = min( *dtime, dtime_old );

  }

  //if ( type == FLA_ALG_REFERENCE )
  //{
  //  ;
  //}
  //else
  {
    FLA_Obj    AT, AB;
    FLA_Obj Q, QT, QB;
    FLA_Obj E, ET, EB;
    FLA_Obj F;
    dim_t   m_A, m_T;

    m_A = FLA_Obj_length( A );
    m_T = FLA_Obj_length( T );

    FLA_Obj_create( FLA_Obj_datatype( A ), m_A, m_A, 0, 0, &Q );
    FLA_Set_to_identity( Q );

    FLA_Part_2x1( Q,    &QT,
                        &QB,    1, FLA_TOP );
    FLA_Part_2x1( A,    &AT,
                        &AB,    1, FLA_TOP );

    if ( type == FLA_ALG_REFERENCE )
    {
      if ( FLA_Obj_is_real( A ) )
        FLA_Apply_Q_blk_external( FLA_LEFT, FLA_TRANSPOSE, FLA_COLUMNWISE, AB, t, QB );
      else
        FLA_Apply_Q_blk_external( FLA_LEFT, FLA_CONJ_TRANSPOSE, FLA_COLUMNWISE, AB, t, QB );
    }
    else
      FLA_Apply_Q_UT( FLA_LEFT, FLA_CONJ_TRANSPOSE, FLA_FORWARD, FLA_COLUMNWISE, AB, T, W, QB );

    FLA_Obj_create_conf_to( FLA_NO_TRANSPOSE, A, &E );
    FLA_Obj_create_conf_to( FLA_NO_TRANSPOSE, A, &F );

    FLA_Gemm_external( FLA_NO_TRANSPOSE, FLA_CONJ_TRANSPOSE,
                       FLA_ONE, A_save, Q, FLA_ZERO, E );
    FLA_Gemm_external( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE,
                       FLA_ONE, Q, E, FLA_ZERO, F );

    FLA_Copy( A, E );
    FLA_Part_2x1( E,    &ET,
                        &EB,    1, FLA_TOP );
    FLA_Triangularize( FLA_UPPER_TRIANGULAR, FLA_NONUNIT_DIAG, EB );

    *diff = FLA_Max_elemwise_diff( E, F );

    FLA_Obj_free( &Q );
    FLA_Obj_free( &E );
    FLA_Obj_free( &F );
  }

  *gflops = ( 10.0 / 3.0 * m * m * m ) /
            dtime_old / 1e9;
  if ( FLA_Obj_is_complex( A ) )
    *gflops *= 4.0;

  *dtime = dtime_old;

  FLA_Copy_external( A_save, A );

  FLA_Obj_free( &A_save );
  FLA_Obj_free( &norm );
}
FLA_Error FLA_Fill_with_logarithmic_dist( FLA_Obj alpha, FLA_Obj x )
{
	FLA_Obj      lT,              l0,
	             lB,              lambda1,
	                              l2;
	FLA_Obj      l, k, alpha2;
	FLA_Datatype dt_real;
	dim_t        n_x;


	if ( FLA_Check_error_level() >= FLA_MIN_ERROR_CHECKING )
		FLA_Fill_with_logarithmic_dist_check( alpha, x );

	dt_real = FLA_Obj_datatype_proj_to_real( x );
	n_x     = FLA_Obj_vector_dim( x );

	// Create a local counter to increment as we create the distribution.
	FLA_Obj_create( dt_real, 1,   1, 0, 0, &k );

	// Create a local vector l. We will work with this vector, which is
	// the same length as x, so that we can use vertical partitioning.
	FLA_Obj_create( dt_real, n_x, 1, 0, 0, &l );

	// Create a local real scalar alpha2 of the same precision as
	// alpha. Then copy alpha to alpha2, which will convert the
	// complex value to real, if necessary (ie: if alpha is complex).
	FLA_Obj_create( dt_real, 1,   1, 0, 0, &alpha2 );
	FLA_Copy( alpha, alpha2 );

	// Initialize k to 0.
	FLA_Set( FLA_ZERO, k );

	FLA_Part_2x1( l,    &lT,
	                    &lB,            0, FLA_TOP );

	while ( FLA_Obj_length( lB ) > 0 )
	{
		FLA_Repart_2x1_to_3x1( lT,                &l0,
		                    /* ** */            /* ******* */
		                                          &lambda1,
		                       lB,                &l2,        1, FLA_BOTTOM );

		/*------------------------------------------------------------*/

		// lambda1 = alpha^k;
		FLA_Pow( alpha2, k, lambda1 );

		// k = k + 1;
		FLA_Mult_add( FLA_ONE, FLA_ONE, k );

		/*------------------------------------------------------------*/

		FLA_Cont_with_3x1_to_2x1( &lT,                l0,
		                                              lambda1,
		                        /* ** */           /* ******* */
		                          &lB,                l2,     FLA_TOP );
	}

	// Normalize by last element.
	FLA_Part_2x1( l,    &lT,
	                    &lB,            1, FLA_BOTTOM );
	FLA_Inv_scal( lB, l );

	// Overwrite x with the distribution we created in l.
	FLA_Copy( l, x );

	FLA_Obj_free( &l );
	FLA_Obj_free( &k );
	FLA_Obj_free( &alpha2 );

	return FLA_SUCCESS;
}
예제 #10
0
void time_Bidiag_UT(
                 int param_combo, int type, int nrepeats, int m, int n,
                 FLA_Obj A, FLA_Obj tu, FLA_Obj tv, FLA_Obj TU, FLA_Obj TV,
                 double *dtime, double *diff, double *gflops )
{
  int
    irep;

  double
    dtime_old = 1.0e9;

  FLA_Obj
    A_save, norm;


  FLA_Obj_create_conf_to( FLA_NO_TRANSPOSE, A, &A_save );

  FLA_Obj_create( FLA_Obj_datatype_proj_to_real( A ), 1, 1, 0, 0, &norm );

  FLA_Copy_external( A, A_save );

  for ( irep = 0 ; irep < nrepeats; irep++ ){

    FLA_Copy_external( A_save, A );

    *dtime = FLA_Clock();

    switch( param_combo ){

    case 0:
    {
      switch( type )
      {
      case FLA_ALG_REFERENCE:
        REF_Bidiag_UT( A, tu, tv );
        break;
      case FLA_ALG_FRONT:
        FLA_Bidiag_UT( A, TU, TV );
        break;
      }

      break;
    }

    }

    *dtime = FLA_Clock() - *dtime;
    dtime_old = min( *dtime, dtime_old );

  }

  {
    FLA_Obj AL, AR;
    FLA_Obj ATL, ATR,
            ABL, ABR;
    FLA_Obj QU;
    FLA_Obj QV, QVL, QVR;
    FLA_Obj E, EL, ER;
    FLA_Obj F;
    FLA_Obj WU, WV, eye;
    FLA_Obj tvT,
            tvB;
    dim_t   m_A, n_A, m_TU;


//FLA_Obj_show( "A_save", A_save, "%10.3e", "" );

    m_A = FLA_Obj_length( A );
    n_A = FLA_Obj_width( A );
    m_TU = FLA_Obj_length( TU );

    FLA_Obj_create( FLA_Obj_datatype( A ), m_A,  m_A, 0, 0, &QU );
    FLA_Obj_create( FLA_Obj_datatype( A ), n_A,  n_A, 0, 0, &QV );

    FLA_Obj_create( FLA_Obj_datatype( A ), m_TU,  m_A, 0, 0, &WU );
    FLA_Obj_create( FLA_Obj_datatype( A ), m_TU,  n_A, 0, 0, &WV );

    FLA_Set_to_identity( QU );
    FLA_Set_to_identity( QV );

    FLA_Part_1x2( QV,   &QVL, &QVR,   1, FLA_LEFT );
    FLA_Part_1x2( A,    &AL,  &AR,    1, FLA_LEFT );
    FLA_Part_2x2( A,    &ATL, &ATR,
                        &ABL, &ABR,   1, 1, FLA_BL );
    FLA_Part_2x1( tv,   &tvT,
                        &tvB,   1, FLA_BOTTOM );

    if ( type == FLA_ALG_REFERENCE )
    {
      if ( FLA_Obj_is_real( A ) )
        FLA_Apply_Q_blk_external( FLA_LEFT, FLA_TRANSPOSE, FLA_COLUMNWISE, A, tu, QU );
      else
        FLA_Apply_Q_blk_external( FLA_LEFT, FLA_CONJ_TRANSPOSE, FLA_COLUMNWISE, A, tu, QU );
      //FLA_Apply_Q_blk_external( FLA_RIGHT, FLA_NO_TRANSPOSE, FLA_ROWWISE, AR, tv, QVR );
      //
      // Need to apply backwards transformation, since vectors are stored columnwise.
      // QL? RQ?
      //
      //FLA_Apply_Q_blk_external( FLA_RIGHT, FLA_NO_TRANSPOSE, FLA_ROWWISE, ATR, tvT, QVR );
      //FLA_Apply_Q_blk_external( FLA_RIGHT, FLA_CONJ_TRANSPOSE, FLA_ROWWISE, ATR, tvT, QVR );
      //FLA_Apply_Q_blk_external( FLA_RIGHT, FLA_CONJ_TRANSPOSE, FLA_ROWWISE, AR, tvT, QVR );
    }
    else
    {
      FLA_Apply_Q_UT( FLA_LEFT, FLA_CONJ_TRANSPOSE, FLA_FORWARD, FLA_COLUMNWISE, A, TU, WU, QU );
      FLA_Apply_Q_UT( FLA_RIGHT, FLA_NO_TRANSPOSE, FLA_FORWARD, FLA_ROWWISE, AR, TV, WV, QVR );
    }

/*
    FLA_Obj_create_conf_to( FLA_NO_TRANSPOSE, A, &eye );     
    FLA_Set_to_identity( eye );

    //FLA_Gemm( FLA_NO_TRANSPOSE, FLA_CONJ_TRANSPOSE,
    //          FLA_ONE, QV, QV, FLA_MINUS_ONE, eye );
    FLA_Gemm( FLA_NO_TRANSPOSE, FLA_CONJ_TRANSPOSE,
              FLA_ONE, QU, QU, FLA_MINUS_ONE, eye );

FLA_Obj_show( "eye", eye, "%10.3e", "" );
    FLA_Norm_frob( eye, norm );
    FLA_Obj_extract_real_scalar( norm, diff );
    FLA_Obj_free( &eye );
*/

    FLA_Obj_create_conf_to( FLA_NO_TRANSPOSE, A, &E );
    FLA_Obj_create_conf_to( FLA_NO_TRANSPOSE, A, &F );

    FLA_Gemm( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE,
              FLA_ONE, A_save, QV, FLA_ZERO, E );
    FLA_Gemm( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE,
              FLA_ONE, QU, E, FLA_ZERO, F );

//FLA_Obj_show( "A_save", A_save, "%10.3e", "" );

    FLA_Copy( A, E );
    FLA_Triangularize( FLA_UPPER_TRIANGULAR, FLA_NONUNIT_DIAG, E );
    FLA_Part_1x2( E,    &EL, &ER,      1, FLA_LEFT );
    FLA_Triangularize( FLA_LOWER_TRIANGULAR, FLA_NONUNIT_DIAG, ER );

//FLA_Obj_show( "B", E, "%10.3e", "" );
//FLA_Obj_show( "Q'AV", F, "%10.3e", "" );
//FLA_Obj_show( "B", E, "%10.3e + %10.3e ", "" );
//FLA_Obj_show( "Q'AV", F, "%10.3e + %10.3e ", "" );

    *diff = FLA_Max_elemwise_diff( E, F );
    FLA_Obj_free( &E );
    FLA_Obj_free( &F );

    FLA_Obj_free( &QU );
    FLA_Obj_free( &QV );
    FLA_Obj_free( &WU );
    FLA_Obj_free( &WV );
  }

  *gflops = 4.0 * n * n * ( m - n / 3.0 ) /
            dtime_old / 1e9;
  if ( FLA_Obj_is_complex( A ) )
    *gflops *= 4.0;

  *dtime = dtime_old;

  FLA_Copy_external( A_save, A );

  FLA_Obj_free( &A_save );
  FLA_Obj_free( &norm );
}
예제 #11
0
int main(int argc, char *argv[])
{
  int 
    m_input,
    m,
    p_first, p_last, p_inc,
    p,
    b_alg,
    variant,
    n_repeats,
    i,
    datatype,
    n_variants = 1;
  
  char *colors = "brkgmcbrkg";
  char *ticks  = "o+*xso+*xs";
  char m_dim_desc[14];
  char m_dim_tag[10];

  double max_gflops=6.0;
  double safemin;

  double
    dtime,
    gflops,
    diff;

  FLA_Obj
    A, l, Q, T, W;
  

  FLA_Init();


  fprintf( stdout, "%c number of repeats:", '%' );
  scanf( "%d", &n_repeats );
  fprintf( stdout, "%c %d\n", '%', n_repeats );

  fprintf( stdout, "%c Enter blocking size:", '%' );
  scanf( "%d", &b_alg );
  fprintf( stdout, "%c %d\n", '%', b_alg );

  fprintf( stdout, "%c enter problem size first, last, inc:", '%' );
  scanf( "%d%d%d", &p_first, &p_last, &p_inc );
  fprintf( stdout, "%c %d %d %d\n", '%', p_first, p_last, p_inc );

  fprintf( stdout, "%c enter m (-1 means bind to problem size): ", '%' );
  scanf( "%d", &m_input );
  fprintf( stdout, "%c %d\n", '%', m_input );


  fprintf( stdout, "\n" );


  if     ( m_input >  0 ) {
    sprintf( m_dim_desc, "m = %d", m_input );
    sprintf( m_dim_tag,  "m%dc", m_input);
  }
  else if( m_input <  -1 ) {
    sprintf( m_dim_desc, "m = p/%d", -m_input );
    sprintf( m_dim_tag,  "m%dp", -m_input );
  }
  else if( m_input == -1 ) {
    sprintf( m_dim_desc, "m = p" );
    sprintf( m_dim_tag,  "m%dp", 1 );
  }
/*
char ch = 's';
safemin = dlamch_( &ch );
printf( "safemin = %23.15e\n", safemin );
ch = 'e';
double eps = dlamch_( &ch );
printf( "eps dla = %23.15e\n", eps );
printf( "eps fla = %23.15e\n", FLA_EPSILON_D );
*/

  for ( p = p_first, i = 1; p <= p_last; p += p_inc, i += 1 )
  {

    m = m_input;

    if( m < 0 ) m = p / f2c_abs(m_input);

    //datatype = FLA_FLOAT;
    //datatype = FLA_DOUBLE;
    //datatype = FLA_COMPLEX;
    datatype = FLA_DOUBLE_COMPLEX;

    FLA_Obj_create( datatype,                           m,      m, 0, 0, &A );
    FLA_Obj_create( datatype,                           m,      m, 0, 0, &Q );
    FLA_Obj_create( datatype,                           32,     m, 0, 0, &T );
    FLA_Obj_create( datatype,                           32,     m, 0, 0, &W );
    FLA_Obj_create( FLA_Obj_datatype_proj_to_real( A ), m,      1, 0, 0, &l );

    //FLA_Random_herm_matrix( FLA_LOWER_TRIANGULAR, A );
    //FLA_Random_spd_matrix( FLA_LOWER_TRIANGULAR, A );

    FLA_Random_matrix( A );
    FLA_Obj_set_to_identity( Q );
    FLA_QR_UT( A, T );
    FLA_Apply_Q_UT( FLA_LEFT, FLA_CONJ_TRANSPOSE, FLA_FORWARD, FLA_COLUMNWISE, A, T, W, Q );
    fill_eigenvalues( l );
    //FLA_Obj_show( "eig", l, "%9.2e ", "" );
    FLA_Apply_diag_matrix( FLA_LEFT, FLA_NO_CONJUGATE, l, Q );
    FLA_Apply_Q_UT( FLA_LEFT, FLA_NO_TRANSPOSE, FLA_FORWARD, FLA_COLUMNWISE, A, T, W, Q );
    FLA_Triangularize( FLA_LOWER_TRIANGULAR, FLA_NONUNIT_DIAG, Q );
    FLA_Copy( Q, A );

    time_Hevd_ln( 0, FLA_ALG_REFERENCE, n_repeats, m, b_alg,
                  A, l, &dtime, &diff, &gflops );

    fprintf( stdout, "data_REFs( %d, 1:2 ) = [ %d %6.3lf %6.2le ]; \n", i, p, gflops, diff );
    fflush( stdout );

    time_Hevd_ln( -1, FLA_ALG_REFERENCE, n_repeats, m, b_alg,
                  A, l, &dtime, &diff, &gflops );

    fprintf( stdout, "data_REFd( %d, 1:2 ) = [ %d %6.3lf %6.2le ]; \n", i, p, gflops, diff );
    fflush( stdout );


    for ( variant = 1; variant <= n_variants; variant++ ){
      
      fprintf( stdout, "data_var%d( %d, 1:9 ) = [ %d ", variant, i, p );
      fflush( stdout );

      time_Hevd_ln( variant, FLA_ALG_UNBLOCKED, n_repeats, m, b_alg,
                    A, l, &dtime, &diff, &gflops );

      fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      fflush( stdout );

      //time_Hevd_ln( variant, FLA_ALG_UNB_OPT, n_repeats, m, b_alg,
      //              A, l, &dtime, &diff, &gflops );

      //fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      //fflush( stdout );

      fprintf( stdout, "];\n" );
      fflush( stdout );
    }

    fprintf( stdout, "\n" );

    FLA_Obj_free( &A );
    FLA_Obj_free( &T );
    FLA_Obj_free( &W );
    FLA_Obj_free( &Q );
    FLA_Obj_free( &l );
  }

/*
  fprintf( stdout, "figure;\n" );

  fprintf( stdout, "plot( data_REF( :,1 ), data_REF( :, 2 ), '-' ); \n" );

  fprintf( stdout, "hold on;\n" );

  for ( i = 1; i <= n_variants; i++ ) {
    fprintf( stdout, "plot( data_var%d( :,1 ), data_var%d( :, 2 ), '%c:%c' ); \n",
            i, i, colors[ i-1 ], ticks[ i-1 ] );
    fprintf( stdout, "plot( data_var%d( :,1 ), data_var%d( :, 4 ), '%c-.%c' ); \n",
            i, i, colors[ i-1 ], ticks[ i-1 ] );
  }

  fprintf( stdout, "legend( ... \n" );
  fprintf( stdout, "'Reference', ... \n" );

  for ( i = 1; i < n_variants; i++ )
    fprintf( stdout, "'unb\\_var%d', 'blk\\_var%d', ... \n", i, i );
  fprintf( stdout, "'unb\\_var%d', 'blk\\_var%d' ); \n", i, i );

  fprintf( stdout, "xlabel( 'problem size p' );\n" );
  fprintf( stdout, "ylabel( 'GFLOPS/sec.' );\n" );
  fprintf( stdout, "axis( [ 0 %d 0 %.2f ] ); \n", p_last, max_gflops );
  fprintf( stdout, "title( 'FLAME Hevd_ln performance (%s, %s)' );\n", 
           m_dim_desc, n_dim_desc );
  fprintf( stdout, "print -depsc tridiag_%s_%s.eps\n", m_dim_tag, n_dim_tag );
  fprintf( stdout, "hold off;\n");
  fflush( stdout );
*/

  FLA_Finalize( );

  return 0;
}
예제 #12
0
void time_QR2_UT(
               int param_combo, int type, int nrepeats, int m, int n,
               FLA_Obj A_flat, FLA_Obj A_flat_ref, FLA_Obj B_flat, FLA_Obj D_flat, FLA_Obj T_flat,
               double *dtime, double *diff, double *gflops )
{
  int
    irep;

  double
    dtime_old = 1.0e9;

  FLA_Obj
    A_flat_save;

  FLA_Obj_create_conf_to( FLA_NO_TRANSPOSE, A_flat, &A_flat_save );

  FLA_Copy( A_flat, A_flat_save );

  for ( irep = 0 ; irep < nrepeats; irep++ )
  {
    FLA_Copy( A_flat_save, A_flat );

    *dtime = FLA_Clock();

    switch( param_combo ){

    // Time parameter combination 0
    case 0:{
      switch( type ){
      case FLA_ALG_UNBLOCKED:
        FLA_QR2_UT_unb_var1( B_flat,
                                       D_flat, T_flat );
        break;
      case FLA_ALG_UNB_OPT:
        FLA_QR2_UT_opt_var1( B_flat,
                                       D_flat, T_flat );
        break;
      default:
        printf("trouble\n");
      }

      break;
    }

    }
	
    *dtime = FLA_Clock() - *dtime;
    dtime_old = min( *dtime, dtime_old );
  }


  if ( type == FLA_ALG_UNBLOCKED )
  {
    FLA_Copy( A_flat, A_flat_ref );
    //FLA_Copy( T_flat, A_flat_ref );

    *diff = 0.0;
  }
  else
  {
    *diff = FLA_Max_elemwise_diff( A_flat, A_flat_ref );
    //*diff = FLA_Max_elemwise_diff( T_flat, A_flat_ref );
  }

  *gflops = 2.0 * n * n * (m - n/3.0) /
            dtime_old / 
            1.0e9;

  if ( FLA_Obj_is_complex( A_flat ) )
    *gflops *= 4.0;

  *dtime = dtime_old;

  FLA_Copy( A_flat_save, A_flat );

  FLA_Obj_free( &A_flat_save );
}
예제 #13
0
void time_LU(
              int pivot_combo, int type, int nrepeats, int m, int n, dim_t nb_alg, dim_t nb_flash,
              FLA_Obj A, FLA_Obj p, FLA_Obj x, FLA_Obj b, FLA_Obj norm,
              double *dtime, double *diff, double *gflops )
{
  int
    irep;

  double
    dtime_old = 1.0e9;

  FLA_Obj AH_save, b_save;
  FLA_Obj AH, pH, bH, LH;

  FLASH_LU_incpiv_create_hier_matrices( A, 1, &nb_flash, nb_alg,
                                        &AH, &pH, &LH );
  FLASH_Obj_create_hier_copy_of_flat( b, 1, &nb_flash, &bH );

  FLASH_Obj_create_copy_of( FLA_NO_TRANSPOSE, AH, &AH_save );

  FLA_Obj_create_copy_of( FLA_NO_TRANSPOSE, b, &b_save );


  for ( irep = 0 ; irep < nrepeats; irep++ )
  {
    FLASH_Copy( AH_save, AH );

    *dtime = FLA_Clock();

    switch( pivot_combo ){

    case 0:
    {
      switch( type )
      {
      case FLA_ALG_FRONT_OPT0:
        FLASH_LU_incpiv_noopt( AH, pH, LH );
        break;
      case FLA_ALG_FRONT_OPT1:
        FLASH_LU_incpiv_opt1( AH, pH, LH );
        break;
      default:
        printf("trouble\n");
      }

      break;
    }

    }

    *dtime = FLA_Clock() - *dtime;
    dtime_old = min( *dtime, dtime_old );
  }

  {
    FLASH_FS_incpiv( AH, pH, LH, bH );
    FLASH_Trsv( FLA_UPPER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_NONUNIT_DIAG,
                AH, bH );

    FLASH_Obj_flatten( bH, x );

    FLA_Gemv_external( FLA_NO_TRANSPOSE, FLA_ONE,
                       A, x, FLA_MINUS_ONE, b );

    FLA_Nrm2_external( b, norm );
    FLA_Obj_extract_real_scalar( norm, diff );
  }

  *gflops = 2.0 / 3.0 * m * m * n /
            dtime_old / 1e9;

  if ( FLA_Obj_is_complex( A ) ) *gflops *= 4.0;

  *dtime = dtime_old;

  FLA_Copy( b_save, b );

  FLASH_Obj_free( &AH );
  FLASH_Obj_free( &pH );
  FLASH_Obj_free( &bH );
  FLASH_Obj_free( &LH );

  FLA_Obj_free( &b_save );
  FLASH_Obj_free( &AH_save );
}
예제 #14
0
파일: driver.c 프로젝트: pgawron/tlash
int main(int argc, char *argv[])
{
  int 
    n, nfirst, nlast, ninc, i, irep,
    nrepeats, nb_alg;

  double
    dtime,
    dtime_best,
    gflops,
    max_gflops,
    diff,
    d_n;

  FLA_Obj
    A, Aref, Aold, delta;
  
  /* Initialize FLAME */
  FLA_Init( );

  /* Every time trial is repeated "repeat" times and the fastest run in recorded */
  printf( "%% number of repeats:" );
  scanf( "%d", &nrepeats );
  printf( "%% %d\n", nrepeats );

  /* Enter the max GFLOPS attainable 
     This is used to set the y-axis range for the graphs. Here is how
     you figure out what to enter (on Linux machines):
     1) more /proc/cpuinfo   (this lists the contents of this file).
     2) read through this and figure out the clock rate of the machine (in GHz).
     3) Find out (from an expert of from the web) the number of floating point
        instructions that can be performed per core per clock cycle.
     4) Figure out if you are using "multithreaded BLAS" which automatically
        parallelize calls to the Basic Linear Algebra Subprograms.  If so,
        check how many cores are available.
     5) Multiply 2) x 3) x 4) and enter this in response to the below.
  */

  printf( "%% enter max GFLOPS:" );
  scanf( "%lf", &max_gflops );
  printf( "%% %lf\n", max_gflops );

  /* Enter the algorithmic block size */
  printf( "%% enter nb_alg:" );
  scanf( "%d", &nb_alg );
  printf( "%% %d\n", nb_alg );

  /* Turn on parameter checking */
  FLA_Check_error_level_set( FLA_FULL_ERROR_CHECKING );

  /* Timing trials for matrix sizes n=nfirst to nlast in increments 
     of ninc will be performed */
  printf( "%% enter nfirst, nlast, ninc:" );
  scanf( "%d%d%d", &nfirst, &nlast, &ninc );
  printf( "%% %d %d %d\n", nfirst, nlast, ninc );

  i = 1;
  for ( n=nfirst; n<= nlast; n+=ninc ){
   
    /* Allocate space for the matrices */
    FLA_Obj_create( FLA_DOUBLE, n, n, 0, 0, &A );
    FLA_Obj_create( FLA_DOUBLE, n, n, 0, 0, &Aref );
    FLA_Obj_create( FLA_DOUBLE, n, n, 0, 0, &Aold );
    FLA_Obj_create( FLA_DOUBLE, 1, 1, 0, 0, &delta );

    /* Generate random matrix A and save in Aold */
    FLA_Random_matrix( Aold );

    /* Add something large to the diagonal to make sure it isn't ill-conditionsed */
    d_n = ( double ) n;
    *( ( double * ) FLA_Obj_buffer( delta ) ) = d_n;
    FLA_Shift_diag( FLA_NO_CONJUGATE, delta, Aold );
    
    /* Set gflops = billions of floating point operations that will be performed */
    gflops = 2.0/3.0 * n * n * n * 1.0e-09;

    /* Time the reference implementation */

    for ( irep=0; irep<nrepeats; irep++ ){
      FLA_Copy( Aold, Aref );

      dtime = FLA_Clock();

      REF_LU( Aref );

      dtime = FLA_Clock() - dtime;

      if ( irep == 0 ) 
        dtime_best = dtime;
      else
        dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
    }

    printf( "data_REF( %d, 1:2 ) = [ %d %le ];\n", i, n,
            gflops / dtime_best );
    fflush( stdout );


    /* Time FLA_LU */

    for ( irep=0; irep<nrepeats; irep++ ){
      FLA_Copy( Aold, A );

      dtime = FLA_Clock();

      FLA_LU_nopiv( A );

      dtime = FLA_Clock() - dtime;

      if ( irep == 0 ) 
        dtime_best = dtime;
      else
        dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
    }

    printf( "data_FLAME( %d, 1:2 ) = [ %d %le ];\n", i, n,
            gflops / dtime_best );
    fflush( stdout );


    /* Time the your implementations */


    /* Variant 1 unblocked */

    for ( irep=0; irep<nrepeats; irep++ ){

      FLA_Copy( Aold, A );
    
      dtime = FLA_Clock();

      LU_unb_var1( A );

      dtime = FLA_Clock() - dtime;

      if ( irep == 0 ) 
        dtime_best = dtime;
      else
        dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
    }    

    diff = FLA_Max_elemwise_diff( A, Aref );

    printf( "data_unb_var1( %d, 1:3 ) = [ %d %le  %le];\n", i, n,
            gflops / dtime_best, diff );
    fflush( stdout );

    /* Variant 1 blocked */

    for ( irep=0; irep<nrepeats; irep++ ){
      FLA_Copy( Aold, A );
    
      dtime = FLA_Clock();

      LU_blk_var1( A, nb_alg );

      dtime = FLA_Clock() - dtime;

      if ( irep == 0 ) 
        dtime_best = dtime;
      else
        dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
    }

    diff = FLA_Max_elemwise_diff( A, Aref );

    printf( "data_blk_var1( %d, 1:3 ) = [ %d %le  %le];\n", i, n,
            gflops / dtime_best, diff );
    fflush( stdout );


    /* Variant 2 unblocked */

    for ( irep=0; irep<nrepeats; irep++ ){

      FLA_Copy( Aold, A );
    
      dtime = FLA_Clock();

      LU_unb_var2( A );

      dtime = FLA_Clock() - dtime;

      if ( irep == 0 ) 
        dtime_best = dtime;
      else
        dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
    }    

    diff = FLA_Max_elemwise_diff( A, Aref );

    printf( "data_unb_var2( %d, 1:3 ) = [ %d %le  %le];\n", i, n,
            gflops / dtime_best, diff );
    fflush( stdout );

    /* Variant 2 blocked */

    for ( irep=0; irep<nrepeats; irep++ ){
      FLA_Copy( Aold, A );
    
      dtime = FLA_Clock();

      LU_blk_var2( A, nb_alg );

      dtime = FLA_Clock() - dtime;

      if ( irep == 0 ) 
        dtime_best = dtime;
      else
        dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
    }

    diff = FLA_Max_elemwise_diff( A, Aref );

    printf( "data_blk_var2( %d, 1:3 ) = [ %d %le  %le];\n", i, n,
            gflops / dtime_best, diff );
    fflush( stdout );

    /* Variant 3 unblocked */

    for ( irep=0; irep<nrepeats; irep++ ){

      FLA_Copy( Aold, A );
    
      dtime = FLA_Clock();

      LU_unb_var3( A );

      dtime = FLA_Clock() - dtime;

      if ( irep == 0 ) 
        dtime_best = dtime;
      else
        dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
    }    

    diff = FLA_Max_elemwise_diff( A, Aref );

    printf( "data_unb_var3( %d, 1:3 ) = [ %d %le  %le];\n", i, n,
            gflops / dtime_best, diff );
    fflush( stdout );

    /* Variant 3 blocked */

    for ( irep=0; irep<nrepeats; irep++ ){
      FLA_Copy( Aold, A );
    
      dtime = FLA_Clock();

      LU_blk_var3( A, nb_alg );

      dtime = FLA_Clock() - dtime;

      if ( irep == 0 ) 
        dtime_best = dtime;
      else
        dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
    }

    diff = FLA_Max_elemwise_diff( A, Aref );

    printf( "data_blk_var3( %d, 1:3 ) = [ %d %le  %le];\n", i, n,
            gflops / dtime_best, diff );
    fflush( stdout );

    /* Variant 4 unblocked */

    for ( irep=0; irep<nrepeats; irep++ ){

      FLA_Copy( Aold, A );
    
      dtime = FLA_Clock();

      LU_unb_var4( A );

      dtime = FLA_Clock() - dtime;

      if ( irep == 0 ) 
        dtime_best = dtime;
      else
        dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
    }    

    diff = FLA_Max_elemwise_diff( A, Aref );

    printf( "data_unb_var4( %d, 1:3 ) = [ %d %le  %le];\n", i, n,
            gflops / dtime_best, diff );
    fflush( stdout );

    /* Variant 4 blocked */

    for ( irep=0; irep<nrepeats; irep++ ){
      FLA_Copy( Aold, A );
    
      dtime = FLA_Clock();

      LU_blk_var4( A, nb_alg );

      dtime = FLA_Clock() - dtime;

      if ( irep == 0 ) 
        dtime_best = dtime;
      else
        dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
    }

    diff = FLA_Max_elemwise_diff( A, Aref );

    printf( "data_blk_var4( %d, 1:3 ) = [ %d %le  %le];\n", i, n,
            gflops / dtime_best, diff );
    fflush( stdout );

    /* Variant 5 unblocked */

    for ( irep=0; irep<nrepeats; irep++ ){

      FLA_Copy( Aold, A );
    
      dtime = FLA_Clock();

      LU_unb_var5( A );

      dtime = FLA_Clock() - dtime;

      if ( irep == 0 ) 
        dtime_best = dtime;
      else
        dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
    }    

    diff = FLA_Max_elemwise_diff( A, Aref );

    printf( "data_unb_var5( %d, 1:3 ) = [ %d %le  %le];\n", i, n,
            gflops / dtime_best, diff );
    fflush( stdout );

    /* Variant 5 blocked */

    for ( irep=0; irep<nrepeats; irep++ ){
      FLA_Copy( Aold, A );
    
      dtime = FLA_Clock();

      LU_blk_var5( A, nb_alg );

      dtime = FLA_Clock() - dtime;

      if ( irep == 0 ) 
        dtime_best = dtime;
      else
        dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
    }

    diff = FLA_Max_elemwise_diff( A, Aref );

    printf( "data_blk_var5( %d, 1:3 ) = [ %d %le  %le];\n", i, n,
            gflops / dtime_best, diff );
    fflush( stdout );

    FLA_Obj_free( &A );
    FLA_Obj_free( &Aold );
    FLA_Obj_free( &Aref );
    FLA_Obj_free( &delta );
    printf( "\n" );

    i++;
  }

  /* Print the MATLAB commands to plot the data */

  /* Delete all existing figures */
  printf( "close all\n" );

  /* Plot the performance of FLAME */
  printf( "plot( data_FLAME( :,1 ), data_FLAME( :, 2 ), 'k--' ); \n" );

  /* Indicate that you want to add to the existing plot */
  printf( "hold on\n" );

  /* Plot the performance of the reference implementation */
  printf( "plot( data_REF( :,1 ), data_REF( :, 2 ), 'k-' ); \n" );

  /* Plot the performance of your implementations */

  printf( "plot( data_unb_var1( :,1 ), data_unb_var1( :, 2 ), 'r-.' ); \n" );
  printf( "plot( data_unb_var2( :,1 ), data_unb_var2( :, 2 ), 'g-.' ); \n" );
  printf( "plot( data_unb_var3( :,1 ), data_unb_var3( :, 2 ), 'b-.' ); \n" );
  printf( "plot( data_unb_var4( :,1 ), data_unb_var4( :, 2 ), 'm-.' ); \n" );
  printf( "plot( data_unb_var5( :,1 ), data_unb_var5( :, 2 ), 'c-.' ); \n" );
  printf( "plot( data_blk_var1( :,1 ), data_blk_var1( :, 2 ), 'r--' ); \n" );
  printf( "plot( data_blk_var2( :,1 ), data_blk_var2( :, 2 ), 'g--' ); \n" );
  printf( "plot( data_blk_var3( :,1 ), data_blk_var3( :, 2 ), 'b--' ); \n" );
  printf( "plot( data_blk_var4( :,1 ), data_blk_var4( :, 2 ), 'm--' ); \n" );
  printf( "plot( data_blk_var5( :,1 ), data_blk_var5( :, 2 ), 'c--' ); \n" );

  printf( "hold on \n");

  printf( "xlabel( 'matrix dimension m=n' );\n");
  printf( "ylabel( 'GFLOPS/sec.' );\n");
  printf( "axis( [ 0 %d 0 %3.1f ] ); \n", nlast, max_gflops );
  printf( "legend( 'FLA LU nopiv', ...\n");
  printf( "        'Simple loops', ...\n");
  printf( "        'unb var1', ...\n");
  printf( "        'unb var2', ...\n");
  printf( "        'unb var3', ...\n");
  printf( "        'unb var4', ...\n");
  printf( "        'unb var5', ...\n");
  printf( "        'blk var1', ...\n");
  printf( "        'blk var2', ...\n");
  printf( "        'blk var3', ...\n");
  printf( "        'blk var4', ...\n");
  printf( "        'blk var5', 2);\n");

  printf( "print -r100 -depsc LU.eps\n");

  FLA_Finalize( );

  return 0;
}
예제 #15
0
FLA_Error REF_Svdd_uv_components( FLA_Obj A, FLA_Obj s, FLA_Obj U, FLA_Obj V,
                                  double* dtime_bred, double* dtime_bsvd, double* dtime_appq,
                                  double* dtime_qrfa, double* dtime_gemm )
/*
{
  *dtime_bred = 1;
  *dtime_bsvd = 1;
  *dtime_appq = 1;
  *dtime_qrfa = 1;
  *dtime_gemm = 1;

  return FLA_Svdd_external( FLA_SVD_VECTORS_ALL, A, s, U, V );
}
*/

{
  FLA_Datatype dt_A;
  FLA_Datatype dt_A_real;
  dim_t        m_A, n_A;
  dim_t        min_m_n;
  FLA_Obj      tq, tu, tv, d, e, Ur, Vr, W;
  FLA_Obj      eT, epsilonB;
  FLA_Uplo     uplo = FLA_UPPER_TRIANGULAR;
  double       crossover_ratio = 16.0 / 10.0;
  double       dtime_temp;

  dt_A      = FLA_Obj_datatype( A );
  dt_A_real = FLA_Obj_datatype_proj_to_real( A );
  m_A       = FLA_Obj_length( A );
  n_A       = FLA_Obj_width( A );

  min_m_n   = FLA_Obj_min_dim( A );

  FLA_Obj_create( dt_A,      min_m_n, 1,   0, 0, &tq );
  FLA_Obj_create( dt_A,      min_m_n, 1,   0, 0, &tu );
  FLA_Obj_create( dt_A,      min_m_n, 1,   0, 0, &tv );
  FLA_Obj_create( dt_A_real, min_m_n, 1,   0, 0, &d );
  FLA_Obj_create( dt_A_real, min_m_n, 1,   0, 0, &e );
  FLA_Obj_create( dt_A_real, n_A,     n_A, 0, 0, &Ur );
  FLA_Obj_create( dt_A_real, n_A,     n_A, 0, 0, &Vr );


  FLA_Part_2x1( e,   &eT,
                     &epsilonB,    1, FLA_BOTTOM );

  if ( m_A >= n_A )
  {
    if ( m_A < crossover_ratio * n_A )
    {
      dtime_temp = FLA_Clock();
      {
        // Reduce to bidiagonal form.
        FLA_Bidiag_blk_external( A, tu, tv );
        FLA_Bidiag_UT_extract_diagonals( A, d, eT );
      }
      *dtime_bred = FLA_Clock() - dtime_temp;


      dtime_temp = FLA_Clock();
      {
        // Divide-and-conquor algorithm.
        FLA_Bsvdd_external( uplo, d, e, Ur, Vr );
      }
      *dtime_bsvd = FLA_Clock() - dtime_temp;


      dtime_temp = FLA_Clock();
      {
        // Form U.
        FLA_Copy_external( Ur, U );
        FLA_Bidiag_apply_U_external( FLA_LEFT, FLA_NO_TRANSPOSE, A, tu, U );

        // Form V.
        FLA_Copy_external( Vr, V );
        FLA_Bidiag_apply_V_external( FLA_RIGHT, FLA_CONJ_TRANSPOSE, A, tv, V );
      }
      *dtime_appq = FLA_Clock() - dtime_temp;


      *dtime_qrfa = 0.0;
      *dtime_gemm = 0.0;
    }
    else
    {
      FLA_Obj AT,
              AB;
      FLA_Obj UL, UR;

      FLA_Part_2x1( A,   &AT,
                         &AB,        n_A, FLA_TOP );
      FLA_Part_1x2( U,   &UL, &UR,   n_A, FLA_LEFT );

      // Create a temporary n-by-n matrix R.
      FLA_Obj_create( dt_A, n_A, n_A, 0, 0, &W );

      dtime_temp = FLA_Clock();
      {
        // Perform a QR factorization.
        FLA_QR_blk_external( A, tq );
        FLA_Copyr_external( FLA_LOWER_TRIANGULAR, A, UL );
        FLA_Setr( FLA_LOWER_TRIANGULAR, FLA_ZERO, A );
      }
      *dtime_qrfa = FLA_Clock() - dtime_temp;


      dtime_temp = FLA_Clock();
      {
        // Form Q.
        FLA_QR_form_Q_external( U, tq );
      }
      *dtime_appq = FLA_Clock() - dtime_temp;


      dtime_temp = FLA_Clock();
      {
        // Reduce R to bidiagonal form.
        FLA_Bidiag_blk_external( AT, tu, tv );
        FLA_Bidiag_UT_extract_diagonals( A, d, eT );
      }
      *dtime_bred = FLA_Clock() - dtime_temp;


      dtime_temp = FLA_Clock();
      {
        // Divide-and-conquor algorithm.
        FLA_Bsvdd_external( uplo, d, e, Ur, Vr );
      }
      *dtime_bsvd = FLA_Clock() - dtime_temp;


      dtime_temp = FLA_Clock();
      {
        // Form U in W.
        FLA_Copy_external( Ur, W );
        FLA_Bidiag_apply_U_external( FLA_LEFT, FLA_NO_TRANSPOSE, AT, tu, W );

        // Form V.
        FLA_Copy_external( Vr, V );
        FLA_Bidiag_apply_V_external( FLA_RIGHT, FLA_CONJ_TRANSPOSE, AT, tv, V );
      }
      *dtime_appq += FLA_Clock() - dtime_temp;


      dtime_temp = FLA_Clock();
      {
        // Multiply R into U, storing the result in A and then copying
        // back to U.
        FLA_Gemm_external( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE,
                           FLA_ONE, UL, W, FLA_ZERO, A );
        FLA_Copy( A, UL );
      }
      *dtime_gemm = FLA_Clock() - dtime_temp;


      // Free R.
      FLA_Obj_free( &W );
    }
  }
  else
  {
    FLA_Check_error_code( FLA_NOT_YET_IMPLEMENTED );
  }

  // Copy singular values to output vector.
  FLA_Copy( d, s );

  // Sort singular values and vectors.
  FLA_Sort_svd( FLA_BACKWARD, s, U, V );

  FLA_Obj_free( &tq );
  FLA_Obj_free( &tu );
  FLA_Obj_free( &tv );
  FLA_Obj_free( &d );
  FLA_Obj_free( &e );
  FLA_Obj_free( &Ur );
  FLA_Obj_free( &Vr );

  return FLA_SUCCESS;
}
예제 #16
0
파일: lq.c 프로젝트: anaptyxis/libflame
int main( int argc, char** argv ) {
  FLA_Datatype datatype = TESTTYPE;
  FLA_Obj      A, Ak, T, Tk, D, Dk, A_copy, A_recovered, L, Q, Qk, W, x, y, z;
  dim_t        m, n, k;
  dim_t        min_m_n;
  FLA_Error    init_result; 
  double       residual_A, residual_Axy;
  int          use_form_q = 1;

  if ( argc == 4 ) {
    m = atoi(argv[1]);
    n = atoi(argv[2]);
    k = atoi(argv[3]);
    min_m_n = min(m,n);
  } else {
    fprintf(stderr, "       \n");
    fprintf(stderr, "Usage: %s m n k\n", argv[0]);
    fprintf(stderr, "       m : matrix length\n");
    fprintf(stderr, "       n : matrix width\n");
    fprintf(stderr, "       k : number of house holder vectors applied for testing\n");
    fprintf(stderr, "       \n");
    return -1;
  }
  if ( m == 0 || n == 0 )
    return 0;

  FLA_Init_safe( &init_result );          

  // FLAME LQ^H setup
  FLA_Obj_create( datatype, m, n, 0, 0, &A );
  FLA_LQ_UT_create_T( A, &T );
  
  // Rand A and create A_copy.
  FLA_Random_matrix( A ); 

  FLA_Obj_create_conf_to( FLA_NO_TRANSPOSE, A, &A_copy );
  FLA_Obj_create_conf_to( FLA_NO_TRANSPOSE, A, &A_recovered );
  FLA_Copy( A, A_copy );

  // LQ test ( A = L Q^H )
  FLA_LQ_UT( A, T );

  // Create Q (identity), L (A_copy)
  FLA_Obj_create( datatype, m, n, 0, 0, &Q  ); FLA_Set_to_identity( Q  );
  FLA_Obj_create( datatype, m, m, 0, 0, &D  );

  FLA_Obj_create( datatype, k, n, 0, 0, &Qk ); FLA_Set_to_identity( Qk );
  FLA_Obj_create( datatype, k, k, 0, 0, &Dk  );

  
  FLA_Obj_create( datatype, m, m, 0, 0, &L );

  // Q^H := I H_{0}^H ... H_{k-1}^H
  if ( use_form_q ) {
    FLA_LQ_UT_form_Q( A, T, Q );
  } else {
    FLA_Apply_Q_UT_create_workspace_side( FLA_RIGHT, T, Q, &W );
    FLA_Apply_Q_UT( FLA_RIGHT, FLA_CONJ_TRANSPOSE, FLA_FORWARD, FLA_ROWWISE,
                    A, T, W, Q );
    FLA_Obj_free( &W );
  }

  // D := Q^T Q
  FLA_Gemm_external( FLA_NO_TRANSPOSE, FLA_CONJ_TRANSPOSE, 
                     FLA_ONE, Q, Q, FLA_ZERO, D ); 

  // Qk := I H0 ... Hk
  FLA_Part_1x2( T, &Tk, &W, k, FLA_LEFT );
  FLA_Part_2x1( A, &Ak, &W, k, FLA_TOP );

  if ( use_form_q ) {
    // Overwrite the result to test FLAME API
    FLA_Set( FLA_ZERO, Qk );
    FLA_Copy( Ak, Qk );
    FLA_LQ_UT_form_Q( Ak, Tk, Qk );
  } else {
    FLA_Apply_Q_UT_create_workspace( Tk, Qk, &W );
    FLA_Apply_Q_UT( FLA_LEFT, FLA_NO_TRANSPOSE, FLA_FORWARD, FLA_ROWWISE,
                    Ak, Tk, W, Qk );
    FLA_Obj_free( &W );
  }

  // Dk := Qk^T Qk
  FLA_Gemm_external( FLA_NO_TRANSPOSE, FLA_CONJ_TRANSPOSE, 
                     FLA_ONE, Qk, Qk, FLA_ZERO, Dk ); 

  // L := A (Q^H)^H
  if ( use_form_q ) {
    // Note that the formed Q is actually Q^H; transb should be carefully assigned.
    FLA_Gemm_external( FLA_NO_TRANSPOSE, FLA_CONJ_TRANSPOSE, 
                       FLA_ONE, A_copy, Q, FLA_ZERO, L );
  } else {
    FLA_Apply_Q_UT_create_workspace( T, L, &W );
    FLA_Apply_Q_UT( FLA_RIGHT, FLA_NO_TRANSPOSE, FLA_FORWARD, FLA_ROWWISE,
                    A, T, W, L );
    FLA_Obj_free( &W );
  }
  FLA_Gemm_external( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, 
                     FLA_ONE, L, Q, FLA_ZERO, A_recovered ); 

  // Create vectors for testing
  FLA_Obj_create( datatype, n, 1, 0, 0, &x ); FLA_Set( FLA_ZERO, x );
  FLA_Obj_create( datatype, m, 1, 0, 0, &y ); FLA_Set( FLA_ZERO, y );
  FLA_Obj_create( datatype, m, 1, 0, 0, &z ); FLA_Set( FLA_ZERO, z );

  // x is given
  FLA_Set( FLA_ONE, x );

  // y := Ax
  FLA_Gemv_external( FLA_NO_TRANSPOSE, FLA_ONE, A_copy, x, FLA_ZERO, y );
  
  // z := L (Q^H) x , libflame
  FLA_Apply_Q_UT_create_workspace( T, x, &W );
  FLA_Apply_Q_UT( FLA_LEFT, FLA_CONJ_TRANSPOSE, FLA_FORWARD, FLA_ROWWISE,
                  A, T, W, x );
  FLA_Obj_free( &W );

  if ( m < n )
    FLA_Part_2x1( x, &x, &W, m, FLA_TOP );
  else 
    FLA_Part_1x2( L, &L, &W, n, FLA_LEFT );    

  FLA_Gemv_external( FLA_NO_TRANSPOSE, FLA_ONE, L, x, FLA_ZERO, z );
  
  // Comapre (A_copy, A_recovered), (y,z) and (y,w)
  residual_A    = FLA_Max_elemwise_diff( A_copy, A_recovered );
  residual_Axy  = FLA_Max_elemwise_diff( y, z );

  if ( 1 || residual_A > EPS || residual_Axy > EPS ) {
    FLA_Obj_fshow( stdout, " - Given - ", A_copy, "% 6.4e", "------");
    FLA_Obj_fshow( stdout, " - Factor - ", A, "% 6.4e", "------");
    FLA_Obj_fshow( stdout, " - T - ", T, "% 6.4e", "------");
    FLA_Obj_fshow( stdout, " - Q - ", Q, "% 6.4e", "------");
    FLA_Obj_fshow( stdout, " - D = Q^T Q - ", D, "% 6.4e", "------");
    FLA_Obj_fshow( stdout, " - Qk - ", Qk, "% 6.4e", "------");
    FLA_Obj_fshow( stdout, " - Dk = Qk^T Qk - ", Dk, "% 6.4e", "------");
    FLA_Obj_fshow( stdout, " - L - ", L, "% 6.4e", "------");
    FLA_Obj_fshow( stdout, " - Recovered A - ", A_recovered, "% 6.4e", "------");
    fprintf( stdout, "lapack2flame: %lu x %lu, %lu: ", m, n, k);
    fprintf( stdout, "| A - A_recovered | = %12.10e, | Ax - y | = %12.10e\n\n",
             residual_A, residual_Axy ) ;
  }
  
  FLA_Obj_free( &A );
  FLA_Obj_free( &T );

  FLA_Obj_free( &A_copy );
  FLA_Obj_free( &A_recovered );
  FLA_Obj_free( &L );
  FLA_Obj_free( &Q );
  FLA_Obj_free( &Qk );
  FLA_Obj_free( &D );
  FLA_Obj_free( &Dk );

  FLA_Obj_free( &x );
  FLA_Obj_free( &y );
  FLA_Obj_free( &z );
                   
  FLA_Finalize_safe( init_result );     
}
예제 #17
0
int main(int argc, char *argv[])
{
  int n, nfirst, nlast, ninc, nlast_unb, i, irep,
    nrepeats, nb_alg;

  double
    dtime, dtime_best, 
    gflops, max_gflops,
    diff, d_n;

  FLA_Obj
    A, Aref, Aold, delta;
  
  /* Initialize FLAME */
  FLA_Init( );

  /* Every time trial is repeated "repeat" times and the fastest run in recorded */
  printf( "%% number of repeats:" );
  scanf( "%d", &nrepeats );
  printf( "%% %d\n", nrepeats );

  /* Enter the max GFLOPS attainable 
     This is used to set the y-axis range for the graphs. Here is how
     you figure out what to enter (on Linux machines):
     1) more /proc/cpuinfo   (this lists the contents of this file).
     2) read through this and figure out the clock rate of the machine (in GHz).
     3) Find out (from an expert of from the web) the number of floating point
        instructions that can be performed per core per clock cycle.
     4) Figure out if you are using "multithreaded BLAS" which automatically
        parallelize calls to the Basic Linear Algebra Subprograms.  If so,
        check how many cores are available.
     5) Multiply 2) x 3) x 4) and enter this in response to the below.

     If you enter a value for max GFLOPS that is lower that the maximum that
     is observed in the experiments, then the top of the graph is set to the 
     observed maximum.  Thus, one possibility is to simply set this to 0.0.
  */

  printf( "%% enter max GFLOPS:" );
  scanf( "%lf", &max_gflops );
  printf( "%% %lf\n", max_gflops );

  /* Enter the algorithmic block size */
  printf( "%% enter nb_alg:" );
  scanf( "%d", &nb_alg );
  printf( "%% %d\n", nb_alg );

  /* Timing trials for matrix sizes n=nfirst to nlast in increments 
     of ninc will be performed.  Unblocked versions are only tested to
     nlast_unb */
  printf( "%% enter nfirst, nlast, ninc, nlast_unb:" );
  scanf( "%d%d%d%d", &nfirst, &nlast, &ninc, &nlast_unb );
  printf( "%% %d %d %d %d\n", nfirst, nlast, ninc, nlast_unb );

  i = 1;
  for ( n=nfirst; n<= nlast; n+=ninc ){
   
    /* Allocate space for the matrices */
    FLA_Obj_create( FLA_DOUBLE, n, n, 1, n, &A );
    FLA_Obj_create( FLA_DOUBLE, n, n, 1, n, &Aref );
    FLA_Obj_create( FLA_DOUBLE, n, n, 1, n, &Aold );
    FLA_Obj_create( FLA_DOUBLE, 1, 1, 1, 1, &delta );

    /* Generate random matrix A and save in Aold */
    FLA_Random_matrix( Aold );

    /* Add something large to the diagonal to make sure it isn't ill-conditionsed */
    d_n = ( double ) n;
    *( ( double * ) FLA_Obj_buffer_at_view( delta ) ) = d_n;
    FLA_Shift_diag( FLA_NO_CONJUGATE, delta, Aold );
    
    /* Set gflops = billions of floating point operations that will be performed */
    gflops = 1.0/3.0 * n * n * n * 1.0e-09;

    /* Time the reference implementation */
#if TIME_LAPACK == TRUE

#else
    //    if ( n <= nlast_unb )
#endif
    {
      for ( irep=0; irep<nrepeats; irep++ ){
	FLA_Copy( Aold, Aref );
    
	dtime = FLA_Clock();
    
	REF_Chol( TIME_LAPACK, Aref, nb_alg );
    
	dtime = FLA_Clock() - dtime;
    
	if ( irep == 0 ) 
	  dtime_best = dtime;
	else
	  dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
      }
  
      printf( "data_REF( %d, 1:2 ) = [ %d %le ];\n", i, n,
	      gflops / dtime_best );
      fflush( stdout );
    }  

    /* Time FLA_Chol */

    for ( irep=0; irep<nrepeats; irep++ ){
      FLA_Copy( Aold, A );

      dtime = FLA_Clock();

      FLA_Chol( FLA_LOWER_TRIANGULAR, A );

      dtime = FLA_Clock() - dtime;

      if ( irep == 0 ) 
	dtime_best = dtime;
      else
	dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
    }

    printf( "data_FLAME( %d, 1:2 ) = [ %d %le ];\n", i, n,
            gflops / dtime_best );

    if ( gflops / dtime_best > max_gflops ) 
      max_gflops = gflops / dtime_best;

    fflush( stdout );


    /* Time the your implementations */


    /* Variant 1 unblocked */
    
    if ( n <= nlast_unb ){
      for ( irep=0; irep<nrepeats; irep++ ){

	FLA_Copy( Aold, A );
    
	dtime = FLA_Clock();

#if TIME_UNB_VAR1 == TRUE
	Chol_unb_var1( A );
#else
	REF_Chol( TIME_LAPACK, A, nb_alg );
#endif


	dtime = FLA_Clock() - dtime;

	if ( irep == 0 ) 
	  dtime_best = dtime;
	else
	  dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
      }    

      diff = FLA_Max_elemwise_diff( A, Aref );

      printf( "data_unb_var1( %d, 1:3 ) = [ %d %le  %le];\n", i, n,
	      gflops / dtime_best, diff );
      fflush( stdout );
    }

    /* Variant 1 blocked */

    for ( irep=0; irep<nrepeats; irep++ ){
      FLA_Copy( Aold, A );
    
      dtime = FLA_Clock();

#if TIME_BLK_VAR1 == TRUE
      Chol_blk_var1( A, nb_alg );
#else
      REF_Chol( TIME_LAPACK, A, nb_alg );
#endif

      dtime = FLA_Clock() - dtime;

      if ( irep == 0 ) 
	dtime_best = dtime;
      else
	dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
    }

    diff = FLA_Max_elemwise_diff( A, Aref );

    printf( "data_blk_var1( %d, 1:3 ) = [ %d %le  %le];\n", i, n,
            gflops / dtime_best, diff );
    fflush( stdout );


    /* Variant 2 unblocked */
    if ( n <= nlast_unb ){
      for ( irep=0; irep<nrepeats; irep++ ){
	
	FLA_Copy( Aold, A );
	
	dtime = FLA_Clock();
	

#if TIME_UNB_VAR2 == TRUE
	Chol_unb_var2( A );
#else	
      REF_Chol( TIME_LAPACK, A, nb_alg );
#endif

	dtime = FLA_Clock() - dtime;
	
	if ( irep == 0 ) 
	  dtime_best = dtime;
	else
	  dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
      }    
      
      diff = FLA_Max_elemwise_diff( A, Aref );
      
      printf( "data_unb_var2( %d, 1:3 ) = [ %d %le  %le];\n", i, n,
	      gflops / dtime_best, diff );
      fflush( stdout );
    }

    /* Variant 2 blocked */

    for ( irep=0; irep<nrepeats; irep++ ){
      FLA_Copy( Aold, A );
    
      dtime = FLA_Clock();

#if TIME_BLK_VAR2 == TRUE
      Chol_blk_var2( A, nb_alg );
#else
      REF_Chol( TIME_LAPACK, A, nb_alg );
#endif

      dtime = FLA_Clock() - dtime;

      if ( irep == 0 ) 
	dtime_best = dtime;
      else
	dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
    }

    diff = FLA_Max_elemwise_diff( A, Aref );

    printf( "data_blk_var2( %d, 1:3 ) = [ %d %le  %le];\n", i, n,
            gflops / dtime_best, diff );
    fflush( stdout );

    /* Variant 3 unblocked */
    if ( n <= nlast_unb ){
      for ( irep=0; irep<nrepeats; irep++ ){
	
	FLA_Copy( Aold, A );
	
	dtime = FLA_Clock();
	
#if TIME_UNB_VAR3 == TRUE
	Chol_unb_var3( A );
#else
      REF_Chol( TIME_LAPACK, A, nb_alg );
#endif

	dtime = FLA_Clock() - dtime;
	
	if ( irep == 0 ) 
	  dtime_best = dtime;
	else
	  dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
      }    
      
      diff = FLA_Max_elemwise_diff( A, Aref );
      
      printf( "data_unb_var3( %d, 1:3 ) = [ %d %le  %le];\n", i, n,
	      gflops / dtime_best, diff );
      fflush( stdout );
    }

    /* Variant 3 blocked */

    for ( irep=0; irep<nrepeats; irep++ ){
      FLA_Copy( Aold, A );
    
      dtime = FLA_Clock();

#if TIME_BLK_VAR3 == TRUE
      Chol_blk_var3( A, nb_alg );
#else
      REF_Chol( TIME_LAPACK, A, nb_alg );
#endif

      dtime = FLA_Clock() - dtime;

      if ( irep == 0 ) 
	dtime_best = dtime;
      else
	dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
    }

    diff = FLA_Max_elemwise_diff( A, Aref );

    printf( "data_blk_var3( %d, 1:3 ) = [ %d %le  %le];\n", i, n,
            gflops / dtime_best, diff );
    fflush( stdout );

    FLA_Obj_free( &A );
    FLA_Obj_free( &Aold );
    FLA_Obj_free( &Aref );
    FLA_Obj_free( &delta );
    printf( "\n" );

    i++;
  }

  /* Print the MATLAB commands to plot the data */

  /* Delete all existing figures */
  printf( "close all\n" );


#if OCTAVE == TRUE
  /* Plot the performance of FLAME */
  printf( "plot( data_FLAME( :,1 ), data_FLAME( :, 2 ), '-k;libflame;' ); \n" );

  /* Indicate that you want to add to the existing plot */
  printf( "hold on\n" );

  /* Plot the performance of the reference implementation */
  printf( "plot( data_REF( :,1 ), data_REF( :, 2 ), '-m;reference;' ); \n" );

  /* Plot the performance of your implementations */
  printf( "plot( data_unb_var1( :,1 ), data_unb_var1( :, 2 ), \"-rx;UnbVar1;\" ); \n" );
  printf( "plot( data_unb_var2( :,1 ), data_unb_var2( :, 2 ), \"-go;UnbVar2;\" ); \n" );
  printf( "plot( data_unb_var3( :,1 ), data_unb_var3( :, 2 ), \"-b*;UnbVar3;\" ); \n" );
  printf( "plot( data_blk_var1( :,1 ), data_blk_var1( :, 2 ), \"-rx;BlkVar1;\", \"markersize\", 3 ); \n" );
  printf( "plot( data_blk_var2( :,1 ), data_blk_var2( :, 2 ), \"-go;BlkVar2;\", \"markersize\", 3  ); \n" );
  printf( "plot( data_blk_var3( :,1 ), data_blk_var3( :, 2 ), \"-b*;BlkVar3;\", \"markersize\", 3  ); \n" );

#else

  /* Plot the performance of FLAME */
  printf( "plot( data_FLAME( :,1 ), data_FLAME( :, 2 ), 'k--' ); \n" );

  /* Indicate that you want to add to the existing plot */
  printf( "hold on\n" );

  /* Plot the performance of the reference implementation */
  printf( "plot( data_REF( :,1 ), data_REF( :, 2 ), 'k-' ); \n" );

  /* Plot the performance of your implementations */
  printf( "plot( data_unb_var1( :,1 ), data_unb_var1( :, 2 ), 'r-.x' ); \n" );
  printf( "plot( data_unb_var2( :,1 ), data_unb_var2( :, 2 ), 'g-.o' ); \n" );
  printf( "plot( data_unb_var3( :,1 ), data_unb_var3( :, 2 ), 'b-.*' ); \n" );
  printf( "plot( data_blk_var1( :,1 ), data_blk_var1( :, 2 ), 'r-x'); \n" );
  printf( "plot( data_blk_var2( :,1 ), data_blk_var2( :, 2 ), 'g-o'); \n" );
  printf( "plot( data_blk_var3( :,1 ), data_blk_var3( :, 2 ), 'b-*'); \n" );
#endif

  printf( "hold off \n");

  printf( "xlabel( 'matrix dimension m=n' );\n");
  printf( "ylabel( 'GFLOPS/sec.' );\n");
  printf( "axis( [ 0 %d 0 %3.1f ] ); \n", nlast, max_gflops );

#if OCTAVE == TRUE
  printf( "legend( 2 ); \n" );

  printf(" print -landscape -solid -color -deps -F:24 Chol.eps\n" );
#else
  printf( "legend( 'FLA Chol', ...\n");
  printf( "        'Simple loops', ...\n");
  printf( "        'unb var1', ...\n");
  printf( "        'unb var2', ...\n");
  printf( "        'unb var3', ...\n");
  printf( "        'blk var1', ...\n");
  printf( "        'blk var2', ...\n");
  printf( "        'blk var3', 2);\n");

  printf( "print -r100 -dpdf Chol.pdf\n");
#endif

  FLA_Finalize( );

  exit( 0 );
}
예제 #18
0
int main( int argc, char** argv ) {
  FLA_Datatype comptype = COMPTYPE;
  FLA_Datatype realtype = REALTYPE;
  dim_t        m;
  FLA_Obj      a, aT, aB, a0, a1, a2;
  FLA_Obj      v, vT, vB, v0, v1, v2;
  FLA_Error    init_result; 
  int          use_abs = 1;

  if ( argc == 3 ) {
    m = atoi(argv[1]);
    use_abs = atoi(argv[2]);
  } else {
    fprintf(stderr, "       \n");
    fprintf(stderr, "Usage: %s m use_abs\n", argv[0]);
    fprintf(stderr, "       m       : test vector length\n");
    fprintf(stderr, "       use_abs : 0 - norm (realtype), 1 - abs (complex type)\n");
    fprintf(stderr, "       \n");
    return -1;
  }
  if ( m == 0 )
    return 0;

  FLA_Init_safe( &init_result );          
  
  FLA_Obj_create( comptype, m, 1, 0, 0, &a );
  FLA_Obj_create( use_abs ? comptype : realtype, m, 1, 0, 0, &v );

  FLA_Random_matrix( a );
  FLA_Set( FLA_ZERO, v );

  FLA_Obj_fshow( stdout,  "- a -", a, "% 6.4e", "--" );

  // Normalize a vector
  FLA_Part_2x1( a,    &aT,  
                      &aB,      0, FLA_TOP );
  FLA_Part_2x1( v,    &vT,  
                      &vB,      0, FLA_TOP );
  while ( FLA_Obj_length( aB ) > 0 ) {
    FLA_Repart_2x1_to_3x1( aT, &a0,
                               &a1,
                           aB, &a2, 1, FLA_BOTTOM );
    FLA_Repart_2x1_to_3x1( vT, &v0,
                               &v1,
                           vB, &v2, 1, FLA_BOTTOM );
    // --------------------------------------------
    if ( use_abs ) { // a and v are complex datatype
      FLA_Copy( a1, v1 );
      FLA_Absolute_value( v1 );
    } else {         // v is real datatype 
      FLA_Nrm2( a1, v1 );
    }
    if ( FLA_Obj_equals( v1, FLA_ZERO ) )
      printf( " ZERO DETECTED\n" );
    else
      FLA_Inv_scal( v1, a1 ); // Normalize the scalar
    // --------------------------------------------
    FLA_Cont_with_3x1_to_2x1( &aT, a0,
                                   a1,
                              &aB, a2, FLA_TOP );
    FLA_Cont_with_3x1_to_2x1( &vT, v0,
                                   v1,
                              &vB, v2, FLA_TOP );
  }

  FLA_Obj_fshow( stdout,  "- a -", a, "% 6.4e", "--" );
  FLA_Obj_fshow( stdout,  "- v -", v, "% 6.4e", "--" );

  // Check whether it is normalized
  FLA_Part_2x1( a,    &aT,  
                      &aB,      0, FLA_TOP );
  FLA_Part_2x1( v,    &vT,  
                      &vB,      0, FLA_TOP );
  while ( FLA_Obj_length( aB ) > 0 ) {
    FLA_Repart_2x1_to_3x1( aT, &a0,
                               &a1,
                           aB, &a2, 1, FLA_BOTTOM );
    FLA_Repart_2x1_to_3x1( vT, &v0,
                               &v1,
                           vB, &v2, 1, FLA_BOTTOM );
    // --------------------------------------------
    if ( use_abs ) { // a and v are same datatype
      FLA_Copy( a1, v1 );
      FLA_Absolute_value( v1 );
    } else {         // v is realdatatype 
      FLA_Nrm2( a1, v1 );
    }
    // --------------------------------------------
    FLA_Cont_with_3x1_to_2x1( &aT, a0,
                                   a1,
                              &aB, a2, FLA_TOP );
    FLA_Cont_with_3x1_to_2x1( &vT, v0,
                                   v1,
                              &vB, v2, FLA_TOP );
  }

  FLA_Obj_fshow( stdout, " - all should be one - ", v, "% 6.4e", "--");

  FLA_Obj_free( &a );
  FLA_Obj_free( &v );

  FLA_Finalize_safe( init_result );     
}
예제 #19
0
FLA_Error FLA_Svd_compute_scaling( FLA_Obj A, FLA_Obj sigma )
{
	FLA_Datatype dt_real;
	FLA_Obj      norm;
	FLA_Obj      safmin;
	FLA_Obj      prec;
	FLA_Obj      rmin;
	FLA_Obj      rmax;

	if ( FLA_Check_error_level() >= FLA_MIN_ERROR_CHECKING )
		FLA_Svd_compute_scaling_check( A, sigma );

	dt_real = FLA_Obj_datatype_proj_to_real( A );

	FLA_Obj_create( dt_real, 1, 1, 0, 0, &norm );
	FLA_Obj_create( dt_real, 1, 1, 0, 0, &prec );
	FLA_Obj_create( dt_real, 1, 1, 0, 0, &safmin );
	FLA_Obj_create( dt_real, 1, 1, 0, 0, &rmin );
	FLA_Obj_create( dt_real, 1, 1, 0, 0, &rmax );

	// Query safmin, precision.
	FLA_Mach_params( FLA_MACH_PREC,  prec );
	FLA_Mach_params( FLA_MACH_SFMIN, safmin );

//FLA_Obj_show( "safmin", safmin, "%20.12e", "" );
//FLA_Obj_show( "prec", prec, "%20.12e", "" );

	// rmin = sqrt( safmin ) / prec;
	FLA_Copy( safmin, rmin );
	FLA_Sqrt( rmin );
	FLA_Inv_scal( prec, rmin );

	// rmax = 1 / rmin;
	FLA_Copy( rmin, rmax );
	FLA_Invert( FLA_NO_CONJUGATE, rmax );

//FLA_Obj_show( "rmin", rmin, "%20.12e", "" );
//FLA_Obj_show( "rmax", rmax, "%20.12e", "" );

	// Find the maximum absolute value of A.
	FLA_Max_abs_value( A, norm );

	if ( FLA_Obj_gt( norm, FLA_ZERO ) && FLA_Obj_lt( norm, rmin ) )
	{
		// sigma = rmin / norm;
		FLA_Copy( rmin, sigma );
		FLA_Inv_scal( norm, sigma );
	}
	else if ( FLA_Obj_gt( norm, rmax ) )
	{
		// sigma = rmax / norm;
		FLA_Copy( rmax, sigma );
		FLA_Inv_scal( norm, sigma );
	}
	else
	{
		// sigma = 1.0;
		FLA_Copy( FLA_ONE, sigma );
	}

	FLA_Obj_free( &norm );
	FLA_Obj_free( &prec );
	FLA_Obj_free( &safmin );
	FLA_Obj_free( &rmin );
	FLA_Obj_free( &rmax );

	return FLA_SUCCESS;
}
예제 #20
0
int main( int argc, char** argv ) {
  FLA_Datatype datatype = TESTTYPE;
  FLA_Obj      A, A_flame, A_lapack, C;
  int          m;
  FLA_Error    init_result; 

  FLA_Obj TU, TV, U_flame, V_flame, d_flame, e_flame, B_flame;
  FLA_Obj tauq, taup, d_lapack, e_lapack, U_lapack, V_lapack, W, B_lapack;
  testtype *buff_tauq, *buff_taup, *buff_d_lapack, *buff_e_lapack, 
    *buff_W, *buff_A_lapack, *buff_U_lapack, *buff_V_lapack;
  int lwork, info, is_flame;
  
  if ( argc == 3 ) {
    m = atoi(argv[1]);
    is_flame = atoi(argv[2]);
  } else {
    fprintf(stderr, "       \n");
    fprintf(stderr, "Usage: %s m is_flame\n", argv[0]);
    fprintf(stderr, "       m : matrix length\n");
    fprintf(stderr, "       is_flame : 1 yes, 0 no\n");
    fprintf(stderr, "       \n");
    return -1;
  }
  if ( m == 0 )
    return 0;

  FLA_Init_safe( &init_result );          

  fprintf( stdout, "lapack2flame: %d x %d: \n", m, m);

  FLA_Obj_create( datatype, m, m, 0, 0, &A );
  FLA_Random_matrix( A ); 
  FLA_Obj_create_copy_of( FLA_NO_TRANSPOSE, A, &A_flame  );
  FLA_Obj_create_copy_of( FLA_NO_TRANSPOSE, A, &A_lapack );

  FLA_Obj_create( datatype, m, m, 0, 0, &C );
  FLA_Random_matrix( C ); 


  if ( is_flame ) {
    fprintf( stdout, " flame executed\n");
    FLA_Bidiag_UT_create_T( A_flame, &TU, &TV );

    FLA_Bidiag_UT( A_flame, TU, TV );
    FLA_Obj_create_copy_of( FLA_NO_TRANSPOSE, A_flame, &U_flame );
    FLA_Obj_create_copy_of( FLA_NO_TRANSPOSE, A_flame, &V_flame );

    FLA_Bidiag_UT_form_U( U_flame, TU, U_flame );
    FLA_Bidiag_UT_form_V( V_flame, TV, V_flame );
    
    FLA_Obj_create( datatype, m,      1, 0, 0, &d_flame );
    FLA_Obj_create( datatype, m - 1,  1, 0, 0, &e_flame );
    FLA_Bidiag_UT_extract_diagonals( A_flame, d_flame, e_flame );

    FLA_Obj_create( datatype, m, m, 0, 0, &B_flame ); FLA_Set( FLA_ZERO, B_flame );
    {
      FLA_Obj BTL, BTR, BBL, BBR;
      FLA_Part_2x2( B_flame, &BTL, &BTR, &BBL, &BBR, 1,1, FLA_BL );
      FLA_Set_diagonal_matrix( d_flame, B_flame );
      FLA_Set_diagonal_matrix( e_flame, BTR );
    }

    if (1) {
      fprintf( stdout, " - FLAME ----------\n");
      FLA_Obj_fshow( stdout, " - Given A - ", A, "% 6.4e", "------");
      FLA_Obj_fshow( stdout, " - A - ", A_flame, "% 6.4e", "------");
      FLA_Obj_fshow( stdout, " - U - ", U_flame, "% 6.4e", "------");
      FLA_Obj_fshow( stdout, " - V - ", V_flame, "% 6.4e", "------");
      FLA_Obj_fshow( stdout, " - d - ", d_flame, "% 6.4e", "------");
      FLA_Obj_fshow( stdout, " - e - ", e_flame, "% 6.4e", "------");
      FLA_Obj_fshow( stdout, " - B - ", B_flame, "% 6.4e", "------");
    }
  } else {
    fprintf( stdout, " lapack executed\n");

    FLA_Obj_create( datatype, m, 1, 0, 0, &tauq );
    FLA_Obj_create( datatype, m, 1, 0, 0, &taup );
    FLA_Obj_create( datatype, m,      1, 0, 0, &d_lapack );
    FLA_Obj_create( datatype, m - 1,  1, 0, 0, &e_lapack );

    buff_A_lapack = (testtype*)FLA_Obj_buffer_at_view( A_lapack );
    buff_tauq     = (testtype*)FLA_Obj_buffer_at_view( tauq );
    buff_taup     = (testtype*)FLA_Obj_buffer_at_view( taup );
    buff_d_lapack = (testtype*)FLA_Obj_buffer_at_view( d_lapack );
    buff_e_lapack = (testtype*)FLA_Obj_buffer_at_view( e_lapack );

    lwork = 32*m;
    
    FLA_Obj_create( datatype, lwork, 1, 0, 0, &W );
    buff_W = (testtype*)FLA_Obj_buffer_at_view( W );
    sgebrd_( &m, &m, 
             buff_A_lapack, &m,
             buff_d_lapack,
             buff_e_lapack,
             buff_tauq,
             buff_taup,
             buff_W,
             &lwork,
             &info );

    FLA_Obj_create( datatype, m, m, 0, 0, &U_lapack );
    FLA_Obj_create( datatype, m, m, 0, 0, &V_lapack );
    
    FLA_Copy( A_lapack, U_lapack );
    FLA_Copy( A_lapack, V_lapack );

    buff_U_lapack = (testtype*)FLA_Obj_buffer_at_view( U_lapack );
    buff_V_lapack = (testtype*)FLA_Obj_buffer_at_view( V_lapack );

    sorgbr_( "Q", &m, &m, &m,
             buff_U_lapack, &m,
             buff_tauq, 
             buff_W,
             &lwork,
             &info );
    
    sorgbr_( "P", &m, &m, &m,
             buff_V_lapack, &m,
             buff_taup,
             buff_W,
             &lwork,
             &info );

    FLA_Obj_create( datatype, m, m, 0, 0, &B_lapack ); FLA_Set( FLA_ZERO, B_lapack );
    {
      FLA_Obj BTL, BTR, BBL, BBR;
      FLA_Part_2x2( B_lapack, &BTL, &BTR, &BBL, &BBR, 1,1, FLA_BL );
      FLA_Set_diagonal_matrix( d_lapack, B_lapack );
      FLA_Set_diagonal_matrix( e_lapack, BTR );
    }
    
    FLA_Obj_free( &W );    


    if (1) {
      fprintf( stdout, " - LAPACK ----------\n");
      FLA_Obj_fshow( stdout, " - Given A - ", A, "% 6.4e", "------");
      FLA_Obj_fshow( stdout, " - A - ", A_lapack, "% 6.4e", "------");
      FLA_Obj_fshow( stdout, " - U - ", U_lapack, "% 6.4e", "------");
      FLA_Obj_fshow( stdout, " - V - ", V_lapack, "% 6.4e", "------");
      FLA_Obj_fshow( stdout, " - d - ", d_lapack, "% 6.4e", "------");
      FLA_Obj_fshow( stdout, " - e - ", e_lapack, "% 6.4e", "------");
      FLA_Obj_fshow( stdout, " - B - ", B_lapack, "% 6.4e", "------");
    }
  }

  {
    testtype     dummy;
    int          zero = 0, one = 1;
    FLA_Obj      D_lapack;

    FLA_Obj_create_conf_to( FLA_NO_TRANSPOSE, A, &D_lapack ); FLA_Set( FLA_ZERO, D_lapack );

    if ( is_flame ) {
      buff_d_lapack = (testtype*)FLA_Obj_buffer_at_view( d_flame );
      buff_e_lapack = (testtype*)FLA_Obj_buffer_at_view( e_flame );
      buff_U_lapack = (testtype*)FLA_Obj_buffer_at_view( U_flame );
      buff_V_lapack = (testtype*)FLA_Obj_buffer_at_view( V_flame );
    }

    FLA_Obj_create( datatype, 4*m, 1, 0, 0, &W );
    buff_W = (testtype*)FLA_Obj_buffer_at_view( W );
    sbdsqr_( "U", &m, &m, &m, &zero, 
             buff_d_lapack, buff_e_lapack, 
             buff_V_lapack, &m, 
             buff_U_lapack, &m, 
             &dummy, &one, 
             buff_W, &info );
    FLA_Obj_free( &W );
    if (info != 0)
      printf( " Error info = %d\n", info );

    if ( is_flame )
      FLA_Set_diagonal_matrix( d_flame, D_lapack );
    else
      FLA_Set_diagonal_matrix( d_lapack, D_lapack );

    if ( is_flame ) {
      fprintf( stdout, " - FLAME ----------\n");
      FLA_Obj_fshow( stdout, " - U - ", U_flame, "% 6.4e", "------");
      FLA_Obj_fshow( stdout, " - V - ", V_flame, "% 6.4e", "------");
      FLA_Obj_fshow( stdout, " - d - ", d_flame, "% 6.4e", "------");
      FLA_Obj_fshow( stdout, " - e - ", e_flame, "% 6.4e", "------");
      FLA_Obj_fshow( stdout, " - D - ", D_lapack, "% 6.4e", "------");
    } else {
      fprintf( stdout, " - LAPACK ----------\n");
      FLA_Obj_fshow( stdout, " - U - ", U_lapack, "% 6.4e", "------");
      FLA_Obj_fshow( stdout, " - V - ", V_lapack, "% 6.4e", "------");
      FLA_Obj_fshow( stdout, " - d - ", d_lapack, "% 6.4e", "------");
      FLA_Obj_fshow( stdout, " - e - ", e_lapack, "% 6.4e", "------");
      FLA_Obj_fshow( stdout, " - D - ", D_lapack, "% 6.4e", "------");
    }

    FLA_Obj_free( &D_lapack );
  }

  if ( is_flame ) {
    FLA_Obj_free( &TU );
    FLA_Obj_free( &TV );
    FLA_Obj_free( &U_flame );
    FLA_Obj_free( &V_flame );
    FLA_Obj_free( &d_flame );
    FLA_Obj_free( &e_flame );
    FLA_Obj_free( &B_flame );
  } else {
    FLA_Obj_free( &tauq );
    FLA_Obj_free( &taup );
    FLA_Obj_free( &d_lapack );
    FLA_Obj_free( &e_lapack );
    FLA_Obj_free( &U_lapack );
    FLA_Obj_free( &V_lapack );
    FLA_Obj_free( &B_lapack );
  }
  FLA_Obj_free( &A );
  FLA_Obj_free( &A_flame );
  FLA_Obj_free( &A_lapack );

  FLA_Obj_free( &C );

  FLA_Finalize_safe( init_result );     
}
예제 #21
0
FLA_Error FLA_Hess_UT_step_unb_var2( FLA_Obj A, FLA_Obj T )
{
  FLA_Obj  ATL,   ATR,      A00,  a01,     A02, 
           ABL,   ABR,      a10t, alpha11, a12t,
                            A20,  a21,     A22;
  FLA_Obj  TTL,   TTR,      T00,  t01,   T02, 
           TBL,   TBR,      t10t, tau11, t12t,
                            T20,  t21,   T22;
  FLA_Obj  yT,              y0,
           yB,              psi1,
                            y2;
  FLA_Obj  zT,              z0,
           zB,              zeta1,
                            z2;
  FLA_Obj  y, z;
           
  FLA_Obj  inv_tau11;
  FLA_Obj  minus_inv_tau11;
  FLA_Obj  first_elem;
  FLA_Obj  beta;
  FLA_Obj  conj_beta;
  FLA_Obj  dot_product;

  FLA_Obj  a21_t,
           a21_b;

  FLA_Datatype datatype_A;
  dim_t        m_A;
  dim_t        b_alg;


  b_alg      = FLA_Obj_length( T );

  datatype_A = FLA_Obj_datatype( A );
  m_A        = FLA_Obj_length( A );

  FLA_Obj_create( datatype_A, 1,   1, 0, 0, &inv_tau11 );
  FLA_Obj_create( datatype_A, 1,   1, 0, 0, &minus_inv_tau11 );
  FLA_Obj_create( datatype_A, 1,   1, 0, 0, &first_elem );
  FLA_Obj_create( datatype_A, 1,   1, 0, 0, &beta );
  FLA_Obj_create( datatype_A, 1,   1, 0, 0, &conj_beta );
  FLA_Obj_create( datatype_A, 1,   1, 0, 0, &dot_product );
  FLA_Obj_create( datatype_A, m_A, 1, 0, 0, &y );
  FLA_Obj_create( datatype_A, m_A, 1, 0, 0, &z );

  FLA_Part_2x2( A,    &ATL, &ATR,
                      &ABL, &ABR,     0, 0, FLA_TL );
  FLA_Part_2x2( T,    &TTL, &TTR,
                      &TBL, &TBR,     0, 0, FLA_TL );
  FLA_Part_2x1( y,    &yT, 
                      &yB,            0, FLA_TOP );
  FLA_Part_2x1( z,    &zT, 
                      &zB,            0, FLA_TOP );

  while ( FLA_Obj_length( ATL ) < b_alg )
  {
    FLA_Repart_2x2_to_3x3( ATL, /**/ ATR,       &A00,  /**/ &a01,     &A02,
                        /* ************* */   /* ************************** */
                                                &a10t, /**/ &alpha11, &a12t,
                           ABL, /**/ ABR,       &A20,  /**/ &a21,     &A22,
                           1, 1, FLA_BR );
    FLA_Repart_2x2_to_3x3( TTL, /**/ TTR,       &T00,  /**/ &t01,   &T02,
                        /* ************* */   /* ************************** */
                                                &t10t, /**/ &tau11, &t12t,
                           TBL, /**/ TBR,       &T20,  /**/ &t21,   &T22,
                           1, 1, FLA_BR );
    FLA_Repart_2x1_to_3x1( yT,                &y0, 
                        /* ** */            /* **** */
                                              &psi1, 
                           yB,                &y2,        1, FLA_BOTTOM );
    FLA_Repart_2x1_to_3x1( zT,                &z0, 
                        /* ** */            /* ***** */
                                              &zeta1, 
                           zB,                &z2,        1, FLA_BOTTOM );

    /*------------------------------------------------------------*/

    if ( FLA_Obj_length( A22 ) > 0 )
    {
      FLA_Part_2x1( a21,    &a21_t,
                            &a21_b,        1, FLA_TOP );

      // [ u21, tau11, a21 ] = House( a21 );
      FLA_Househ2_UT( FLA_LEFT,
                      a21_t,
                      a21_b, tau11 );

      // inv_tau11            =  1 / tau11;
      // minus_inv_tau11      = -1 / tau11;
      FLA_Set( FLA_ONE, inv_tau11 );
      FLA_Inv_scalc( FLA_NO_CONJUGATE, tau11, inv_tau11 );
      FLA_Copy( inv_tau11, minus_inv_tau11 );
      FLA_Scal( FLA_MINUS_ONE, minus_inv_tau11 );

      // Save first element of a21_t and set it to one so we can use a21 as
      // u21 in subsequent computations. We will restore a21_t later on.
      FLA_Copy( a21_t, first_elem );
      FLA_Set( FLA_ONE, a21_t );

      // y21 = A22' * u21;
      FLA_Gemv( FLA_CONJ_TRANSPOSE, FLA_ONE, A22, a21, FLA_ZERO, y2 );

      // z21 = A22 * u21;
      FLA_Gemv( FLA_NO_TRANSPOSE, FLA_ONE, A22, a21, FLA_ZERO, z2 );

      // beta      = u21' * z21 / 2;
      // conj_beta = conj(beta);
      FLA_Dotc( FLA_CONJUGATE, a21, z2, beta );
      FLA_Inv_scal( FLA_TWO, beta );
      FLA_Copyt( FLA_CONJ_NO_TRANSPOSE, beta, conj_beta );

      // y21' = ( y21' - beta / tau * u21' ) / tau;
      // y21  = ( y21 - conj(beta) / tau * u21 ) / tau;
      FLA_Scal( minus_inv_tau11, conj_beta );
      FLA_Axpy( conj_beta, a21, y2 );
      FLA_Scal( inv_tau11, y2 );

      // z21 = ( z21 - beta / tau * u21 ) / tau;
      FLA_Scal( minus_inv_tau11, beta );
      FLA_Axpy( beta, a21, z2 );
      FLA_Scal( inv_tau11, z2 );

      // a12t = a12t * ( I - u21 * u21' / tau );
      //      = a12t - ( a12t * u21 ) * u21' / tau;
      FLA_Dot( a12t, a21, dot_product );
      FLA_Scal( minus_inv_tau11, dot_product );
      FLA_Axpyt( FLA_CONJ_TRANSPOSE, dot_product, a21, a12t );

      // A02 = A02 * ( I - u21 * u21' / tau );
      //     = A02 - ( A02 * u21 ) * u21' / tau;
      FLA_Gemv( FLA_NO_TRANSPOSE, FLA_ONE, A02, a21, FLA_ZERO, y0 );
      FLA_Gerc( FLA_NO_CONJUGATE, FLA_CONJUGATE, minus_inv_tau11, y0, a21, A02 );

      // A22 = A22 - u21 * y21' - z21 * u21';
      FLA_Gerc( FLA_NO_CONJUGATE, FLA_CONJUGATE, FLA_MINUS_ONE, a21, y2, A22 );
      FLA_Gerc( FLA_NO_CONJUGATE, FLA_CONJUGATE, FLA_MINUS_ONE, z2, a21, A22 );

      // t01 = U20' * u21;
      FLA_Gemv( FLA_CONJ_TRANSPOSE, FLA_ONE, A20, a21, FLA_ZERO, t01 );

      // Restore first element of a21.
      FLA_Copy( first_elem, a21_t );
    }

    /*------------------------------------------------------------*/

    FLA_Cont_with_3x3_to_2x2( &ATL, /**/ &ATR,       A00,  a01,     /**/ A02,
                                                     a10t, alpha11, /**/ a12t,
                            /* ************** */  /* ************************ */
                              &ABL, /**/ &ABR,       A20,  a21,     /**/ A22,
                              FLA_TL );
    FLA_Cont_with_3x3_to_2x2( &TTL, /**/ &TTR,       T00,  t01,   /**/ T02,
                                                     t10t, tau11, /**/ t12t,
                            /* ************** */  /* ************************ */
                              &TBL, /**/ &TBR,       T20,  t21,   /**/ T22,
                              FLA_TL );
    FLA_Cont_with_3x1_to_2x1( &yT,                y0, 
                                                  psi1, 
                            /* ** */           /* **** */
                              &yB,                y2,     FLA_TOP );
    FLA_Cont_with_3x1_to_2x1( &zT,                z0, 
                                                  zeta1, 
                            /* ** */           /* ***** */
                              &zB,                z2,     FLA_TOP );
  }

  FLA_Obj_free( &inv_tau11 );
  FLA_Obj_free( &minus_inv_tau11 );
  FLA_Obj_free( &first_elem );
  FLA_Obj_free( &beta );
  FLA_Obj_free( &conj_beta );
  FLA_Obj_free( &dot_product );
  FLA_Obj_free( &y );
  FLA_Obj_free( &z );

  return FLA_SUCCESS;
}
예제 #22
0
void time_Hevd_lv_components(
               int variant, int type, int n_repeats, int m, int n_iter_max, int k_accum, int b_alg,
               FLA_Obj A, FLA_Obj l,
               double* dtime, double* diff1, double* diff2, double* gflops,
               double* dtime_tred, double* gflops_tred,
               double* dtime_tevd, double* gflops_tevd,
               double* dtime_appq, double* gflops_appq, int* k_perf )
{
  int     i;
  double  k;
  double  dtime_save      = 1.0e9;
  double  dtime_tred_save = 1.0e9;
  double  dtime_tevd_save = 1.0e9;
  double  dtime_appq_save = 1.0e9;
  double  flops_tred;
  double  flops_tevd;
  double  flops_appq;
  double  mult_tred;
  double  mult_tevd;
  double  mult_appq;

  FLA_Obj A_save, Z;

  if (
       ( variant == -3 ) ||
       ( variant == -4 ) ||
       ( variant == -5 ) ||
       //( variant == 0 ) ||
       //( variant == -1 ) ||
       //( variant == -2 ) ||
       //( variant == 1 ) ||
       //( variant == 2 ) ||
       //( variant == 3 ) ||
       //( variant == 4 ) ||
       FALSE
     )
  {
    *gflops      = 0.0;
    *dtime       = 0.0;
    *diff1       = 0.0;
    *diff2       = 0.0;
    *dtime_tred  = 0.0;
    *dtime_tevd  = 0.0;
    *dtime_appq  = 0.0;
    *gflops_tred = 0.0;
    *gflops_tevd = 0.0;
    *gflops_appq = 0.0;
    *k_perf      = 0;
    return;
  }

  FLA_Obj_create_conf_to( FLA_NO_TRANSPOSE, A, &A_save );
  FLA_Obj_create_conf_to( FLA_NO_TRANSPOSE, A, &Z );

  FLA_Copy_external( A, A_save );

  for ( i = 0 ; i < n_repeats; i++ ){

    FLA_Copy_external( A_save, A );

    *dtime = FLA_Clock();

    switch( variant ){

    case -3:
    {
      *k_perf = 0;
      REF_Hevd_lv( A, l,
                   dtime_tred, dtime_tevd, dtime_appq );
      break;
    }

    case -4:
    {
      *k_perf = 0;
      REF_Hevdd_lv( A, l,
                    dtime_tred, dtime_tevd, dtime_appq );
      break;
    }

    case -5:
    {
      *k_perf = 0;
      REF_Hevdr_lv( A, l, Z,
                    dtime_tred, dtime_tevd, dtime_appq );
      break;
    }

    case 0:
    {
      *k_perf = 0;
      REF_Hevd_lv_components( A, l,
                              dtime_tred, dtime_tevd, dtime_appq );
      break;
    }

    case -1:
    {
      *k_perf = 0;
      REF_Hevdd_lv_components( A, l,
                               dtime_tred, dtime_tevd, dtime_appq );
      break;
    }

    case -2:
    {
      *k_perf = 0;
      REF_Hevdr_lv_components( A, l, Z,
                               dtime_tred, dtime_tevd, dtime_appq );
      break;
    }

    // Time variant 1
    case 1:
    {
      *k_perf = FLA_Hevd_lv_var1_components( n_iter_max, A, l, k_accum, b_alg,
                                             dtime_tred, dtime_tevd, dtime_appq );
      break;
    }

    // Time variant 2
    case 2:
    {
      *k_perf = FLA_Hevd_lv_var2_components( n_iter_max, A, l, k_accum, b_alg,
                                             dtime_tred, dtime_tevd, dtime_appq );
      break;
    }

    }

    *dtime = FLA_Clock() - *dtime;
    if ( *dtime < dtime_save )
    {
      dtime_save      = *dtime;
      dtime_tred_save = *dtime_tred;
      dtime_tevd_save = *dtime_tevd;
      dtime_appq_save = *dtime_appq;
    }
  }

  *dtime      = dtime_save;
  *dtime_tred = dtime_tred_save;
  *dtime_tevd = dtime_tevd_save;
  *dtime_appq = dtime_appq_save;

//if ( variant == -3 || variant == 0 )
//printf( "\ndtime is %9.3e\n", *dtime );

  {
    FLA_Obj V, A_rev_evd, norm, eye;

    if ( variant == -2 || variant == -5 ) FLA_Copy( Z, A );

    FLA_Obj_create_copy_of( FLA_NO_TRANSPOSE, A, &V ); 
    FLA_Obj_create_conf_to( FLA_NO_TRANSPOSE, A, &A_rev_evd ); 
    FLA_Obj_create_conf_to( FLA_NO_TRANSPOSE, A, &eye ); 
    FLA_Obj_create( FLA_Obj_datatype_proj_to_real( A ), 1, 1, 0, 0, &norm );

    FLA_Apply_diag_matrix( FLA_RIGHT, FLA_NO_CONJUGATE, l, A );

    FLA_Gemm( FLA_NO_TRANSPOSE, FLA_CONJ_TRANSPOSE,
              FLA_ONE, A, V, FLA_ZERO, A_rev_evd );
    FLA_Triangularize( FLA_LOWER_TRIANGULAR, FLA_NONUNIT_DIAG, A_rev_evd );

//FLA_Obj_show( "A_rev_evd", A_rev_evd, "%9.2e + %9.2e ", "" );
 
    FLA_Axpy( FLA_MINUS_ONE, A_save, A_rev_evd );
    FLA_Norm_frob( A_rev_evd, norm );
    FLA_Obj_extract_real_scalar( norm, diff1 );

    FLA_Set_to_identity( eye );
	FLA_Copy( V, A_rev_evd );
    FLA_Gemm( FLA_NO_TRANSPOSE, FLA_CONJ_TRANSPOSE,
              FLA_ONE, V, A_rev_evd, FLA_MINUS_ONE, eye );
    FLA_Norm_frob( eye, norm );
    FLA_Obj_extract_real_scalar( norm, diff2 );

    FLA_Obj_free( &V );
    FLA_Obj_free( &A_rev_evd );
    FLA_Obj_free( &eye );
    FLA_Obj_free( &norm );
  }

  k = 2.00;

  flops_tred = ( ( 4.0 / 3.0 )   * m * m * m );
  flops_tevd = (   4.5           * k * m * m     +
                   3.0           * k * m * m * m );

  if ( variant == -1 || variant == -2 ||
       variant == -4 || variant == -5 )
    flops_appq = ( 2.0           * m * m * m );
  else
    flops_appq = ( 4.0 / 3.0     * m * m * m );

/*
  if ( FLA_Obj_is_complex( A ) )
  {
    *gflops      = ( 4.0 * flops_tred + 
                     2.0 * flops_tevd + 
                     4.0 * flops_appq ) / *dtime      / 1e9;

    *gflops_tred = ( 4.0 * flops_tred ) / *dtime_tred / 1e9;
    *gflops_tevd = ( 2.0 * flops_tevd ) / *dtime_tevd / 1e9;
    *gflops_appq = ( 4.0 * flops_appq ) / *dtime_appq / 1e9;
  }
  else
  {
    *gflops      = ( 1.0 * flops_tred + 
                     1.0 * flops_tevd + 
                     1.0 * flops_appq ) / *dtime      / 1e9;

    *gflops_tred = ( 1.0 * flops_tred ) / *dtime_tred / 1e9;
    *gflops_tevd = ( 1.0 * flops_tevd ) / *dtime_tevd / 1e9;
    *gflops_appq = ( 1.0 * flops_appq ) / *dtime_appq / 1e9;
  }
*/

  if ( FLA_Obj_is_complex( A ) )
  {
    mult_tred = 4.0;
    mult_tevd = 2.0;
    mult_appq = 4.0;
  }
  else
  {
    mult_tred = 1.0;
    mult_tevd = 1.0;
    mult_appq = 1.0;
  }

  *gflops = ( mult_tred * flops_tred + 
              mult_tevd * flops_tevd + 
              mult_appq * flops_appq ) / *dtime / 1e9;

  *gflops_tred = ( mult_tred * flops_tred ) / *dtime_tred / 1e9;
  *gflops_tevd = ( mult_tevd * flops_tevd ) / *dtime_tevd / 1e9;
  *gflops_appq = ( mult_appq * flops_appq ) / *dtime_appq / 1e9;

  FLA_Copy_external( A_save, A );

  FLA_Obj_free( &A_save );
  FLA_Obj_free( &Z );
}
예제 #23
0
int main(int argc, char *argv[])
{
  int 
    m_input,
    m,
    p_first, p_last, p_inc,
    p,
    k_accum,
    b_alg,
    n_iter_max,
    variant,
    n_repeats,
    i,
    n_variants = 2;

  char *colors = "brkgmcbrkg";
  char *ticks  = "o+*xso+*xs";
  char m_dim_desc[14];
  char m_dim_tag[10];

  double max_gflops=6.0;

  double
    dtime,
    gflops,
    diff1, diff2;

  FLA_Datatype datatype, dt_real;

  FLA_Obj
    A, l, Q, Ql, TT, r, d, e, A_orig, G, R, W2, de, alpha;

  FLA_Init();


  fprintf( stdout, "%c number of repeats:", '%' );
  scanf( "%d", &n_repeats );
  fprintf( stdout, "%c %d\n", '%', n_repeats );

  fprintf( stdout, "%c enter n_iter_max (per eigenvalue): ", '%' );
  scanf( "%d", &n_iter_max );
  fprintf( stdout, "%c %d\n", '%', n_iter_max );

  fprintf( stdout, "%c enter number of sets of Givens rotations to accumulate:", '%' );
  scanf( "%d", &k_accum );
  fprintf( stdout, "%c %d\n", '%', k_accum );

  fprintf( stdout, "%c enter blocking size for application of G:", '%' );
  scanf( "%d", &b_alg );
  fprintf( stdout, "%c %d\n", '%', b_alg );

  fprintf( stdout, "%c enter problem size first, last, inc:", '%' );
  scanf( "%d%d%d", &p_first, &p_last, &p_inc );
  fprintf( stdout, "%c %d %d %d\n", '%', p_first, p_last, p_inc );

  fprintf( stdout, "%c enter m (-1 means bind to problem size): ", '%' );
  scanf( "%d", &m_input );
  fprintf( stdout, "%c %d\n", '%', m_input );


  fprintf( stdout, "\n" );


  if     ( m_input >  0 ) {
    sprintf( m_dim_desc, "m = %d", m_input );
    sprintf( m_dim_tag,  "m%dc", m_input);
  }
  else if( m_input <  -1 ) {
    sprintf( m_dim_desc, "m = p/%d", -m_input );
    sprintf( m_dim_tag,  "m%dp", -m_input );
  }
  else if( m_input == -1 ) {
    sprintf( m_dim_desc, "m = p" );
    sprintf( m_dim_tag,  "m%dp", 1 );
  }


  for ( p = p_first, i = 1; p <= p_last; p += p_inc, i += 1 )
  {

    m = m_input;

    if( m < 0 ) m = p / abs(m_input);

    //datatype = FLA_FLOAT;
    //datatype = FLA_DOUBLE;
    //datatype = FLA_COMPLEX;
    datatype = FLA_DOUBLE_COMPLEX;

    FLA_Obj_create( datatype,  m,         m, 0, 0, &A );
    FLA_Obj_create( datatype,  m,         m, 0, 0, &A_orig );
    FLA_Obj_create( datatype,  m,         m, 0, 0, &Q );
    FLA_Obj_create( datatype,  m,         m, 0, 0, &Ql );
    FLA_Obj_create( datatype,  m,         1, 0, 0, &r );
    FLA_Obj_create( datatype,  m,         m, 0, 0, &W2 );
    FLA_Obj_create( datatype,  m-1, k_accum, 0, 0, &G );

	dt_real = FLA_Obj_datatype_proj_to_real( A );

    FLA_Obj_create( dt_real, m,      1, 0, 0, &l );
    FLA_Obj_create( dt_real, m,      1, 0, 0, &d );
    FLA_Obj_create( dt_real, m-1,    1, 0, 0, &e );
    FLA_Obj_create( dt_real, m,      m, 0, 0, &R );

	FLA_Obj_create( dt_real, 1,      1, 0, 0, &alpha );

	*FLA_DOUBLE_PTR( alpha ) = 1.0 / ( sqrt( sqrt( (double) m ) ) );

	FLA_Random_unitary_matrix( Q );

	//FLA_Fill_with_uniform_dist( FLA_ONE,   l );
	//FLA_Fill_with_inverse_dist( FLA_ONE,   l );
	FLA_Fill_with_geometric_dist( alpha,   l );


    {
      FLA_Copy( Q, Ql );
      FLA_Apply_diag_matrix( FLA_RIGHT, FLA_NO_CONJUGATE, l, Ql );
      FLA_Gemm( FLA_NO_TRANSPOSE, FLA_CONJ_TRANSPOSE,
                FLA_ONE, Ql, Q, FLA_ZERO, A );
      FLA_Triangularize( FLA_LOWER_TRIANGULAR, FLA_NONUNIT_DIAG, A );
      FLA_Copy( A, A_orig );
    }

    FLA_Set( FLA_ZERO, l );
    FLA_Set( FLA_ZERO, Q );

	FLA_Tridiag_UT_create_T( A, &TT );
	FLA_Tridiag_UT( FLA_LOWER_TRIANGULAR, A, TT );
	FLA_Tridiag_UT_realify( FLA_LOWER_TRIANGULAR, A, r );
	FLA_Tridiag_UT_extract_diagonals( FLA_LOWER_TRIANGULAR, A, d, e );
	FLA_Tridiag_UT_form_Q( FLA_LOWER_TRIANGULAR, A, TT );
	FLA_Apply_diag_matrix( FLA_RIGHT, FLA_CONJUGATE, r, A );
    FLA_Obj_free( &TT );

    time_Tevd_v( 0, FLA_ALG_REFERENCE, n_repeats, m, k_accum, b_alg, n_iter_max,
                 A_orig, d, e, G, R, W2, A, l, &dtime, &diff1, &diff2, &gflops );

    fprintf( stdout, "data_REFq( %d, 1:3 ) = [ %d %6.3lf %9.2e %6.2le %6.2le ]; \n", i, p, gflops, dtime, diff1, diff2 );
    fflush( stdout );

    for ( variant = 1; variant <= n_variants; variant++ ){
      
      fprintf( stdout, "data_var%d( %d, 1:3 ) = [ %d ", variant, i, p );
      fflush( stdout );

      time_Tevd_v( variant, FLA_ALG_UNB_OPT, n_repeats, m, k_accum, b_alg, n_iter_max,
                   A_orig, d, e, G, R, W2, A, l, &dtime, &diff1, &diff2, &gflops );

      fprintf( stdout, "%6.3lf %9.2e %6.2le %6.2le ", gflops, dtime, diff1, diff2 );
      fflush( stdout );

      fprintf( stdout, "];\n" );
      fflush( stdout );
    }

    fprintf( stdout, "\n" );

    FLA_Obj_free( &A );
    FLA_Obj_free( &A_orig );
    FLA_Obj_free( &Q );
    FLA_Obj_free( &Ql );
    FLA_Obj_free( &G );
    FLA_Obj_free( &W2 );
    FLA_Obj_free( &r );
    FLA_Obj_free( &l );
    FLA_Obj_free( &d );
    FLA_Obj_free( &e );
    FLA_Obj_free( &R );
    FLA_Obj_free( &alpha );
  }

/*
  fprintf( stdout, "figure;\n" );

  fprintf( stdout, "plot( data_REF( :,1 ), data_REF( :, 2 ), '-' ); \n" );

  fprintf( stdout, "hold on;\n" );

  for ( i = 1; i <= n_variants; i++ ) {
    fprintf( stdout, "plot( data_var%d( :,1 ), data_var%d( :, 2 ), '%c:%c' ); \n",
            i, i, colors[ i-1 ], ticks[ i-1 ] );
    fprintf( stdout, "plot( data_var%d( :,1 ), data_var%d( :, 4 ), '%c-.%c' ); \n",
            i, i, colors[ i-1 ], ticks[ i-1 ] );
  }

  fprintf( stdout, "legend( ... \n" );
  fprintf( stdout, "'Reference', ... \n" );

  for ( i = 1; i < n_variants; i++ )
    fprintf( stdout, "'unb\\_var%d', 'blk\\_var%d', ... \n", i, i );
  fprintf( stdout, "'unb\\_var%d', 'blk\\_var%d' ); \n", i, i );

  fprintf( stdout, "xlabel( 'problem size p' );\n" );
  fprintf( stdout, "ylabel( 'GFLOPS/sec.' );\n" );
  fprintf( stdout, "axis( [ 0 %d 0 %.2f ] ); \n", p_last, max_gflops );
  fprintf( stdout, "title( 'FLAME Hevd_lv performance (%s, %s)' );\n", 
           m_dim_desc, n_dim_desc );
  fprintf( stdout, "print -depsc tridiag_%s_%s.eps\n", m_dim_tag, n_dim_tag );
  fprintf( stdout, "hold off;\n");
  fflush( stdout );
*/

  FLA_Finalize( );

  return 0;
}
예제 #24
0
void time_Lyap_h(
               int variant, int type, int n_repeats, int m, int nb_alg,
               FLA_Obj isgn, FLA_Obj A, FLA_Obj C, FLA_Obj C_ref, FLA_Obj scale,
               double *dtime, double *diff, double *gflops )
{
  int irep;

  double dtime_old = 1.0e9;

  FLA_Obj C_save, norm;

  fla_blocksize_t* bp;
  fla_lyap_t*      cntl_lyap_unb;
  fla_lyap_t*      cntl_lyap_opt;
  fla_lyap_t*      cntl_lyap_blk;

  if ( type == FLA_ALG_UNB_OPT && variant > 4 )
  {
    *gflops = 0.0;
    *diff   = 0.0;
    return;
  }

  bp               = FLA_Blocksize_create( nb_alg, nb_alg, nb_alg, nb_alg );
  cntl_lyap_unb    = FLA_Cntl_lyap_obj_create( FLA_FLAT,
                                               FLA_UNB_VAR_OFFSET + variant,
                                               NULL,
                                               NULL,
                                               NULL,
                                               NULL,
                                               NULL,
                                               NULL,
                                               NULL,
                                               NULL );
  cntl_lyap_opt    = FLA_Cntl_lyap_obj_create( FLA_FLAT,
                                               FLA_OPT_VAR_OFFSET + variant,
                                               NULL,
                                               NULL,
                                               NULL,
                                               NULL,
                                               NULL,
                                               NULL,
                                               NULL,
                                               NULL );
  cntl_lyap_blk    = FLA_Cntl_lyap_obj_create( FLA_FLAT,
                                               FLA_BLK_VAR_OFFSET + variant,
                                               bp,
                                               fla_scal_cntl_blas,
                                               fla_lyap_cntl_leaf,
                                               fla_sylv_cntl,
                                               fla_gemm_cntl_blas,
                                               fla_gemm_cntl_blas,
                                               fla_hemm_cntl_blas,
                                               fla_her2k_cntl_blas );

  FLA_Obj_create_conf_to( FLA_NO_TRANSPOSE, C, &C_save );
  FLA_Obj_create( FLA_Obj_datatype_proj_to_real( C ), 1, 1, 0, 0, &norm );

  FLA_Copy_external( C, C_save );


  for ( irep = 0 ; irep < n_repeats; irep++ )
  {
    FLA_Copy_external( C_save, C );

    *dtime = FLA_Clock();

    switch( variant )
    {

    case 0:
      REF_Lyap_h( isgn, A, C, scale );
      break;

    case 1:
    {
      switch( type )
      {
        case FLA_ALG_UNBLOCKED:
          FLA_Lyap_h_unb_var1( isgn, A, C );
          break;
        case FLA_ALG_UNB_OPT:
          FLA_Lyap_h_opt_var1( isgn, A, C );
          break;
        case FLA_ALG_BLOCKED:
          FLA_Lyap_h_blk_var1( isgn, A, C, scale, cntl_lyap_blk );
          break;
      }
      break;
    }

    case 2:
    {
      switch( type )
      {
        case FLA_ALG_UNBLOCKED:
          FLA_Lyap_h_unb_var2( isgn, A, C );
          break;
        case FLA_ALG_UNB_OPT:
          FLA_Lyap_h_opt_var2( isgn, A, C );
          break;
        case FLA_ALG_BLOCKED:
          FLA_Lyap_h_blk_var2( isgn, A, C, scale, cntl_lyap_blk );
          break;
      }
      break;
    }

    case 3:
    {
      switch( type )
      {
        case FLA_ALG_UNBLOCKED:
          FLA_Lyap_h_unb_var3( isgn, A, C );
          break;
        case FLA_ALG_UNB_OPT:
          FLA_Lyap_h_opt_var3( isgn, A, C );
          break;
        case FLA_ALG_BLOCKED:
          FLA_Lyap_h_blk_var3( isgn, A, C, scale, cntl_lyap_blk );
          break;
      }
      break;
    }

    case 4:
    {
      switch( type )
      {
        case FLA_ALG_UNBLOCKED:
          FLA_Lyap_h_unb_var4( isgn, A, C );
          break;
        case FLA_ALG_UNB_OPT:
          FLA_Lyap_h_opt_var4( isgn, A, C );
          break;
        case FLA_ALG_BLOCKED:
          FLA_Lyap_h_blk_var4( isgn, A, C, scale, cntl_lyap_blk );
          break;
      }
      break;
    }

    }

    *dtime = FLA_Clock() - *dtime;
    dtime_old = min( *dtime, dtime_old );
  }


  FLA_Blocksize_free( bp );
  FLA_Cntl_obj_free( cntl_lyap_unb );
  FLA_Cntl_obj_free( cntl_lyap_opt );
  FLA_Cntl_obj_free( cntl_lyap_blk );


/*
  if ( variant == 0 )
  {
    FLA_Copy_external( C, C_ref );
    *diff = 0.0;
  }
  else
  {
    FLA_Hermitianize( FLA_UPPER_TRIANGULAR, C );
    *diff = FLA_Max_elemwise_diff( C, C_ref );
  }
*/
  {
    FLA_Obj X, W;

    FLA_Obj_create_conf_to( FLA_NO_TRANSPOSE, C, &X );
    FLA_Obj_create_conf_to( FLA_NO_TRANSPOSE, C, &W );

    FLA_Copy( C, X );
    FLA_Hermitianize( FLA_UPPER_TRIANGULAR, X );

    FLA_Gemm( FLA_CONJ_TRANSPOSE, FLA_NO_TRANSPOSE, FLA_ONE, A, X, FLA_ZERO, W );
    FLA_Gemm( FLA_NO_TRANSPOSE,   FLA_NO_TRANSPOSE, FLA_ONE, X, A, FLA_ONE,  W );
    FLA_Scal( isgn, W );
/*
    if ( variant == 3 && type == FLA_ALG_UNBLOCKED )
    {
      FLA_Obj_show( "W", W, "%10.3e + %10.3e ", "" );
      FLA_Obj_show( "C_save", C_save, "%10.3e + %10.3e ", "" );
    }
*/
    FLA_Axpy( FLA_MINUS_ONE, C_save, W );
    FLA_Norm1( W, norm );
    FLA_Obj_extract_real_scalar( norm, diff );

    FLA_Obj_free( &X );
    FLA_Obj_free( &W );
  }

  *gflops = ( 2.0 / 3.0 ) * ( m * m * m ) / 
            dtime_old / 1e9;

  if ( FLA_Obj_is_complex( C ) )
    *gflops *= 4.0;

  *dtime = dtime_old;

  FLA_Copy_external( C_save, C );

  FLA_Obj_free( &C_save );
  FLA_Obj_free( &norm );
}
예제 #25
0
FLA_Error FLA_Hevd_lv_var4_components( dim_t n_iter_max, FLA_Obj A, FLA_Obj l, dim_t k_accum, dim_t b_alg,
                                       double* dtime_tred, double* dtime_tevd, double* dtime_appq )
{
	FLA_Error    r_val = FLA_SUCCESS;
	FLA_Uplo     uplo = FLA_LOWER_TRIANGULAR;
	FLA_Datatype dt;
	FLA_Datatype dt_real;
	FLA_Datatype dt_comp;
	FLA_Obj      T, r, d, e, G, R, W;
	FLA_Obj      d0, e0, ls, pu;
	dim_t        mn_A;
	dim_t        n_G = k_accum;
	double       dtime_temp;

	mn_A    = FLA_Obj_length( A );
	dt      = FLA_Obj_datatype( A );
	dt_real = FLA_Obj_datatype_proj_to_real( A );
	dt_comp = FLA_Obj_datatype_proj_to_complex( A );

	*dtime_tred = 1;
	*dtime_tevd = 1;
	*dtime_appq = 1;

	// If the matrix is a scalar, then the EVD is easy.
	if ( mn_A == 1 )
	{
		FLA_Copy( A, l );
		FLA_Set( FLA_ONE, A );

		return FLA_SUCCESS;
	}

	// Create a matrix to hold block Householder transformations.
	FLA_Tridiag_UT_create_T( A, &T );

	// Create a vector to hold the realifying scalars.
	FLA_Obj_create( dt,      mn_A,     1, 0, 0, &r );

	// Create vectors to hold the diagonal and sub-diagonal.
	FLA_Obj_create( dt_real, mn_A,     1, 0, 0, &d );
	FLA_Obj_create( dt_real, mn_A-1,   1, 0, 0, &e );
	FLA_Obj_create( dt_real, mn_A,     1, 0, 0, &d0 );
	FLA_Obj_create( dt_real, mn_A-1,   1, 0, 0, &e0 );
	FLA_Obj_create( dt_real, mn_A,     1, 0, 0, &pu );
	FLA_Obj_create( FLA_INT, mn_A,     1, 0, 0, &ls );
	FLA_Obj_create( dt_comp, mn_A-1, n_G, 0, 0, &G );
	FLA_Obj_create( dt_real, mn_A,  mn_A, 0, 0, &R );
	FLA_Obj_create( dt,      mn_A,  mn_A, 0, 0, &W );

  dtime_temp = FLA_Clock();
  {
	// Reduce the matrix to tridiagonal form.
	FLA_Tridiag_UT( uplo, A, T );
  }
  *dtime_tred = FLA_Clock() - dtime_temp;

	// Apply scalars to rotate elements on the sub-diagonal to the real domain.
	FLA_Tridiag_UT_realify( uplo, A, r );

	// Extract the diagonal and sub-diagonal from A.
	FLA_Tridiag_UT_extract_diagonals( uplo, A, d, e );

  dtime_temp = FLA_Clock();
  {
	// Form Q, overwriting A.
	FLA_Tridiag_UT_form_Q( uplo, A, T );
  }
  *dtime_appq = FLA_Clock() - dtime_temp;

	// Apply the scalars in r to Q.
	FLA_Apply_diag_matrix( FLA_RIGHT, FLA_CONJUGATE, r, A );

	// Find the eigenvalues only.
	FLA_Copy( d, d0 ); FLA_Copy( e, e0 );
	//r_val = FLA_Tevd_n_opt_var1( n_iter_max, d0, e0, G, A );
{
	int info;
	double* buff_d = FLA_DOUBLE_PTR( d0 );
	double* buff_e = FLA_DOUBLE_PTR( e0 );
	dsterf_( &mn_A, buff_d, buff_e, &info );
}
	FLA_Sort( FLA_FORWARD, d0 );
	FLA_Set( FLA_ZERO, ls );
	FLA_Set( FLA_ZERO, pu );

  dtime_temp = FLA_Clock();
  {
	// Perform an eigenvalue decomposition on the tridiagonal matrix.
	r_val = FLA_Tevd_v_opt_var4( n_iter_max, d, e, d0, ls, pu, G, R, W, A, b_alg );
  }
  *dtime_tevd = FLA_Clock() - dtime_temp;

	// Copy the converged eigenvalues to the output vector.
	FLA_Copy( d, l );

	// Sort the eigenvalues and eigenvectors in ascending order.
	FLA_Sort_evd( FLA_FORWARD, l, A );

	FLA_Obj_free( &T );
	FLA_Obj_free( &r );
	FLA_Obj_free( &d );
	FLA_Obj_free( &e );
	FLA_Obj_free( &d0 );
	FLA_Obj_free( &pu );
	FLA_Obj_free( &e0 );
	FLA_Obj_free( &ls );
	FLA_Obj_free( &G );
	FLA_Obj_free( &R );
	FLA_Obj_free( &W );

	return r_val;
}
예제 #26
0
int main(int argc, char *argv[])
{
  int 
    m_input,
    m,
    p_first, p_last, p_inc,
    p,
    nb_alg,
    variant,
    uplo,
    n_repeats,
    i, j,
    datatype,
    n_variants = 3;
  
  int  blocksize[16];

  char *colors = "brkgmcbrkg";
  char *ticks  = "o+*xso+*xs";
  char m_dim_desc[14];
  char m_dim_tag[10];

  double max_gflops=6.0;

  double
    dtime,
    gflops,
    diff;

  FLA_Obj
    A, b, b_orig, norm;
  

  /* Initialize FLAME */
  FLA_Init();


  fprintf( stdout, "%c number of repeats:", '%' );
  scanf( "%d", &n_repeats );
  fprintf( stdout, "%c %d\n", '%', n_repeats );

  fprintf( stdout, "%c Enter blocking size:", '%' );
  scanf( "%d", &nb_alg );
  fprintf( stdout, "%c %d\n", '%', nb_alg );

  fprintf( stdout, "%c enter problem size first, last, inc:", '%' );
  scanf( "%d%d%d", &p_first, &p_last, &p_inc );
  fprintf( stdout, "%c %d %d %d\n", '%', p_first, p_last, p_inc );

  fprintf( stdout, "%c enter m (-1 means bind to problem size): ", '%' );
  scanf( "%d", &m_input );
  fprintf( stdout, "%c %d\n", '%', m_input );


  /* Delete all existing data structures */
  fprintf( stdout, "\nclear all;\n\n" );


  if     ( m_input >  0 ) {
    sprintf( m_dim_desc, "m = %d", m_input );
    sprintf( m_dim_tag,  "m%dc", m_input);
  }
  else if( m_input <  -1 ) {
    sprintf( m_dim_desc, "m = p/%d", -m_input );
    sprintf( m_dim_tag,  "m%dp", -m_input );
  }
  else if( m_input == -1 ) {
    sprintf( m_dim_desc, "m = p" );
    sprintf( m_dim_tag,  "m%dp", 1 );
  }

// ----------------------
/*
FLA_Obj R, C, R_conf;
m = 3;
datatype = FLA_DOUBLE_COMPLEX;
FLA_Obj_create( datatype, m, m, 1, m, &C );
FLA_Obj_create( datatype, m, m, m, 1, &R );
FLA_Obj_create_conf_to( FLA_NO_TRANSPOSE, R, &R_conf );

//printf( "R     rs, cs = %u, %u\n", FLA_Obj_row_stride( R ), FLA_Obj_col_stride( R ) );
//printf( "Rconf rs, cs = %u, %u\n", FLA_Obj_row_stride( R_conf ), FLA_Obj_col_stride( R_conf ) );

//FLA_Random_tri_matrix( FLA_LOWER_TRIANGULAR, FLA_UNIT_DIAG, C );
//FLA_Copy( C, R );

//FLA_Random_tri_matrix( FLA_LOWER_TRIANGULAR, FLA_UNIT_DIAG, R );
FLA_Random_spd_matrix( FLA_LOWER_TRIANGULAR, R );
FLA_Copy( R, C );

FLA_Obj_show( "C", C, "%10.3e + %10.3e ", "" );
FLA_Obj_show( "R", R, "%10.3e + %10.3e ", "" );

exit(1);
*/
// ----------------------

  for ( p = p_first, i = 1; p <= p_last; p += p_inc, i += 1 )
  {

    m = m_input;

    if( m < 0 ) m = p / abs(m_input);

    //datatype = FLA_FLOAT;
    //datatype = FLA_DOUBLE;
    //datatype = FLA_COMPLEX;
    datatype = FLA_DOUBLE_COMPLEX;

    FLA_Obj_create( datatype, m, m, 0, 0, &A );
    FLA_Obj_create( datatype, m, 1, 0, 0, &b );
    FLA_Obj_create( datatype, m, 1, 0, 0, &b_orig );

/*
    FLA_Obj_create( datatype, m, m, m, 1, &A );
    FLA_Obj_create( datatype, m, 1, 1, 1, &b );
    FLA_Obj_create( datatype, m, 1, 1, 1, &b_orig );
*/

    if ( FLA_Obj_is_single_precision( A ) )
      FLA_Obj_create( FLA_FLOAT, 1, 1, 0, 0, &norm );
    else
      FLA_Obj_create( FLA_DOUBLE, 1, 1, 0, 0, &norm );

    FLA_Random_spd_matrix( FLA_LOWER_TRIANGULAR, A );
    FLA_Random_matrix( b );
    FLA_Copy( b, b_orig );

/*
    time_Chol_l( 0, FLA_ALG_REFERENCE, n_repeats, p, nb_alg,
                 A, b, b_orig, norm, &dtime, &diff, &gflops );

    fprintf( stdout, "data_REF( %d, 1:2 ) = [ %d  %6.3lf ]; \n", i, p, gflops );
    fflush( stdout );
*/

    for ( variant = 1; variant <= n_variants; variant++ ){
      
      fprintf( stdout, "data_var%d( %d, 1:5 ) = [ %d  ", variant, i, p );
      fflush( stdout );

      time_Chol_l( variant, FLA_ALG_UNBLOCKED, n_repeats, p, nb_alg,
                   A, b, b_orig, norm, &dtime, &diff, &gflops );

      fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      fflush( stdout );

      time_Chol_l( variant, FLA_ALG_UNB_OPT, n_repeats, p, nb_alg,
                   A, b, b_orig, norm, &dtime, &diff, &gflops );

      fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      fflush( stdout );

      time_Chol_l( variant, FLA_ALG_BLOCKED, n_repeats, p, nb_alg,
                   A, b, b_orig, norm, &dtime, &diff, &gflops );

      fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      fflush( stdout );

      fprintf( stdout, " ]; \n" );
      fflush( stdout );
    }

    FLA_Obj_free( &A );
    FLA_Obj_free( &b );
    FLA_Obj_free( &b_orig );
    FLA_Obj_free( &norm );

    fprintf( stdout, "\n" );
  }

/*
  // Print the MATLAB commands to plot the data

  // Delete all existing figures
  fprintf( stdout, "figure;\n" );

  // Plot the performance of the reference implementation
  fprintf( stdout, "plot( data_REF( :,1 ), data_REF( :, 2 ), '-' ); \n" );

  // Indicate that you want to add to the existing plot
  fprintf( stdout, "hold on;\n" );

  // Plot the data for the other numbers of threads
  for ( i = 1; i <= n_variants; i++ ){
    fprintf( stdout, "plot( data_var%d( :,1 ), data_var%d( :, 2 ), '%c:%c' ); \n", 
             i, i, colors[ i-1 ], ticks[ i-1 ] );
  }

  fprintf( stdout, "legend( ... \n" );
  fprintf( stdout, "'Reference', ... \n" );

  for ( i = 1; i <= n_variants; i++ )
    fprintf( stdout, "'FLAME var%d', ... \n", i );

  fprintf( stdout, "'Location', 'SouthEast' ); \n" );

  fprintf( stdout, "xlabel( 'problem size p' );\n" );
  fprintf( stdout, "ylabel( 'GFLOPS/sec.' );\n" );
  fprintf( stdout, "axis( [ 0 %d 0 %.2f ] ); \n", p_last, max_gflops );
  fprintf( stdout, "title( 'FLAME chol\\_l performance (%s)' );\n", 
           m_dim_desc );
  fprintf( stdout, "print -depsc chol_l_%s.eps\n", m_dim_tag );
  fprintf( stdout, "hold off;\n");
  fflush( stdout );
*/

  FLA_Finalize( );
}