Matrix3<Real> ImplicitSurface<Real>::GetHessian (const Vector3<Real>& rkP) const { Real fFXX = FXX(rkP); Real fFXY = FXY(rkP); Real fFXZ = FXZ(rkP); Real fFYY = FYY(rkP); Real fFYZ = FYZ(rkP); Real fFZZ = FZZ(rkP); return Matrix3<Real>(fFXX,fFXY,fFXZ,fFXY,fFYY,fFYZ,fFXZ,fFYZ,fFZZ); }
Matrix3<Real> ImplicitSurface<Real>::GetHessian (const Vector3<Real>& pos) const { Real fxx = FXX(pos); Real fxy = FXY(pos); Real fxz = FXZ(pos); Real fyy = FYY(pos); Real fyz = FYZ(pos); Real fzz = FZZ(pos); return Matrix3<Real>(fxx, fxy, fxz, fxy, fyy, fyz, fxz, fyz, fzz); }
bool ImplicitSurface<Real>::ComputePrincipalCurvatureInfo ( const Vector3<Real>& rkP, Real& rfCurv0, Real& rfCurv1, Vector3<Real>& rkDir0, Vector3<Real>& rkDir1) { // Principal curvatures and directions for implicitly defined surfaces // F(x,y,z) = 0. // // DF = (Fx,Fy,Fz), L = Length(DF) // // D^2 F = +- -+ // | Fxx Fxy Fxz | // | Fxy Fyy Fyz | // | Fxz Fyz Fzz | // +- -+ // // adj(D^2 F) = +- -+ // | Fyy*Fzz-Fyz*Fyz Fyz*Fxz-Fxy*Fzz Fxy*Fyz-Fxz*Fyy | // | Fyz*Fxz-Fxy*Fzz Fxx*Fzz-Fxz*Fxz Fxy*Fxz-Fxx*Fyz | // | Fxy*Fyz-Fxz*Fyy Fxy*Fxz-Fxx*Fyz Fxx*Fyy-Fxy*Fxy | // +- -+ // // Gaussian curvature = [DF^t adj(D^2 F) DF]/L^4 // // Mean curvature = 0.5*[trace(D^2 F)/L - (DF^t D^2 F DF)/L^3] // first derivatives Real fFX = FX(rkP); Real fFY = FY(rkP); Real fFZ = FZ(rkP); Real fL = Math<Real>::Sqrt(fFX*fFX + fFY*fFY + fFZ*fFZ); if (fL <= Math<Real>::ZERO_TOLERANCE) { return false; } Real fFXFX = fFX*fFX; Real fFXFY = fFX*fFY; Real fFXFZ = fFX*fFZ; Real fFYFY = fFY*fFY; Real fFYFZ = fFY*fFZ; Real fFZFZ = fFZ*fFZ; Real fInvL = ((Real)1.0)/fL; Real fInvL2 = fInvL*fInvL; Real fInvL3 = fInvL*fInvL2; Real fInvL4 = fInvL2*fInvL2; // second derivatives Real fFXX = FXX(rkP); Real fFXY = FXY(rkP); Real fFXZ = FXZ(rkP); Real fFYY = FYY(rkP); Real fFYZ = FYZ(rkP); Real fFZZ = FZZ(rkP); // mean curvature Real fMCurv = ((Real)0.5)*fInvL3*(fFXX*(fFYFY+fFZFZ) + fFYY*(fFXFX+fFZFZ) + fFZZ*(fFXFX+fFYFY) - ((Real)2.0)*(fFXY*fFXFY+fFXZ*fFXFZ+fFYZ*fFYFZ)); // Gaussian curvature Real fGCurv = fInvL4*(fFXFX*(fFYY*fFZZ-fFYZ*fFYZ) + fFYFY*(fFXX*fFZZ-fFXZ*fFXZ) + fFZFZ*(fFXX*fFYY-fFXY*fFXY) + ((Real)2.0)*(fFXFY*(fFXZ*fFYZ-fFXY*fFZZ) + fFXFZ*(fFXY*fFYZ-fFXZ*fFYY) + fFYFZ*(fFXY*fFXZ-fFXX*fFYZ))); // solve for principal curvatures Real fDiscr = Math<Real>::Sqrt(Math<Real>::FAbs(fMCurv*fMCurv-fGCurv)); rfCurv0 = fMCurv - fDiscr; rfCurv1 = fMCurv + fDiscr; Real fM00 = ((-(Real)1.0 + fFXFX*fInvL2)*fFXX)*fInvL + (fFXFY*fFXY)*fInvL3 + (fFXFZ*fFXZ)*fInvL3; Real fM01 = ((-(Real)1.0 + fFXFX*fInvL2)*fFXY)*fInvL + (fFXFY*fFYY)*fInvL3 + (fFXFZ*fFYZ)*fInvL3; Real fM02 = ((-(Real)1.0 + fFXFX*fInvL2)*fFXZ)*fInvL + (fFXFY*fFYZ)*fInvL3 + (fFXFZ*fFZZ)*fInvL3; Real fM10 = (fFXFY*fFXX)*fInvL3 + ((-(Real)1.0 + fFYFY*fInvL2)*fFXY)*fInvL + (fFYFZ*fFXZ)*fInvL3; Real fM11 = (fFXFY*fFXY)*fInvL3 + ((-(Real)1.0 + fFYFY*fInvL2)*fFYY)*fInvL + (fFYFZ*fFYZ)*fInvL3; Real fM12 = (fFXFY*fFXZ)*fInvL3 + ((-(Real)1.0 + fFYFY*fInvL2)*fFYZ)*fInvL + (fFYFZ*fFZZ)*fInvL3; Real fM20 = (fFXFZ*fFXX)*fInvL3 + (fFYFZ*fFXY)*fInvL3 + ((-(Real)1.0 + fFZFZ*fInvL2)*fFXZ)*fInvL; Real fM21 = (fFXFZ*fFXY)*fInvL3 + (fFYFZ*fFYY)*fInvL3 + ((-(Real)1.0 + fFZFZ*fInvL2)*fFYZ)*fInvL; Real fM22 = (fFXFZ*fFXZ)*fInvL3 + (fFYFZ*fFYZ)*fInvL3 + ((-(Real)1.0 + fFZFZ*fInvL2)*fFZZ)*fInvL; // solve for principal directions Real fTmp1 = fM00 + rfCurv0; Real fTmp2 = fM11 + rfCurv0; Real fTmp3 = fM22 + rfCurv0; Vector3<Real> akU[3]; Real afLength[3]; akU[0].X() = fM01*fM12-fM02*fTmp2; akU[0].Y() = fM02*fM10-fM12*fTmp1; akU[0].Z() = fTmp1*fTmp2-fM01*fM10; afLength[0] = akU[0].Length(); akU[1].X() = fM01*fTmp3-fM02*fM21; akU[1].Y() = fM02*fM20-fTmp1*fTmp3; akU[1].Z() = fTmp1*fM21-fM01*fM20; afLength[1] = akU[1].Length(); akU[2].X() = fTmp2*fTmp3-fM12*fM21; akU[2].Y() = fM12*fM20-fM10*fTmp3; akU[2].Z() = fM10*fM21-fM20*fTmp2; afLength[2] = akU[2].Length(); int iMaxIndex = 0; Real fMax = afLength[0]; if (afLength[1] > fMax) { iMaxIndex = 1; fMax = afLength[1]; } if (afLength[2] > fMax) { iMaxIndex = 2; } Real fInvLength = ((Real)1.0)/afLength[iMaxIndex]; akU[iMaxIndex] *= fInvLength; rkDir1 = akU[iMaxIndex]; rkDir0 = rkDir1.UnitCross(Vector3<Real>(fFX,fFY,fFZ)); return true; }
bool ImplicitSurface<Real>::ComputePrincipalCurvatureInfo ( const Vector3<Real>& pos, Real& curv0, Real& curv1, Vector3<Real>& dir0, Vector3<Real>& dir1) { // Principal curvatures and directions for implicitly defined surfaces // F(x,y,z) = 0. // // DF = (Fx,Fy,Fz), L = Length(DF) // // D^2 F = +- -+ // | Fxx Fxy Fxz | // | Fxy Fyy Fyz | // | Fxz Fyz Fzz | // +- -+ // // adj(D^2 F) = +- -+ // | Fyy*Fzz-Fyz*Fyz Fyz*Fxz-Fxy*Fzz Fxy*Fyz-Fxz*Fyy | // | Fyz*Fxz-Fxy*Fzz Fxx*Fzz-Fxz*Fxz Fxy*Fxz-Fxx*Fyz | // | Fxy*Fyz-Fxz*Fyy Fxy*Fxz-Fxx*Fyz Fxx*Fyy-Fxy*Fxy | // +- -+ // // Gaussian curvature = [DF^t adj(D^2 F) DF]/L^4 // // Mean curvature = 0.5*[trace(D^2 F)/L - (DF^t D^2 F DF)/L^3] // first derivatives Real fx = FX(pos); Real fy = FY(pos); Real fz = FZ(pos); Real fLength = Math<Real>::Sqrt(fx*fx + fy*fy + fz*fz); if (fLength <= Math<Real>::ZERO_TOLERANCE) { return false; } Real fxfx = fx*fx; Real fxfy = fx*fy; Real fxfz = fx*fz; Real fyfy = fy*fy; Real fyfz = fy*fz; Real fzfz = fz*fz; Real invLength = ((Real)1)/fLength; Real invLength2 = invLength*invLength; Real invLength3 = invLength*invLength2; Real invLength4 = invLength2*invLength2; // second derivatives Real fxx = FXX(pos); Real fxy = FXY(pos); Real fxz = FXZ(pos); Real fyy = FYY(pos); Real fyz = FYZ(pos); Real fzz = FZZ(pos); // mean curvature Real meanCurv = ((Real)0.5)*invLength3*(fxx*(fyfy + fzfz) + fyy*(fxfx + fzfz) + fzz*(fxfx + fyfy) - ((Real)2)*(fxy*fxfy + fxz*fxfz + fyz*fyfz)); // Gaussian curvature Real gaussCurv = invLength4*(fxfx*(fyy*fzz - fyz*fyz) + fyfy*(fxx*fzz - fxz*fxz) + fzfz*(fxx*fyy - fxy*fxy) + ((Real)2)*(fxfy*(fxz*fyz - fxy*fzz) + fxfz*(fxy*fyz - fxz*fyy) + fyfz*(fxy*fxz - fxx*fyz))); // solve for principal curvatures Real discr = Math<Real>::Sqrt(Math<Real>::FAbs(meanCurv*meanCurv-gaussCurv)); curv0 = meanCurv - discr; curv1 = meanCurv + discr; Real m00 = ((-(Real)1 + fxfx*invLength2)*fxx)*invLength + (fxfy*fxy)*invLength3 + (fxfz*fxz)*invLength3; Real m01 = ((-(Real)1 + fxfx*invLength2)*fxy)*invLength + (fxfy*fyy)*invLength3 + (fxfz*fyz)*invLength3; Real m02 = ((-(Real)1 + fxfx*invLength2)*fxz)*invLength + (fxfy*fyz)*invLength3 + (fxfz*fzz)*invLength3; Real m10 = (fxfy*fxx)*invLength3 + ((-(Real)1 + fyfy*invLength2)*fxy)*invLength + (fyfz*fxz)*invLength3; Real m11 = (fxfy*fxy)*invLength3 + ((-(Real)1 + fyfy*invLength2)*fyy)*invLength + (fyfz*fyz)*invLength3; Real m12 = (fxfy*fxz)*invLength3 + ((-(Real)1 + fyfy*invLength2)*fyz)*invLength + (fyfz*fzz)*invLength3; Real m20 = (fxfz*fxx)*invLength3 + (fyfz*fxy)*invLength3 + ((-(Real)1 + fzfz*invLength2)*fxz)*invLength; Real m21 = (fxfz*fxy)*invLength3 + (fyfz*fyy)*invLength3 + ((-(Real)1 + fzfz*invLength2)*fyz)*invLength; Real m22 = (fxfz*fxz)*invLength3 + (fyfz*fyz)*invLength3 + ((-(Real)1 + fzfz*invLength2)*fzz)*invLength; // solve for principal directions Real tmp1 = m00 + curv0; Real tmp2 = m11 + curv0; Real tmp3 = m22 + curv0; Vector3<Real> U[3]; Real lengths[3]; U[0].X() = m01*m12-m02*tmp2; U[0].Y() = m02*m10-m12*tmp1; U[0].Z() = tmp1*tmp2-m01*m10; lengths[0] = U[0].Length(); U[1].X() = m01*tmp3-m02*m21; U[1].Y() = m02*m20-tmp1*tmp3; U[1].Z() = tmp1*m21-m01*m20; lengths[1] = U[1].Length(); U[2].X() = tmp2*tmp3-m12*m21; U[2].Y() = m12*m20-m10*tmp3; U[2].Z() = m10*m21-m20*tmp2; lengths[2] = U[2].Length(); int maxIndex = 0; Real maxValue = lengths[0]; if (lengths[1] > maxValue) { maxIndex = 1; maxValue = lengths[1]; } if (lengths[2] > maxValue) { maxIndex = 2; } invLength = ((Real)1)/lengths[maxIndex]; U[maxIndex] *= invLength; dir1 = U[maxIndex]; dir0 = dir1.UnitCross(Vector3<Real>(fx, fy, fz)); return true; }