//*****************************************************************************
//
// This is the main loop that runs the application.
//
//*****************************************************************************
int
main(void)
{
    tRectangle sRect;

    //
    // Set the clocking to run directly from the crystal.
    //
    SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |
                   SYSCTL_XTAL_8MHZ);

    //
    // Enable the peripherals used by this example.
    //
    SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0);
    SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOB);

    //
    // Configure the relevant pins such that UART0 owns them.
    //
    SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);
    GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);

    //
    // Open UART0 for debug output.
    //
    UARTStdioInit(0);

    //
    // Enable the USB mux GPIO.
    //
    SysCtlPeripheralEnable(USB_MUX_GPIO_PERIPH);

    //
    // The LM3S3748 board uses a USB mux that must be switched to use the
    // host connector and not the device connector.
    //
    GPIOPinTypeGPIOOutput(USB_MUX_GPIO_BASE, USB_MUX_GPIO_PIN);
    GPIOPinWrite(USB_MUX_GPIO_BASE, USB_MUX_GPIO_PIN, USB_MUX_SEL_HOST);

    //
    // Configure the power pins for host controller.
    //
    GPIOPinTypeUSBDigital(GPIO_PORTH_BASE, GPIO_PIN_3 | GPIO_PIN_4);

    //
    // Initialize the display driver.
    //
    Formike128x128x16Init();

    //
    // Turn on the backlight.
    //
    Formike128x128x16BacklightOn();

    //
    // Initialize the graphics context.
    //
    GrContextInit(&g_sContext, &g_sFormike128x128x16);

    //
    // Fill the top 15 rows of the screen with blue to create the banner.
    //
    sRect.sXMin = 0;
    sRect.sYMin = 0;
    sRect.sXMax = GrContextDpyWidthGet(&g_sContext) - 1;
    sRect.sYMax = DISPLAY_BANNER_HEIGHT;
    GrContextForegroundSet(&g_sContext, DISPLAY_BANNER_BG);
    GrRectFill(&g_sContext, &sRect);

    //
    // Put a white box around the banner.
    //
    GrContextForegroundSet(&g_sContext, ClrWhite);
    GrRectDraw(&g_sContext, &sRect);

    //
    // Put the application name in the middle of the banner.
    //
    GrContextFontSet(&g_sContext, g_pFontFixed6x8);
    GrStringDrawCentered(&g_sContext, "usb_host_keyboard", -1,
                         GrContextDpyWidthGet(&g_sContext) / 2, 7, 0);

    //
    // Calculate the number of characters that will fit on a line.
    // Make sure to leave a small border for the text box.
    //
    g_ulCharsPerLine = (GrContextDpyWidthGet(&g_sContext) - 4) /
                        GrFontMaxWidthGet(g_pFontFixed6x8);

    //
    // Calculate the number of lines per usable text screen.  This requires
    // taking off space for the top and bottom banners and adding a small bit
    // for a border.
    //
    g_ulLinesPerScreen = (GrContextDpyHeightGet(&g_sContext) -
                          (2*(DISPLAY_BANNER_HEIGHT + 1)))/
                          GrFontHeightGet(g_pFontFixed6x8);

    //
    // Register the host class drivers.
    //
    USBHCDRegisterDrivers(0, g_ppHostClassDrivers, g_ulNumHostClassDrivers);

    //
    // Open and instance of the keyboard class driver.
    //
    UARTprintf("Host Keyboard Application\n");

    //
    // Open an instance of the keyboard driver.  The keyboard does not need
    // to be present at this time, this just save a place for it and allows
    // the applications to be notified when a keyboard is present.
    //
    g_ulKeyboardInstance = USBHKeyboardOpen(KeyboardCallback, g_pucBuffer,
                                            KEYBOARD_MEMORY_SIZE);

    //
    // Initialize the power configuration. This sets the power enable signal
    // to be active high and does not enable the power fault.
    //
    USBHCDPowerConfigInit(0, USBHCD_VBUS_AUTO_HIGH);

    //
    // Initialize the host controller stack.
    //
    USBHCDInit(0, g_pHCDPool, HCD_MEMORY_SIZE);

    //
    // Call the main loop for the Host controller driver.
    //
    USBHCDMain();

    //
    // Initial update of the screen.
    //
    UpdateStatus();

    //
    // The main loop for the application.
    //
    while(1)
    {
        switch(g_eUSBState)
        {
            //
            // This state is entered when they keyboard is first detected.
            //
            case STATE_KEYBOARD_INIT:
            {
                //
                // Initialized the newly connected keyboard.
                //
                USBHKeyboardInit(g_ulKeyboardInstance);

                //
                // Proceed to the keyboard connected state.
                //
                g_eUSBState = STATE_KEYBOARD_CONNECTED;

                USBHKeyboardModifierSet(g_ulKeyboardInstance, g_ulModifiers);

                //
                // Update the screen now that the keyboard has been
                // initialized.
                //
                UpdateStatus();

                break;
            }
            case STATE_KEYBOARD_UPDATE:
            {
                //
                // If the application detected a change that required an
                // update to be sent to the keyboard to change the modifier
                // state then call it and return to the connected state.
                //
                g_eUSBState = STATE_KEYBOARD_CONNECTED;

                USBHKeyboardModifierSet(g_ulKeyboardInstance, g_ulModifiers);

                break;
            }
            case STATE_KEYBOARD_CONNECTED:
            {
                //
                // Nothing is currently done in the main loop when the keyboard
                // is connected.
                //
                break;
            }
            case STATE_UNKNOWN_DEVICE:
            {
                //
                // Nothing to do as the device is unknown.
                //
                break;
            }
            case STATE_NO_DEVICE:
            {
                //
                // Nothing is currently done in the main loop when the keyboard
                // is not connected.
                //
                break;
            }
            default:
            {
                break;
            }
        }

        //
        // Periodic call the main loop for the Host controller driver.
        //
        USBHCDMain();
    }
}
//*****************************************************************************
//
// This is the main application entry function.
//
//*****************************************************************************
int
main(void)
{
    unsigned long ulTxCount;
    unsigned long ulRxCount;
    tRectangle sRect;
    char pcBuffer[16];

    //
    // Set the clocking to run from the PLL at 50MHz
    //
    ROM_SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |
                       SYSCTL_XTAL_8MHZ);

#ifdef DEBUG
    //
    // Configure the relevant pins such that UART0 owns them.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);
    ROM_GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);

    //
    // Open UART0 for debug output.
    //
    UARTStdioInit(0);
#endif

    //
    // Not configured initially.
    //
    g_bUSBConfigured = false;

    //
    // Initialize the display driver.
    //
    Formike128x128x16Init();

    //
    // Turn on the backlight.
    //
    Formike128x128x16BacklightOn();

    //
    // Initialize the graphics context.
    //
    GrContextInit(&g_sContext, &g_sFormike128x128x16);

    //
    // Fill the top 15 rows of the screen with blue to create the banner.
    //
    sRect.sXMin = 0;
    sRect.sYMin = 0;
    sRect.sXMax = GrContextDpyWidthGet(&g_sContext) - 1;
    sRect.sYMax = 14;
    GrContextForegroundSet(&g_sContext, ClrDarkBlue);
    GrRectFill(&g_sContext, &sRect);

    //
    // Put a white box around the banner.
    //
    GrContextForegroundSet(&g_sContext, ClrWhite);
    GrRectDraw(&g_sContext, &sRect);

    //
    // Put the application name in the middle of the banner.
    //
    GrContextFontSet(&g_sContext, g_pFontFixed6x8);
    GrStringDrawCentered(&g_sContext, "usb_dev_bulk", -1,
                         GrContextDpyWidthGet(&g_sContext) / 2, 7, 0);

    //
    // Show the various static text elements on the color STN display.
    //
    GrContextFontSet(&g_sContext, TEXT_FONT);
    GrStringDraw(&g_sContext, "Tx bytes:", -1, 8, 70, false);
    GrStringDraw(&g_sContext, "Rx bytes:", -1, 8, 90, false);

    //
    // Configure the USB mux on the board to put us in device mode.  We pull
    // the relevant pin high to do this.
    //
    ROM_SysCtlPeripheralEnable(USB_MUX_GPIO_PERIPH);
    ROM_GPIOPinTypeGPIOOutput(USB_MUX_GPIO_BASE, USB_MUX_GPIO_PIN);
    ROM_GPIOPinWrite(USB_MUX_GPIO_BASE, USB_MUX_GPIO_PIN, USB_MUX_SEL_DEVICE);

    //
    // Enable the system tick.
    //
    ROM_SysTickPeriodSet(SysCtlClockGet() / SYSTICKS_PER_SECOND);
    ROM_SysTickIntEnable();
    ROM_SysTickEnable();

    //
    // Show the application name on the display and UART output.
    //
    DEBUG_PRINT("\nStellaris USB bulk device example\n");
    DEBUG_PRINT("---------------------------------\n\n");

    //
    // Tell the user what we are up to.
    //
    DisplayStatus(&g_sContext, "Configuring USB...");

    //
    // Initialize the transmit and receive buffers.
    //
    USBBufferInit((tUSBBuffer *)&g_sTxBuffer);
    USBBufferInit((tUSBBuffer *)&g_sRxBuffer);

    //
    // Pass our device information to the USB library and place the device
    // on the bus.
    //
    USBDBulkInit(0, (tUSBDBulkDevice *)&g_sBulkDevice);

    //
    // Wait for initial configuration to complete.
    //
    DisplayStatus(&g_sContext, "Waiting for host...");

    //
    // Clear our local byte counters.
    //
    ulRxCount = 0;
    ulTxCount = 0;

    //
    // Main application loop.
    //
    while(1)
    {

        //
        // Have we been asked to update the status display?
        //
        if(g_ulFlags & COMMAND_STATUS_UPDATE)
        {
            //
            // Clear the command flag
            //
            g_ulFlags &= ~COMMAND_STATUS_UPDATE;
            DisplayStatus(&g_sContext, g_pcStatus);
        }

        //
        // Has there been any transmit traffic since we last checked?
        //
        if(ulTxCount != g_ulTxCount)
        {
            //
            // Take a snapshot of the latest transmit count.
            //
            ulTxCount = g_ulTxCount;

            //
            // Update the display of bytes transmitted by the UART.
            //
            usnprintf(pcBuffer, 16, "%d", ulTxCount);
            GrStringDraw(&g_sContext, pcBuffer, -1, 70, 70, true);
        }

        //
        // Has there been any receive traffic since we last checked?
        //
        if(ulRxCount != g_ulRxCount)
        {
            //
            // Take a snapshot of the latest receive count.
            //
            ulRxCount = g_ulRxCount;

            //
            // Update the display of bytes received by the UART.
            //
            usnprintf(pcBuffer, 16, "%d", ulRxCount);
            GrStringDraw(&g_sContext, pcBuffer, -1, 70, 90, true);
        }
    }
}
예제 #3
0
//*****************************************************************************
//
// This is the main loop that runs the application.
//
//*****************************************************************************
int
main(void)
{
    FRESULT FileResult;
    tRectangle sRect;

    //
    // Initially wait for device connection.
    //
    g_eState = STATE_NO_DEVICE;

    //
    // Set the clocking to run directly from the crystal.
    //
    SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |
                   SYSCTL_XTAL_8MHZ);

    //
    // Enable Clocking to the USB controller.
    //
    SysCtlPeripheralEnable(SYSCTL_PERIPH_USB0);

    //
    // Enable the peripherals used by this example.
    //
    SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0);
    SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOH);
    SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOB);

    //
    // Set the USB pins to be controlled by the USB controller.
    //
    GPIOPinTypeUSBDigital(GPIO_PORTH_BASE, GPIO_PIN_3 | GPIO_PIN_4);

    //
    // The LM3S3748 board uses a USB mux that must be switched to use the
    // host connecter and not the device connecter.
    //
    GPIOPinTypeGPIOOutput(USB_MUX_GPIO_BASE, USB_MUX_GPIO_PIN);
    GPIOPinWrite(USB_MUX_GPIO_BASE, USB_MUX_GPIO_PIN, USB_MUX_SEL_HOST);

    //
    // Turn on USB Phy clock.
    //
    SysCtlUSBPLLEnable();

    //
    // Set the system tick to fire 100 times per second.
    //
    SysTickPeriodSet(SysCtlClockGet()/100);
    SysTickIntEnable();
    SysTickEnable();

    //
    // Enable the uDMA controller and set up the control table base.
    //
    SysCtlPeripheralEnable(SYSCTL_PERIPH_UDMA);
    uDMAEnable();
    uDMAControlBaseSet(g_sDMAControlTable);

    //
    // Initialize the display driver.
    //
    Formike128x128x16Init();

    //
    // Turn on the backlight.
    //
    Formike128x128x16BacklightOn();

    //
    // Initialize the graphics context.
    //
    GrContextInit(&g_sContext, &g_sFormike128x128x16);

    //
    // Fill the top 15 rows of the screen with blue to create the banner.
    //
    sRect.sXMin = 0;
    sRect.sYMin = 0;
    sRect.sXMax = GrContextDpyWidthGet(&g_sContext) - 1;
    sRect.sYMax = SPLASH_HEIGHT - 1;
    GrContextForegroundSet(&g_sContext, ClrDarkBlue);
    GrRectFill(&g_sContext, &sRect);

    //
    // Put a white box around the banner.
    //
    GrContextForegroundSet(&g_sContext, ClrWhite);
    GrRectDraw(&g_sContext, &sRect);

    //
    // Put the application name in the middle of the banner.
    //
    GrContextFontSet(&g_sContext, &g_sFontFixed6x8);

    GrStringDrawCentered(&g_sContext, "usb_host_msc", -1,
                         GrContextDpyWidthGet(&g_sContext) / 2, 7, 0);

    //
    // Set the color to white and select the 20 point font.
    //
    GrContextForegroundSet(&g_sContext, FILE_COLOR);

    GrStringDraw(&g_sContext, "No Device",
        100, 0, TOP_HEIGHT, 1);

    //
    // Register the host class drivers.
    //
    USBHCDRegisterDrivers(0, g_ppHostClassDrivers, g_ulNumHostClassDrivers);

    //
    // Open an instance of the mass storage class driver.
    //
    g_ulMSCInstance = USBHMSCDriveOpen(0, MSCCallback);

    //
    // Initialize the power configuration. This sets the power enable signal
    // to be active high and does not enable the power fault.
    //
    USBHCDPowerConfigInit(0, USB_HOST_PWREN_HIGH);

    //
    // Initialize the host controller.
    //
    USBHCDInit(0, g_pHCDPool, HCD_MEMORY_SIZE);

    //
    // Initialize the pushbuttons.
    //
    ButtonsInit();

    //
    // Set the auto repeat rates for the up and down buttons.
    //
    ButtonsSetAutoRepeat(UP_BUTTON, 50, 15);
    ButtonsSetAutoRepeat(DOWN_BUTTON, 50, 15);

    //
    // Current directory is "/"
    //
    g_DirData.szPWD[0] = '/';
    g_DirData.szPWD[1] = 0;

    //
    // Initialize the file system.
    //
    FileInit();

    while(1)
    {
        USBHCDMain();

        switch(g_eState)
        {
            case STATE_DEVICE_ENUM:
            {
                //
                // Reset the root directory.
                //
                g_DirData.szPWD[0] = '/';
                g_DirData.szPWD[1] = 0;

                //
                // Open the root directory.
                //
                FileResult = f_opendir(&g_DirData.DirState, g_DirData.szPWD);

                //
                // Wait for the root directory to open successfully.  The MSC
                // device can enumerate before being read to be accessed, so
                // there may be some delay before it is ready.
                //
                if(FileResult == FR_OK)
                {
                    //
                    // Reset the directory state.
                    //
                    g_DirData.ulIndex = 0;
                    g_DirData.ulSelectIndex = 0;
                    g_DirData.ulValidValues = 0;
                    g_eState = STATE_DEVICE_READY;

                    //
                    // Ignore buttons pressed before being ready.
                    //
                    g_ulButtons = 0;

                    //
                    // Update the screen if the root dir opened successfully.
                    //
                    DirUpdate();
                    UpdateWindow();
                }
                else if(FileResult != FR_NOT_READY)
                {
                    // some kind of error
                }

                //
                // Set the Device Present flag.
                //
                g_ulFlags = FLAGS_DEVICE_PRESENT;

                break;
            }

            //
            // This is the running state where buttons are checked and the
            // screen is updated.
            //
            case STATE_DEVICE_READY:
            {
                //
                // Down button pressed and released.
                //
                if(g_ulButtons & BUTTON_DOWN_CLICK)
                {
                    //
                    // Update the screen and directory state.
                    //
                    MoveDown();

                    //
                    // Clear the button pressed event.
                    //
                    g_ulButtons &= ~BUTTON_DOWN_CLICK;
                }

                //
                // Up button pressed and released.
                //
                if(g_ulButtons & BUTTON_UP_CLICK)
                {
                    //
                    // Update the screen and directory state.
                    //
                    MoveUp();

                    //
                    // Clear the button pressed event.
                    //
                    g_ulButtons &= ~BUTTON_UP_CLICK;
                }

                //
                // Select button pressed and released.
                //
                if(g_ulButtons & BUTTON_SELECT_CLICK)
                {
                    //
                    // If this was a directory go into it.
                    //
                    SelectDir();

                    //
                    // Clear the button pressed event.
                    //
                    g_ulButtons &= ~BUTTON_SELECT_CLICK;
                }
                break;
            }

            //
            // If there is no device then just wait for one.
            //
            case STATE_NO_DEVICE:
            {
                if(g_ulFlags == FLAGS_DEVICE_PRESENT)
                {
                    //
                    // Clear the screen and indicate that there is no longer
                    // a device present.
                    //
                    ClearTextBox();
                    GrStringDraw(&g_sContext, "No Device",
                         100, 0, TOP_HEIGHT, 1);

                    //
                    // Clear the Device Present flag.
                    //
                    g_ulFlags &= ~FLAGS_DEVICE_PRESENT;
                }
                break;
            }

            //
            // An unknown device was connected.
            //
            case STATE_UNKNOWN_DEVICE:
            {
                //
                // If this is a new device then change the status.
                //
                if((g_ulFlags & FLAGS_DEVICE_PRESENT) == 0)
                {
                    //
                    // Clear the screen and indicate that an unknown device is
                    // present.
                    //
                    ClearTextBox();
                    GrStringDraw(&g_sContext, "Unknown Device",
                         100, 0, TOP_HEIGHT, 1);
                }

                //
                // Set the Device Present flag.
                //
                g_ulFlags = FLAGS_DEVICE_PRESENT;

                break;
            }

            //
            // Something has caused a power fault.
            //
            case STATE_POWER_FAULT:
            {
                break;
            }

            default:
            {
                break;
            }
        }
    }
}
예제 #4
0
//*****************************************************************************
//
// A simple demonstration of the features of the Stellaris Graphics Library.
//
//*****************************************************************************
int
main(void)
{
    unsigned long ulIdx;
    tRectangle sRect;

    //
    // Set the clocking to run from the PLL.
    //
    ROM_SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |
                       SYSCTL_XTAL_8MHZ);

    //
    // Initialize the display driver.
    //
    Formike128x128x16Init();

    //
    // Turn on the backlight.
    //
    Formike128x128x16BacklightOn();

    //
    // Initialize the graphics context.
    //
    GrContextInit(&g_sContext, &g_sFormike128x128x16);

    //
    // Fill the top 15 rows of the screen with blue to create the banner.
    //
    sRect.sXMin = 0;
    sRect.sYMin = 0;
    sRect.sXMax = GrContextDpyWidthGet(&g_sContext) - 1;
    sRect.sYMax = 14;
    GrContextForegroundSet(&g_sContext, ClrDarkBlue);
    GrRectFill(&g_sContext, &sRect);

    //
    // Put a white box around the banner.
    //
    GrContextForegroundSet(&g_sContext, ClrWhite);
    GrRectDraw(&g_sContext, &sRect);

    //
    // Put the application name in the middle of the banner.
    //
    GrContextFontSet(&g_sContext, &g_sFontFixed6x8);
    GrStringDrawCentered(&g_sContext, "grlib_demo", -1,
                         GrContextDpyWidthGet(&g_sContext) / 2, 7, 0);

    //
    // Draw a vertical sweep of lines from red to green.
    //
    for(ulIdx = 0; ulIdx <= 10; ulIdx++)
    {
        GrContextForegroundSet(&g_sContext,
                               (((((10 - ulIdx) * 255) / 10) << ClrRedShift) |
                                (((ulIdx * 255) / 10) << ClrGreenShift)));
        GrLineDraw(&g_sContext, 62, 70, 2, 70 - (5 * ulIdx));
    }

    //
    // Draw a horizontal sweep of lines from green to blue.
    //
    for(ulIdx = 1; ulIdx <= 10; ulIdx++)
    {
        GrContextForegroundSet(&g_sContext,
                               (((((10 - ulIdx) * 255) / 10) <<
                                 ClrGreenShift) |
                                (((ulIdx * 255) / 10) << ClrBlueShift)));
        GrLineDraw(&g_sContext, 62, 70, 2 + (ulIdx * 6), 20);
    }

    //
    // Draw a filled circle with an overlapping circle.
    //
    GrContextForegroundSet(&g_sContext, ClrBrown);
    GrCircleFill(&g_sContext, 88, 37, 17);
    GrContextForegroundSet(&g_sContext, ClrSkyBlue);
    GrCircleDraw(&g_sContext, 104, 45, 17);

    //
    // Draw a filled rectangle with an overlapping rectangle.
    //
    GrContextForegroundSet(&g_sContext, ClrSlateGray);
    sRect.sXMin = 4;
    sRect.sYMin = 84;
    sRect.sXMax = 42;
    sRect.sYMax = 104;
    GrRectFill(&g_sContext, &sRect);
    GrContextForegroundSet(&g_sContext, ClrSlateBlue);
    sRect.sXMin += 12;
    sRect.sYMin += 15;
    sRect.sXMax += 12;
    sRect.sYMax += 15;
    GrRectDraw(&g_sContext, &sRect);

    //
    // Draw a piece of text in fonts of increasing size.
    //
    GrContextForegroundSet(&g_sContext, ClrSilver);
    GrStringDraw(&g_sContext, "Strings", -1, 75, 114, 0);

    //
    // Draw an image.
    //
    GrImageDraw(&g_sContext, g_pucLogo, 80, 77);

    //
    // Flush any cached drawing operations.
    //
    GrFlush(&g_sContext);

    //
    // Loop forever.
    //
    while(1)
    {
    }
}
//*****************************************************************************
//
// This is the main loop that runs the application.
//
//*****************************************************************************
int
main(void)
{
    tRectangle sRect;

    //
    // Set the clocking to run directly from the crystal.
    //
    ROM_SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |
                   SYSCTL_XTAL_8MHZ);

    //
    // Enable the USB mux GPIO.
    //
    ROM_SysCtlPeripheralEnable(USB_MUX_GPIO_PERIPH);

    //
    // The LM3S3748 board uses a USB mux that must be switched to use the
    // host connector and not the device connecter.
    //
    ROM_GPIOPinTypeGPIOOutput(USB_MUX_GPIO_BASE, USB_MUX_GPIO_PIN);
    ROM_GPIOPinWrite(USB_MUX_GPIO_BASE, USB_MUX_GPIO_PIN, USB_MUX_SEL_DEVICE);

    //
    // Configure SysTick for a 100Hz interrupt.  The FatFs driver wants a 10 ms
    // tick.
    //
    ROM_SysTickPeriodSet(ROM_SysCtlClockGet() / 100);
    ROM_SysTickEnable();
    ROM_SysTickIntEnable();

    //
    // Configure and enable uDMA
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UDMA);
    SysCtlDelay(10);
    uDMAControlBaseSet(&sDMAControlTable[0]);
    uDMAEnable();

    //
    // Initialize the display driver.
    //
    Formike128x128x16Init();

    //
    // Turn on the backlight.
    //
    Formike128x128x16BacklightOn();

    //
    // Initialize the graphics context.
    //
    GrContextInit(&g_sContext, &g_sFormike128x128x16);

    //
    // Fill the top 15 rows of the screen with blue to create the banner.
    //
    sRect.sXMin = 0;
    sRect.sYMin = 0;
    sRect.sXMax = GrContextDpyWidthGet(&g_sContext) - 1;
    sRect.sYMax = DISPLAY_BANNER_HEIGHT;
    GrContextForegroundSet(&g_sContext, ClrDarkBlue);
    GrRectFill(&g_sContext, &sRect);

    //
    // Put a white box around the banner.
    //
    GrContextForegroundSet(&g_sContext, ClrWhite);
    GrRectDraw(&g_sContext, &sRect);

    //
    // Put the application name in the middle of the banner.
    //
    GrContextFontSet(&g_sContext, g_pFontFixed6x8);
    GrStringDrawCentered(&g_sContext, "usb_dev_msc", -1,
                         GrContextDpyWidthGet(&g_sContext) / 2, 7, 0);

    //
    // Initialize the idle timeout and reset all flags.
    //
    g_ulIdleTimeout = 0;
    g_ulFlags = 0;

    //
    // Initialize the state to idle.
    //
    g_eMSCState = MSC_DEV_IDLE;

    //
    // Draw the status bar and set it to idle.
    //
    UpdateStatus("Idle", 1);

    //
    // Pass our device information to the USB library and place the device
    // on the bus.
    //
    USBDMSCInit(0, (tUSBDMSCDevice *)&g_sMSCDevice);

    //
    // Drop into the main loop.
    //
    while(1)
    {
        switch(g_eMSCState)
        {
            case MSC_DEV_READ:
            {
                //
                // Update the screen if necessary.
                //
                if(g_ulFlags & FLAG_UPDATE_STATUS)
                {
                    UpdateStatus("Reading", 0);
                    g_ulFlags &= ~FLAG_UPDATE_STATUS;
                }

                //
                // If there is no activity then return to the idle state.
                //
                if(g_ulIdleTimeout == 0)
                {
                    UpdateStatus("Idle    ", 0);
                    g_eMSCState = MSC_DEV_IDLE;
                }

                break;
            }
            case MSC_DEV_WRITE:
            {
                //
                // Update the screen if necessary.
                //
                if(g_ulFlags & FLAG_UPDATE_STATUS)
                {
                    UpdateStatus("Writing", 0);
                    g_ulFlags &= ~FLAG_UPDATE_STATUS;
                }

                //
                // If there is no activity then return to the idle state.
                //
                if(g_ulIdleTimeout == 0)
                {
                    UpdateStatus("Idle    ", 0);
                    g_eMSCState = MSC_DEV_IDLE;
                }
                break;
            }
            case MSC_DEV_IDLE:
            default:
            {
                break;
            }
        }
    }
}
예제 #6
0
//*****************************************************************************
//
// This example demonstrates how to setup the PWM block to generate signals.
//
//*****************************************************************************
int
main(void)
{
    tRectangle sRect;
    unsigned long ulPeriod;

    //
    // Set the clocking to run directly from the crystal.
    //
    ROM_SysCtlClockSet(SYSCTL_SYSDIV_1 | SYSCTL_USE_OSC | SYSCTL_OSC_MAIN |
                       SYSCTL_XTAL_8MHZ);
    ROM_SysCtlPWMClockSet(SYSCTL_PWMDIV_1);

    //
    // Initialize the display driver.
    //
    Formike128x128x16Init();

    //
    // Turn on the backlight.
    //
    Formike128x128x16BacklightOn();

    //
    // Initialize the graphics context.
    //
    GrContextInit(&g_sContext, &g_sFormike128x128x16);

    //
    // Fill the top 15 rows of the screen with blue to create the banner.
    //
    sRect.sXMin = 0;
    sRect.sYMin = 0;
    sRect.sXMax = GrContextDpyWidthGet(&g_sContext) - 1;
    sRect.sYMax = 14;
    GrContextForegroundSet(&g_sContext, ClrDarkBlue);
    GrRectFill(&g_sContext, &sRect);

    //
    // Put a white box around the banner.
    //
    GrContextForegroundSet(&g_sContext, ClrWhite);
    GrRectDraw(&g_sContext, &sRect);

    //
    // Put the application name in the middle of the banner.
    //
    GrContextFontSet(&g_sContext, g_pFontFixed6x8);
    GrStringDrawCentered(&g_sContext, "pwmgen", -1,
                         GrContextDpyWidthGet(&g_sContext) / 2, 7, 0);

    //
    // Tell the user what is happening.
    //
    GrStringDrawCentered(&g_sContext, "Generating PWM on", -1,
                         GrContextDpyWidthGet(&g_sContext) / 2, 56, 0);
    GrStringDrawCentered(&g_sContext, "pins PWM0 and PWM1", -1,
                         GrContextDpyWidthGet(&g_sContext) / 2, 68, 0);

    //
    // Enable the peripherals used by this example.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_PWM0);
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);

    //
    // Set GPIO F0 and F1 as PWM pins.  They are used to output the PWM0 and
    // PWM1 signals.
    //
    ROM_GPIOPinTypePWM(GPIO_PORTF_BASE, GPIO_PIN_0 | GPIO_PIN_1);
    ROM_GPIOPadConfigSet(GPIO_PORTF_BASE, GPIO_PIN_0 | GPIO_PIN_1,
                         GPIO_STRENGTH_8MA, GPIO_PIN_TYPE_STD);

    //
    // Compute the PWM period based on the system clock.
    //
    ulPeriod = ROM_SysCtlClockGet() / 8000;

    //
    // Set the PWM period to 440 (A) Hz.
    //
    ROM_PWMGenConfigure(PWM0_BASE, PWM_GEN_0,
                        PWM_GEN_MODE_UP_DOWN | PWM_GEN_MODE_NO_SYNC);
    ROM_PWMGenPeriodSet(PWM0_BASE, PWM_GEN_0, ulPeriod);

    //
    // Set PWM0 to a duty cycle of 50% and PWM1 to a duty cycle of 80%.
    //
    ROM_PWMPulseWidthSet(PWM0_BASE, PWM_OUT_0, ((ulPeriod * 8) / 10));
    ROM_PWMPulseWidthSet(PWM0_BASE, PWM_OUT_1, ((ulPeriod * 2) / 10));

    //
    // Enable the PWM0 and PWM1 output signals.
    //
    ROM_PWMOutputState(PWM0_BASE, PWM_OUT_0_BIT | PWM_OUT_1_BIT, true);

    //
    // Enable the PWM generator.
    //
    ROM_PWMGenEnable(PWM0_BASE, PWM_GEN_0);

    //
    // Loop forever while the PWM signals are generated.
    //
    while(1)
    {
    }
}
예제 #7
0
//*****************************************************************************
//
// This example demonstrates how to send a string of data to the UART.
//
//*****************************************************************************
int
main(void)
{
    tRectangle sRect;

    //
    // Set the clocking to run directly from the crystal.
    //
    ROM_SysCtlClockSet(SYSCTL_SYSDIV_1 | SYSCTL_USE_OSC | SYSCTL_OSC_MAIN |
                       SYSCTL_XTAL_8MHZ);

    //
    // Initialize the display driver.
    //
    Formike128x128x16Init();

    //
    // Turn on the backlight.
    //
    Formike128x128x16BacklightOn();

    //
    // Initialize the graphics context.
    //
    GrContextInit(&g_sContext, &g_sFormike128x128x16);

    //
    // Fill the top 15 rows of the screen with blue to create the banner.
    //
    sRect.sXMin = 0;
    sRect.sYMin = 0;
    sRect.sXMax = GrContextDpyWidthGet(&g_sContext) - 1;
    sRect.sYMax = 14;
    GrContextForegroundSet(&g_sContext, ClrDarkBlue);
    GrRectFill(&g_sContext, &sRect);

    //
    // Put a white box around the banner.
    //
    GrContextForegroundSet(&g_sContext, ClrWhite);
    GrRectDraw(&g_sContext, &sRect);

    //
    // Put the application name in the middle of the banner.
    //
    GrContextFontSet(&g_sContext, &g_sFontFixed6x8);
    GrStringDrawCentered(&g_sContext, "uart_echo", -1,
                         GrContextDpyWidthGet(&g_sContext) / 2, 7, 0);

    //
    // Initialize the CSTN display and write status.
    //
    GrStringDraw(&g_sContext, "Port:   Uart 0",       -1, 12, 24, 0);
    GrStringDraw(&g_sContext, "Baud:   115,200 bps",  -1, 12, 32, 0);
    GrStringDraw(&g_sContext, "Data:   8 Bit",        -1, 12, 40, 0);
    GrStringDraw(&g_sContext, "Parity: None",         -1, 12, 48, 0);
    GrStringDraw(&g_sContext, "Stop:   1 Bit",        -1, 12, 56, 0);

    //
    // Enable the peripherals used by this example.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0);
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);

    //
    // Enable processor interrupts.
    //
    IntMasterEnable();

    //
    // Set GPIO A0 and A1 as UART pins.
    //
    ROM_GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);

    //
    // Configure the UART for 115,200, 8-N-1 operation.
    //
    ROM_UARTConfigSetExpClk(UART0_BASE, ROM_SysCtlClockGet(), 115200,
                            (UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE |
                             UART_CONFIG_PAR_NONE));

    //
    // Enable the UART interrupt.
    //
    ROM_IntEnable(INT_UART0);
    ROM_UARTIntEnable(UART0_BASE, UART_INT_RX | UART_INT_RT);

    //
    // Prompt for text to be entered.
    //
    UARTSend((unsigned char *)"Ingrese un Texto: ", 18);

    //
    // Loop forever echoing data through the UART.
    //
    while(1)
    {
    }
}
예제 #8
0
//*****************************************************************************
//
// Demonstrate the use of the boot loader.
//
//*****************************************************************************
int
main(void)
{
    tRectangle sRect;

    //
    // Set the clocking to run directly from the crystal.
    //
    ROM_SysCtlClockSet(SYSCTL_SYSDIV_1 | SYSCTL_USE_OSC | SYSCTL_OSC_MAIN |
                       SYSCTL_XTAL_8MHZ);

    //
    // If running on Rev A0 silicon, write the FMPRE[2-3]/FMPPE[2-3] registers
    // to zero.  This is a workaround to allow the mass erase in the ROM-based
    // boot loader to succeed if a locked device recovery has been performed.
    //
    if(REVISION_IS_A0)
    {
        HWREG(FLASH_FMPPE2) = 0;
        HWREG(FLASH_FMPPE3) = 0;
        HWREG(FLASH_FMPRE2) = 0;
        HWREG(FLASH_FMPRE3) = 0;
    }

    //
    // Enable the UART and GPIO modules.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0);

    //
    // Make the UART pins be peripheral controlled.
    //
    ROM_GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);

    //
    // Configure the UART for 115,200, 8-N-1 operation.
    //
    ROM_UARTConfigSetExpClk(UART0_BASE, ROM_SysCtlClockGet(), 115200,
                            (UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE |
                             UART_CONFIG_PAR_NONE));

    //
    // Initialize the display driver.
    //
    Formike128x128x16Init();

    //
    // Turn on the backlight.
    //
    Formike128x128x16BacklightOn();

    //
    // Initialize the graphics context.
    //
    GrContextInit(&g_sContext, &g_sFormike128x128x16);

    //
    // Fill the top 15 rows of the screen with blue to create the banner.
    //
    sRect.sXMin = 0;
    sRect.sYMin = 0;
    sRect.sXMax = GrContextDpyWidthGet(&g_sContext) - 1;
    sRect.sYMax = 14;
    GrContextForegroundSet(&g_sContext, ClrDarkBlue);
    GrRectFill(&g_sContext, &sRect);

    //
    // Put a white box around the banner.
    //
    GrContextForegroundSet(&g_sContext, ClrWhite);
    GrRectDraw(&g_sContext, &sRect);

    //
    // Put the application name in the middle of the banner.
    //
    GrContextFontSet(&g_sContext, &g_sFontFixed6x8);
    GrStringDrawCentered(&g_sContext, "boot_demo1", -1,
                         GrContextDpyWidthGet(&g_sContext) / 2, 7, 0);

    //
    // Indicate what is happening.
    //
    GrStringDrawCentered(&g_sContext, "The boot loader is", -1,
                         GrContextDpyWidthGet(&g_sContext) / 2, 24, 0);
    GrStringDrawCentered(&g_sContext, "now running and", -1,
                         GrContextDpyWidthGet(&g_sContext) / 2, 32, 0);
    GrStringDrawCentered(&g_sContext, "awaiting an update", -1,
                         GrContextDpyWidthGet(&g_sContext) / 2, 40, 0);
    GrStringDrawCentered(&g_sContext, "over UART0 at", -1,
                         GrContextDpyWidthGet(&g_sContext) / 2, 48, 0);
    GrStringDrawCentered(&g_sContext, "115200, 8-N-1.", -1,
                         GrContextDpyWidthGet(&g_sContext) / 2, 56, 0);

    //
    // Call the boot loader so that it will listen for an update on the UART.
    //
    ROM_UpdateUART();

    //
    // The boot loader should take control, so this should never be reached.
    // Just in case, loop forever.
    //
    while(1)
    {
    }
}
//*****************************************************************************
//
// This is the main loop that runs the application.
//
//*****************************************************************************
int
main(void)
{
    tRectangle sRect;

    //
    // Set the clocking to run directly from the crystal.
    //
    SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |
                   SYSCTL_XTAL_8MHZ);

    //
    // Enable the USB mux GPIO.
    //
    SysCtlPeripheralEnable(USB_MUX_GPIO_PERIPH);

    //
    // The LM3S3748 board uses a USB mux that must be switched to use the
    // host connector and not the device connecter.
    //
    GPIOPinTypeGPIOOutput(USB_MUX_GPIO_BASE, USB_MUX_GPIO_PIN);
    GPIOPinWrite(USB_MUX_GPIO_BASE, USB_MUX_GPIO_PIN, USB_MUX_SEL_DEVICE);

#ifdef DEBUG
    //
    // Configure the relevant pins such that UART0 owns them.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);
    ROM_GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);

    //
    // Open UART0 for debug output.
    //
    UARTStdioInit(0);
#endif

    //
    // Initialize the pushbuttons.
    //
    ButtonsInit();
    ButtonsSetAutoRepeat((LEFT_BUTTON | RIGHT_BUTTON | UP_BUTTON |
                          DOWN_BUTTON), 0, 2);

    //
    // Set the system tick to fire 100 times per second.
    //
    SysTickPeriodSet(SysCtlClockGet() / SYSTICKS_PER_SECOND);
    SysTickIntEnable();
    SysTickEnable();

    //
    // Initialize the display driver.
    //
    Formike128x128x16Init();

    //
    // Turn on the backlight.
    //
    Formike128x128x16BacklightOn();

    //
    // Initialize the graphics context.
    //
    GrContextInit(&g_sContext, &g_sFormike128x128x16);

    //
    // Fill the top 15 rows of the screen with blue to create the banner.
    //
    sRect.sXMin = 0;
    sRect.sYMin = 0;
    sRect.sXMax = GrContextDpyWidthGet(&g_sContext) - 1;
    sRect.sYMax = 14;
    GrContextForegroundSet(&g_sContext, ClrDarkBlue);
    GrRectFill(&g_sContext, &sRect);

    //
    // Put a white box around the banner.
    //
    GrContextForegroundSet(&g_sContext, ClrWhite);
    GrRectDraw(&g_sContext, &sRect);

    //
    // Put the application name in the middle of the banner.
    //
    GrContextFontSet(&g_sContext, g_pFontFixed6x8);
    GrStringDrawCentered(&g_sContext, "boot_demo_usb", -1,
                         GrContextDpyWidthGet(&g_sContext) / 2, 7, 0);

    //
    // Initialize each of the device instances that will form our composite
    // USB device.
    //
    g_sCompDevice.psDevices[0].pvInstance =
        USBDHIDMouseCompositeInit(0, (tUSBDHIDMouseDevice *)&g_sMouseDevice);
    g_sCompDevice.psDevices[1].pvInstance =
        USBDDFUCompositeInit(0, (tUSBDDFUDevice *)&g_sDFUDevice);

    //
    // Pass the USB library our device information, initialize the USB
    // controller and connect the device to the bus.
    //
    USBDCompositeInit(0, &g_sCompDevice, DESCRIPTOR_BUFFER_SIZE,
                      g_pcDescriptorBuffer);

    //
    // Drop into the main loop.
    //
    while(!g_bUpdateSignalled)
    {
        //
        // Fill all but the top 15 rows of the screen with black to erase the
        // previous status.
        //
        sRect.sXMin = 0;
        sRect.sYMin = 15;
        sRect.sXMax = GrContextDpyWidthGet(&g_sContext) - 1;
        sRect.sYMax = GrContextDpyHeightGet(&g_sContext) - 1;
        GrContextForegroundSet(&g_sContext, ClrBlack);
        GrRectFill(&g_sContext, &sRect);

        //
        // Tell the user what we are doing.
        //
        GrContextForegroundSet(&g_sContext, ClrWhite);
        GrStringDrawCentered(&g_sContext, "Waiting for host...", -1,
                             GrContextDpyWidthGet(&g_sContext) / 2, 24, true);
        //
        // Wait for USB configuration to complete.
        //
        while(!g_bConnected)
        {
        }

        //
        // Update the status.
        //
        GrStringDrawCentered(&g_sContext, " Host connected... ", -1,
                             GrContextDpyWidthGet(&g_sContext) / 2, 24, true);

        //
        // Now keep processing the mouse as long as the host is connected.
        //
        while(g_bConnected && !g_bUpdateSignalled)
        {
            //
            // If it is time to check the button state then do so.
            //
            if(g_ulCommands & BUTTON_TICK_EVENT)
            {
                g_ulCommands &= ~BUTTON_TICK_EVENT;
                ButtonHandler();
            }
        }

        //
        // If we drop out of the previous loop, the host has disconnected so
        // go back and wait for a new connection.
        //
    }

    //
    // If we drop out of the main loop, the host has signalled that it wants us
    // to switch into DFU mode in preparation for a firmware upgrade.  First,
    // let the user know what's going on.
    //
    GrStringDrawCentered(&g_sContext, "Entering DFU mode...", -1,
                         GrContextDpyWidthGet(&g_sContext) / 2, 24, true);

    //
    // Call the USB DFU device class to tidy things up and transfer control to
    // the boot loader for us.  Note that this function never returns.
    //
    USBDDFUUpdateBegin();
}
예제 #10
0
//*****************************************************************************
//
// Print "Hello World!" to the display.
//
//*****************************************************************************
int
main(void)
{
    tContext sContext;
    tRectangle sRect;

    //
    // Set the clocking to run directly from the crystal.
    //
    ROM_SysCtlClockSet(SYSCTL_SYSDIV_1 | SYSCTL_USE_OSC | SYSCTL_OSC_MAIN |
                       SYSCTL_XTAL_8MHZ);

    //
    // Initialize the display driver.
    //
    Formike128x128x16Init();

    //
    // Turn on the backlight.
    //
    Formike128x128x16BacklightOn();

    //
    // Initialize the graphics context.
    //
    GrContextInit(&sContext, &g_sFormike128x128x16);

    //
    // Fill the top 15 rows of the screen with blue to create the banner.
    //
    sRect.sXMin = 0;
    sRect.sYMin = 0;
    sRect.sXMax = GrContextDpyWidthGet(&sContext) - 1;
    sRect.sYMax = 14;
    GrContextForegroundSet(&sContext, ClrDarkBlue);
    GrRectFill(&sContext, &sRect);

    //
    // Put a white box around the banner.
    //
    GrContextForegroundSet(&sContext, ClrWhite);
    GrRectDraw(&sContext, &sRect);

    //
    // Put the application name in the middle of the banner.
    //
    GrContextFontSet(&sContext, g_pFontFixed6x8);
    GrStringDrawCentered(&sContext, "hello", -1,
                         GrContextDpyWidthGet(&sContext) / 2, 7, 0);

    //
    // Say hello using the Computer Modern 20 point font.
    //
    GrContextFontSet(&sContext, g_pFontCm20);
    GrStringDrawCentered(&sContext, "Hello World!", -1,
                         GrContextDpyWidthGet(&sContext) / 2,
                         ((GrContextDpyHeightGet(&sContext) - 16) / 2) + 16,
                         0);

    //
    // Flush any cached drawing operations.
    //
    GrFlush(&sContext);

    //
    // Loop forever.
    //
    while(1)
    {
    }
}
예제 #11
0
//*****************************************************************************
//
// This example demonstrates how to configure MPU regions for different levels
// of memory protection.  The following memory map is set up:
//
// 0000.0000 - 0000.1C00 - rgn 0: executable read-only, flash
// 0000.1C00 - 0000.2000 - rgn 0: no access, flash (disabled sub-region 7)
// 2000.0000 - 2000.8000 - rgn 1: read-write, RAM
// 2000.8000 - 2000.A000 - rgn 2: read-only, RAM (disabled sub-rgn 4 of rgn 1)
// 2000.A000 - 2000.FFFF - rgn 1: read-write, RAM
// 4000.0000 - 4001.0000 - rgn 3: read-write, peripherals
// 4001.0000 - 4002.0000 - rgn 3: no access (disabled sub-region 1)
// 4002.0000 - 4006.0000 - rgn 3: read-write, peripherals
// 4006.0000 - 4008.0000 - rgn 3: no access (disabled sub-region 6, 7)
// E000.E000 - E000.F000 - rgn 4: read-write, NVIC
//
// The example code will attempt to perform the following operations and check
// the faulting behavior:
//
// - write to flash                         (should fault)
// - read from the disabled area of flash   (should fault)
// - read from the read-only area of RAM    (should not fault)
// - write to the read-only section of RAM  (should fault)
//
//*****************************************************************************
int
main(void)
{
    tRectangle sRect;
    unsigned int bFail = 0;

    //
    // Set the clocking to run directly from the crystal.
    //
    ROM_SysCtlClockSet(SYSCTL_SYSDIV_1 | SYSCTL_USE_OSC | SYSCTL_OSC_MAIN |
                       SYSCTL_XTAL_8MHZ);

    //
    // Initialize the display driver.
    //
    Formike128x128x16Init();

    //
    // Turn on the backlight.
    //
    Formike128x128x16BacklightOn();

    //
    // Initialize the graphics context.
    //
    GrContextInit(&g_sContext, &g_sFormike128x128x16);

    //
    // Fill the top 15 rows of the screen with blue to create the banner.
    //
    sRect.sXMin = 0;
    sRect.sYMin = 0;
    sRect.sXMax = GrContextDpyWidthGet(&g_sContext) - 1;
    sRect.sYMax = 14;
    GrContextForegroundSet(&g_sContext, ClrDarkBlue);
    GrRectFill(&g_sContext, &sRect);

    //
    // Put a white box around the banner.
    //
    GrContextForegroundSet(&g_sContext, ClrWhite);
    GrRectDraw(&g_sContext, &sRect);

    //
    // Put the application name in the middle of the banner.
    //
    GrContextFontSet(&g_sContext, &g_sFontFixed6x8);
    GrStringDrawCentered(&g_sContext, "mpu_fault", -1,
                         GrContextDpyWidthGet(&g_sContext) / 2, 7, 0);

    //
    // Configure an executable, read-only MPU region for flash.  It is a 16 KB
    // region with the last 2 KB disabled to result in a 14 KB executable
    // region.  This region is needed so that the program can execute from
    // flash.
    //
    MPURegionSet(0, FLASH_BASE,
                 MPU_RGN_SIZE_16K | MPU_RGN_PERM_EXEC |
                 MPU_RGN_PERM_PRV_RO_USR_RO | MPU_SUB_RGN_DISABLE_7 |
                 MPU_RGN_ENABLE);

    //
    // Configure a read-write MPU region for RAM.  It is a 64 KB region.  There
    // is a 8 KB sub-region in the middle that is disabled in order to open up
    // a hole in which different permissions can be applied.
    //
    MPURegionSet(1, SRAM_BASE,
                 MPU_RGN_SIZE_64K | MPU_RGN_PERM_NOEXEC |
                 MPU_RGN_PERM_PRV_RW_USR_RW | MPU_SUB_RGN_DISABLE_4 |
                 MPU_RGN_ENABLE);

    //
    // Configure a read-only MPU region for the 8 KB of RAM that is disabled in
    // the previous region.  This region is used for demonstrating read-only
    // permissions.
    //
    MPURegionSet(2, SRAM_BASE + 0x8000,
                 MPU_RGN_SIZE_2K | MPU_RGN_PERM_NOEXEC |
                 MPU_RGN_PERM_PRV_RO_USR_RO | MPU_RGN_ENABLE);

    //
    // Configure a read-write MPU region for peripherals.  The region is 512 KB
    // total size, with several sub-regions disabled to prevent access to areas
    // where there are no peripherals.  This region is needed because the
    // program needs access to some peripherals.
    //
    MPURegionSet(3, 0x40000000,
                 MPU_RGN_SIZE_512K | MPU_RGN_PERM_NOEXEC |
                 MPU_RGN_PERM_PRV_RW_USR_RW | MPU_SUB_RGN_DISABLE_1 |
                 MPU_SUB_RGN_DISABLE_6 | MPU_SUB_RGN_DISABLE_7 |
                 MPU_RGN_ENABLE);

    //
    // Configure a read-write MPU region for access to the NVIC.  The region is
    // 4 KB in size.  This region is needed because NVIC registers are needed
    // in order to control the MPU.
    //
    MPURegionSet(4, NVIC_BASE,
                 MPU_RGN_SIZE_4K | MPU_RGN_PERM_NOEXEC |
                 MPU_RGN_PERM_PRV_RW_USR_RW | MPU_RGN_ENABLE);

    //
    // Need to clear the NVIC fault status register to make sure there is no
    // status hanging around from a previous program.
    //
    g_ulFaultStatus = HWREG(NVIC_FAULT_STAT);
    HWREG(NVIC_FAULT_STAT) = g_ulFaultStatus;

    //
    // Enable the MPU fault.
    //
    ROM_IntEnable(FAULT_MPU);

    //
    // Enable the MPU.  This will begin to enforce the memory protection
    // regions.  The MPU is configured so that when in the hard fault or NMI
    // exceptions, a default map will be used.  Neither of these should occur
    // in this example program.
    //
    MPUEnable(MPU_CONFIG_HARDFLT_NMI);

    //
    // Attempt to write to the flash.  This should cause a protection fault due
    // to the fact that this region is read-only.
    //
    GrStringDraw(&g_sContext, "Check flash write", -1, 0, 24, 0);
    g_ulMPUFaultCount = 0;
    HWREG(0x100) = 0x12345678;

    //
    // Verify that the fault occurred, at the expected address.
    //
    if((g_ulMPUFaultCount == 1) && (g_ulFaultStatus == 0x82) &&
       (g_ulMMAR == 0x100))
    {
        GrStringDraw(&g_sContext, " OK", -1, 108, 24, 0);
    }
    else
    {
        bFail = 1;
        GrStringDraw(&g_sContext, "NOK", -1, 108, 24, 0);
    }

    //
    // The MPU was disabled when the previous fault occurred, so it needs to be
    // re-enabled.
    //
    MPUEnable(MPU_CONFIG_HARDFLT_NMI);

    //
    // Attempt to read from the disabled section of flash, the upper 2 KB of
    // the 16 KB region.
    //
    GrStringDraw(&g_sContext, "Check flash read", -1, 0, 32, 0);
    g_ulMPUFaultCount = 0;
    g_ulValue = HWREG(0x3820);

    //
    // Verify that the fault occurred, at the expected address.
    //
    if((g_ulMPUFaultCount == 1) && (g_ulFaultStatus == 0x82) &&
       (g_ulMMAR == 0x3820))
    {
        GrStringDraw(&g_sContext, " OK", -1, 108, 32, 0);
    }
    else
    {
        bFail = 1;
        GrStringDraw(&g_sContext, "NOK", -1, 108, 32, 0);
    }

    //
    // The MPU was disabled when the previous fault occurred, so it needs to be
    // re-enabled.
    //
    MPUEnable(MPU_CONFIG_HARDFLT_NMI);

    //
    // Attempt to read from the read-only area of RAM, the middle 8 KB of the
    // 64 KB region.
    //
    GrStringDraw(&g_sContext, "Check RAM read", -1, 0, 40, 0);
    g_ulMPUFaultCount = 0;
    g_ulValue = HWREG(0x20008440);

    //
    // Verify that the RAM read did not cause a fault.
    //
    if(g_ulMPUFaultCount == 0)
    {
        GrStringDraw(&g_sContext, " OK", -1, 108, 40, 0);
    }
    else
    {
        bFail = 1;
        GrStringDraw(&g_sContext, "NOK", -1, 108, 40, 0);
    }

    //
    // The MPU should not have been disabled since the last access was not
    // supposed to cause a fault.  But if it did cause a fault, then the MPU
    // will be disabled, so re-enable it here anyway, just in case.
    //
    MPUEnable(MPU_CONFIG_HARDFLT_NMI);

    //
    // Attempt to write to the read-only area of RAM, the middle 8 KB of the
    // 64 KB region.
    //
    GrStringDraw(&g_sContext, "Check RAM write", -1, 0, 48, 0);
    g_ulMPUFaultCount = 0;
    HWREG(0x20008460) = 0xabcdef00;

    //
    // Verify that the RAM write caused a fault.
    //
    if((g_ulMPUFaultCount == 1) && (g_ulFaultStatus == 0x82) &&
       (g_ulMMAR == 0x20008460))
    {
        GrStringDraw(&g_sContext, " OK", -1, 108, 48, 0);
    }
    else
    {
        bFail = 1;
        GrStringDraw(&g_sContext, "NOK", -1, 108, 48, 0);
    }

    //
    // Display the results of the example program.
    //
    if(bFail)
    {
        GrStringDrawCentered(&g_sContext, "Failure!", -1,
                             GrContextDpyWidthGet(&g_sContext) / 2, 96, 0);
   }
    else
    {
        GrStringDrawCentered(&g_sContext, "Success!", -1,
                             GrContextDpyWidthGet(&g_sContext) / 2, 96, 0);
    }

    //
    // Disable the MPU, so there are no lingering side effects if another
    // program is run.
    //
    MPUDisable();

    //
    // Loop forever.
    //
    while(1)
    {
    }
}