TechniqueToon::~TechniqueToon() { //Delete the color schemes loaded during //initialization. FreeTexture(mLookups[0]); FreeTexture(mLookups[1]); FreeTexture(mLookups[2]); }
void TextureCache::Cleanup(int _frameCount) { TexCache::iterator iter = textures_by_address.begin(); TexCache::iterator tcend = textures_by_address.end(); while (iter != tcend) { if (iter->second->frameCount == FRAMECOUNT_INVALID) { iter->second->frameCount = _frameCount; ++iter; } else if (_frameCount > TEXTURE_KILL_THRESHOLD + iter->second->frameCount) { if (iter->second->IsEfbCopy()) { // Only remove EFB copies when they wouldn't be used anymore(changed hash), because EFB copies living on the // host GPU are unrecoverable. Perform this check only every TEXTURE_KILL_THRESHOLD for performance reasons if ((_frameCount - iter->second->frameCount) % TEXTURE_KILL_THRESHOLD == 1 && iter->second->hash != iter->second->CalculateHash()) { iter = FreeTexture(iter); } else { ++iter; } } else { iter = FreeTexture(iter); } } else { ++iter; } } TexPool::iterator iter2 = texture_pool.begin(); TexPool::iterator tcend2 = texture_pool.end(); while (iter2 != tcend2) { if (iter2->second->frameCount == FRAMECOUNT_INVALID) { iter2->second->frameCount = _frameCount; } if (_frameCount > TEXTURE_POOL_KILL_THRESHOLD + iter2->second->frameCount) { delete iter2->second; iter2 = texture_pool.erase(iter2); } else { ++iter2; } } }
void Chowdren::LoadTexture( Gwen::Texture* pTexture ) { pTexture->failed = true; return; if (pTexture->data) FreeTexture(pTexture); pTexture->data = (void*)new FileImage(pTexture->name.c_str(), 0, 0, 0, 0, TransparentColor()); if (((FileImage*)pTexture->data)->tex == 0) { pTexture->failed = true; FreeTexture(pTexture); } }
void Texture::InitializeBuffer( unsigned int nWidth, unsigned int nHeight, const std::vector<unsigned char> & vBuffer, unsigned int nGLTextureFormat ) { FreeTexture(); m_nWidth = nWidth; m_nHeight = nHeight; m_vBuffer = vBuffer; // figure out scaling factors m_nTexWidth = 1; while ( m_nTexWidth < nWidth ) m_nTexWidth *= 2; float fScaleX = (float)m_nTexWidth / (float)nWidth; m_nTexHeight = 1; while ( m_nTexHeight < nHeight ) m_nTexHeight *= 2; float fScaleY = (float)m_nTexHeight / (float)nHeight; m_fScaleX = (fScaleX < fScaleY) ? fScaleX : fScaleY; m_fScaleX = 1.0f / m_fScaleX; // scale tex coords *down* to scale image *up* lgASSERT( (unsigned int)vBuffer.size() % (nWidth * nHeight) == 0 ); m_nComponents = (unsigned int)vBuffer.size() / (nWidth * nHeight); m_nGLTextureFormat = nGLTextureFormat; }
void SDL2Renderer::LoadTexture(Gwen::Texture* pTexture) { if (!pTexture) return; if (pTexture->data) FreeTexture(pTexture); SDL_Texture *tex = NULL; // Don't need to read. Just load straight into render format. tex = IMG_LoadTexture(m_renderer, pTexture->name.c_str()); if (tex) { int w, h; SDL_QueryTexture(tex, NULL, NULL, &w, &h); pTexture->data = tex; pTexture->width = w; pTexture->height = h; pTexture->failed = false; } else { pTexture->data = NULL; pTexture->failed = true; } }
int CTextureManager::GetNewTextureID (int nPossibleTextureID) { // First check if the possible textureID has already been // used, however the default value is -1, err that is what // this method is passed from LoadTexture () if (nPossibleTextureID != -1) { for (int i = 0; i < m_Singleton->nAvailable; i++) { if (m_Singleton->nTexIDs [i] == nPossibleTextureID) { FreeTexture (nPossibleTextureID); // sets nTexIDs [i] to -1... m_Singleton->nNumTextures--; // since we will add the ID again... break; } } } // Actually look for a new one int nNewTextureID; if (nPossibleTextureID == -1) { unsigned int nGLID; glGenTextures (1, &nGLID); nNewTextureID = (int) nGLID; } else // If the user is handle the textureIDs nNewTextureID = nPossibleTextureID; // find an empty slot in the TexID array int nIndex = 0; while (m_Singleton->nTexIDs [nIndex] != -1 && nIndex < m_Singleton->nAvailable) nIndex++; // all space exaused, make MORE! if (nIndex >= m_Singleton->nAvailable) { int *pNewIDs = new int [m_Singleton->nAvailable + TEXTURE_STEP]; int i; // copy the old for (i = 0; i < m_Singleton->nAvailable; i++) pNewIDs [i] = m_Singleton->nTexIDs [i]; // set the last increment to the newest ID pNewIDs [m_Singleton->nAvailable] = nNewTextureID; // set the new to '-1' for (i = 1; i < TEXTURE_STEP; i++) pNewIDs [i + m_Singleton->nAvailable] = -1; m_Singleton->nAvailable += TEXTURE_STEP; delete [] m_Singleton->nTexIDs; m_Singleton->nTexIDs = pNewIDs; } else m_Singleton->nTexIDs [nIndex] = nNewTextureID; // Welcome to our Texture Array! m_Singleton->nNumTextures++; return nNewTextureID; }
// free all textures void FreeTextures(void) { // TODO: Медленно же!!111 for(;;) { if(texture_count > 0) FreeTexture(&textures[texture_count-1]); else break; } }
void TextureCacheBase::Invalidate() { UnbindTextures(); TexCache::iterator iter = textures_by_address.begin(); TexCache::iterator end = textures_by_address.end(); while (iter != end) { iter = FreeTexture(iter); } textures_by_address.clear(); textures_by_hash.clear(); }
/* Function: Main entry point ( Application main ) Flow: - Init GLUT - Setup Window Buffers ( Double render buffer as well as support for Alpha, and Depth buffer) - Setup Window Width, Height, X, Y Position - Create Window with title - Setup Lighting - Set callback to display function for rendering - Set callback to reshape function for changing the size of the viewport - Set callback to keyPressed and keyUp to handle keyboard input - Tell GLUT to enter main loop E.g while( running ) { doApplicationStuff(); } End State: Creation and running of an application as well as closing and releasing all resources used by the application */ int main(int argc, char **argv) { int windowWidth = 500; int windowHeight = 500; int windowXPos = 100; int windowYPos = 100; // Initialize GLUT with command line input glutInit(&argc, argv); // Set up a basic buffer (only single buffered for now) glutInitDisplayMode(GLUT_DOUBLE | GLUT_DEPTH); glutGameModeString("1440x900:32@60"); glutEnterGameMode(); // Set width ,height, X Pos and Y pos of window //glutInitWindowSize(windowWidth, windowHeight); //glutInitWindowPosition(windowXPos, windowYPos); // Create window with title //glutCreateWindow("Basic Window with lighting!"); // Clear keyboard state initKeyboardState(); // Setup lighting initLighting(); // Initiate object lists CreateCube(); // Setup Idle and Display to both use the 'display' function, // set the reshape event to use the 'reshape' funciton glutDisplayFunc(display); glutIdleFunc(display); glutReshapeFunc(reshape); // Set keyboard callback function to handle key pressing and releasing glutKeyboardFunc(keyPressed); glutKeyboardUpFunc(keyUp); glutSpecialFunc(keySpecialPressed); glutSpecialUpFunc(keySpecialUp); // Run the main loop which will handle closing of the application glutMainLoop(); // Free the texture FreeTexture( texture ); }
static void FreeAllTextures(void) { int i; TC_Texture_t *WorkPtr; WorkPtr = c_textures; i = MAX_CACHED_TEXTURES; do { if (WorkPtr->used) { /* Is this used? */ FreeTexture(WorkPtr); /* Zap this texture */ } ++WorkPtr; /* Continue traversal */ } while (--i); c_num_textures = 0; }
void Gwen::Renderer::SFML2::LoadTexture( Gwen::Texture* pTexture ) { if ( !pTexture ) return; if ( pTexture->data ) FreeTexture( pTexture ); sf::Texture* tex = new sf::Texture(); tex->setSmooth( true ); if ( !tex->loadFromFile( pTexture->name.Get() ) ) { delete( tex ); pTexture->failed = true; return; } pTexture->height = tex->getSize().x; pTexture->width = tex->getSize().y; pTexture->data = new TextureData( tex ); }
void ClanLib::LoadTexture( Gwen::Texture* pTexture ) { if ( !pTexture ) { return; } if ( pTexture->data ) { FreeTexture( pTexture ); } clan::Image* tex = new clan::Image(m_Target, pTexture->name.Get(), m_FileSystem); //tex->SetSmooth( true ); //if ( !tex->LoadFromFile( pTexture->name.Get() ) ) if (tex->is_null()) { delete( tex ); pTexture->failed = true; return; } pTexture->height = tex->get_height(); pTexture->width = tex->get_width(); pTexture->data = new TextureData( tex ); };
void SDL2::LoadTexture(Gwen::Texture* pTexture) { if (!pTexture) return; if (pTexture->data) FreeTexture(pTexture); SDL_Texture *tex = NULL; if (pTexture->readable) { // You cannot find the format of a texture once loaded to read from it // in SDL2 so we have to keep the surface to read from. SDL_Surface *surf = IMG_Load(pTexture->name.c_str()); tex = SDL_CreateTextureFromSurface(m_renderer, surf); pTexture->surface = surf; } else { // Don't need to read. Just load straight into render format. tex = IMG_LoadTexture(m_renderer, pTexture->name.c_str()); } if (tex) { int w, h; SDL_QueryTexture(tex, NULL, NULL, &w, &h); pTexture->data = tex; pTexture->width = w; pTexture->height = h; pTexture->failed = false; } else { pTexture->data = NULL; pTexture->failed = true; } }
/** * Texture wrapper class * @return bool * @param fileName The file path of the image */ bool Texture::LoadFromFile (std::string fileName ) { //Clean up first FreeTexture(); //The final texture SDL_Texture* newTexture = NULL; //Load image at specified path SDL_Surface* loadedSurface = IMG_Load( fileName.c_str() ); if( loadedSurface == NULL ) { printf( "Unable to load image %s! SDL_image Error: %s\n", fileName.c_str(), IMG_GetError() ); } else { //Create texture from surface pixels newTexture = SDL_CreateTextureFromSurface( ResourceManager::getResourceManager().GetGlobalRenderer(), loadedSurface ); if( newTexture == NULL ) { printf( "Unable to create texture from %s! SDL Error: %s\n", fileName.c_str(), SDL_GetError() ); } else { //Get image dimensions mWidth = loadedSurface->w; mHeight = loadedSurface->h; } //Get rid of old loaded surface SDL_FreeSurface( loadedSurface ); } //Return success mTexture = newTexture; return mTexture != NULL; }
int main(int argc, char **argv) { glutInit(&argc, argv); // Initializes glut // Sets up a double buffer with RGBA components and a depth component glutInitDisplayMode(GLUT_DOUBLE | GLUT_DEPTH | GLUT_RGBA); // Sets the window size to 512*512 square pixels glutInitWindowSize(512, 512); // Sets the window position to the upper left glutInitWindowPosition(0, 0); // Creates a window using internal glut functionality glutCreateWindow("Hello!"); // passes reshape and display functions to the OpenGL machine for callback // glutReshapeFunc(reshape); glutDisplayFunc(display); glutIdleFunc(display); init(); g_texture = LoadTextureRAW("texture.raw", true); if (!g_texture) { printf("texture load error!\n"); return -1; } // Starts the program. glutMainLoop(); FreeTexture(g_texture); return 0; }
void SFML::LoadTexture( Gwen::Texture* pTexture ) { if ( !pTexture ) return; if ( pTexture->data ) FreeTexture( pTexture ); #if SFML_VERSION_MAJOR == 2 sf::Texture* tex = new sf::Texture(); #else sf::Image* tex = new sf::Image(); #endif tex->SetSmooth( true ); if ( !tex->LoadFromFile( pTexture->name.Get() ) ) { delete( tex ); pTexture->failed = true; return; } pTexture->height = tex->GetHeight(); pTexture->width = tex->GetWidth(); pTexture->data = tex; };
TextureCache::TCacheEntryBase* TextureCache::Load(const u32 stage) { const FourTexUnits &tex = bpmem.tex[stage >> 2]; const u32 id = stage & 3; const u32 address = (tex.texImage3[id].image_base/* & 0x1FFFFF*/) << 5; u32 width = tex.texImage0[id].width + 1; u32 height = tex.texImage0[id].height + 1; const int texformat = tex.texImage0[id].format; const u32 tlutaddr = tex.texTlut[id].tmem_offset << 9; const u32 tlutfmt = tex.texTlut[id].tlut_format; const bool use_mipmaps = (tex.texMode0[id].min_filter & 3) != 0; u32 tex_levels = use_mipmaps ? ((tex.texMode1[id].max_lod + 0xf) / 0x10 + 1) : 1; const bool from_tmem = tex.texImage1[id].image_type != 0; if (0 == address) return nullptr; // TexelSizeInNibbles(format) * width * height / 16; const unsigned int bsw = TexDecoder_GetBlockWidthInTexels(texformat); const unsigned int bsh = TexDecoder_GetBlockHeightInTexels(texformat); unsigned int expandedWidth = ROUND_UP(width, bsw); unsigned int expandedHeight = ROUND_UP(height, bsh); const unsigned int nativeW = width; const unsigned int nativeH = height; // Hash assigned to texcache entry (also used to generate filenames used for texture dumping and custom texture lookup) u64 base_hash = TEXHASH_INVALID; u64 full_hash = TEXHASH_INVALID; u32 full_format = texformat; const bool isPaletteTexture = (texformat == GX_TF_C4 || texformat == GX_TF_C8 || texformat == GX_TF_C14X2); // Reject invalid tlut format. if (isPaletteTexture && tlutfmt > GX_TL_RGB5A3) return nullptr; if (isPaletteTexture) full_format = texformat | (tlutfmt << 16); const u32 texture_size = TexDecoder_GetTextureSizeInBytes(expandedWidth, expandedHeight, texformat); u32 additional_mips_size = 0; // not including level 0, which is texture_size // GPUs don't like when the specified mipmap count would require more than one 1x1-sized LOD in the mipmap chain // e.g. 64x64 with 7 LODs would have the mipmap chain 64x64,32x32,16x16,8x8,4x4,2x2,1x1,0x0, so we limit the mipmap count to 6 there tex_levels = std::min<u32>(IntLog2(std::max(width, height)) + 1, tex_levels); for (u32 level = 1; level != tex_levels; ++level) { // We still need to calculate the original size of the mips const u32 expanded_mip_width = ROUND_UP(CalculateLevelSize(width, level), bsw); const u32 expanded_mip_height = ROUND_UP(CalculateLevelSize(height, level), bsh); additional_mips_size += TexDecoder_GetTextureSizeInBytes(expanded_mip_width, expanded_mip_height, texformat); } // If we are recording a FifoLog, keep track of what memory we read. // FifiRecorder does it's own memory modification tracking independant of the texture hashing below. if (g_bRecordFifoData && !from_tmem) FifoRecorder::GetInstance().UseMemory(address, texture_size + additional_mips_size, MemoryUpdate::TEXTURE_MAP); const u8* src_data; if (from_tmem) src_data = &texMem[bpmem.tex[stage / 4].texImage1[stage % 4].tmem_even * TMEM_LINE_SIZE]; else src_data = Memory::GetPointer(address); // TODO: This doesn't hash GB tiles for preloaded RGBA8 textures (instead, it's hashing more data from the low tmem bank than it should) base_hash = GetHash64(src_data, texture_size, g_ActiveConfig.iSafeTextureCache_ColorSamples); u32 palette_size = 0; if (isPaletteTexture) { palette_size = TexDecoder_GetPaletteSize(texformat); full_hash = base_hash ^ GetHash64(&texMem[tlutaddr], palette_size, g_ActiveConfig.iSafeTextureCache_ColorSamples); } else { full_hash = base_hash; } // Search the texture cache for textures by address // // Find all texture cache entries for the current texture address, and decide whether to use one of // them, or to create a new one // // In most cases, the fastest way is to use only one texture cache entry for the same address. Usually, // when a texture changes, the old version of the texture is unlikely to be used again. If there were // new cache entries created for normal texture updates, there would be a slowdown due to a huge amount // of unused cache entries. Also thanks to texture pooling, overwriting an existing cache entry is // faster than creating a new one from scratch. // // Some games use the same address for different textures though. If the same cache entry was used in // this case, it would be constantly overwritten, and effectively there wouldn't be any caching for // those textures. Examples for this are Metroid Prime and Castlevania 3. Metroid Prime has multiple // sets of fonts on each other stored in a single texture and uses the palette to make different // characters visible or invisible. In Castlevania 3 some textures are used for 2 different things or // at least in 2 different ways(size 1024x1024 vs 1024x256). // // To determine whether to use multiple cache entries or a single entry, use the following heuristic: // If the same texture address is used several times during the same frame, assume the address is used // for different purposes and allow creating an additional cache entry. If there's at least one entry // that hasn't been used for the same frame, then overwrite it, in order to keep the cache as small as // possible. If the current texture is found in the cache, use that entry. // // For efb copies, the entry created in CopyRenderTargetToTexture always has to be used, or else it was // done in vain. std::pair<TexCache::iterator, TexCache::iterator> iter_range = textures_by_address.equal_range((u64)address); TexCache::iterator iter = iter_range.first; TexCache::iterator oldest_entry = iter; int temp_frameCount = 0x7fffffff; TexCache::iterator unconverted_copy = textures_by_address.end(); while (iter != iter_range.second) { TCacheEntryBase* entry = iter->second; // Do not load strided EFB copies, they are not meant to be used directly if (entry->IsEfbCopy() && entry->native_width == nativeW && entry->native_height == nativeH && entry->memory_stride == entry->CacheLinesPerRow() * 32) { // EFB copies have slightly different rules as EFB copy formats have different // meanings from texture formats. if ((base_hash == entry->hash && (!isPaletteTexture || g_Config.backend_info.bSupportsPaletteConversion)) || IsPlayingBackFifologWithBrokenEFBCopies) { // TODO: We should check format/width/height/levels for EFB copies. Checking // format is complicated because EFB copy formats don't exactly match // texture formats. I'm not sure what effect checking width/height/levels // would have. if (!isPaletteTexture || !g_Config.backend_info.bSupportsPaletteConversion) return ReturnEntry(stage, entry); // Note that we found an unconverted EFB copy, then continue. We'll // perform the conversion later. Currently, we only convert EFB copies to // palette textures; we could do other conversions if it proved to be // beneficial. unconverted_copy = iter; } else { // Aggressively prune EFB copies: if it isn't useful here, it will probably // never be useful again. It's theoretically possible for a game to do // something weird where the copy could become useful in the future, but in // practice it doesn't happen. iter = FreeTexture(iter); continue; } } else { // For normal textures, all texture parameters need to match if (entry->hash == full_hash && entry->format == full_format && entry->native_levels >= tex_levels && entry->native_width == nativeW && entry->native_height == nativeH) { entry = DoPartialTextureUpdates(iter); return ReturnEntry(stage, entry); } } // Find the texture which hasn't been used for the longest time. Count paletted // textures as the same texture here, when the texture itself is the same. This // improves the performance a lot in some games that use paletted textures. // Example: Sonic the Fighters (inside Sonic Gems Collection) // Skip EFB copies here, so they can be used for partial texture updates if (entry->frameCount != FRAMECOUNT_INVALID && entry->frameCount < temp_frameCount && !entry->IsEfbCopy() && !(isPaletteTexture && entry->base_hash == base_hash)) { temp_frameCount = entry->frameCount; oldest_entry = iter; } ++iter; } if (unconverted_copy != textures_by_address.end()) { // Perform palette decoding. TCacheEntryBase *entry = unconverted_copy->second; TCacheEntryConfig config; config.rendertarget = true; config.width = entry->config.width; config.height = entry->config.height; config.layers = FramebufferManagerBase::GetEFBLayers(); TCacheEntryBase *decoded_entry = AllocateTexture(config); decoded_entry->SetGeneralParameters(address, texture_size, full_format); decoded_entry->SetDimensions(entry->native_width, entry->native_height, 1); decoded_entry->SetHashes(base_hash, full_hash); decoded_entry->frameCount = FRAMECOUNT_INVALID; decoded_entry->is_efb_copy = false; g_texture_cache->ConvertTexture(decoded_entry, entry, &texMem[tlutaddr], (TlutFormat)tlutfmt); textures_by_address.emplace((u64)address, decoded_entry); return ReturnEntry(stage, decoded_entry); } // Search the texture cache for normal textures by hash // // If the texture was fully hashed, the address does not need to match. Identical duplicate textures cause unnecessary slowdowns // Example: Tales of Symphonia (GC) uses over 500 small textures in menus, but only around 70 different ones if (g_ActiveConfig.iSafeTextureCache_ColorSamples == 0 || std::max(texture_size, palette_size) <= (u32)g_ActiveConfig.iSafeTextureCache_ColorSamples * 8) { iter_range = textures_by_hash.equal_range(full_hash); iter = iter_range.first; while (iter != iter_range.second) { TCacheEntryBase* entry = iter->second; // All parameters, except the address, need to match here if (entry->format == full_format && entry->native_levels >= tex_levels && entry->native_width == nativeW && entry->native_height == nativeH) { entry = DoPartialTextureUpdates(iter); return ReturnEntry(stage, entry); } ++iter; } } // If at least one entry was not used for the same frame, overwrite the oldest one if (temp_frameCount != 0x7fffffff) { // pool this texture and make a new one later FreeTexture(oldest_entry); } std::shared_ptr<HiresTexture> hires_tex; if (g_ActiveConfig.bHiresTextures) { hires_tex = HiresTexture::Search( src_data, texture_size, &texMem[tlutaddr], palette_size, width, height, texformat, use_mipmaps ); if (hires_tex) { auto& l = hires_tex->m_levels[0]; if (l.width != width || l.height != height) { width = l.width; height = l.height; } expandedWidth = l.width; expandedHeight = l.height; CheckTempSize(l.data_size); memcpy(temp, l.data, l.data_size); } } if (!hires_tex) { if (!(texformat == GX_TF_RGBA8 && from_tmem)) { const u8* tlut = &texMem[tlutaddr]; TexDecoder_Decode(temp, src_data, expandedWidth, expandedHeight, texformat, tlut, (TlutFormat)tlutfmt); } else { u8* src_data_gb = &texMem[bpmem.tex[stage / 4].texImage2[stage % 4].tmem_odd * TMEM_LINE_SIZE]; TexDecoder_DecodeRGBA8FromTmem(temp, src_data, src_data_gb, expandedWidth, expandedHeight); } } // how many levels the allocated texture shall have const u32 texLevels = hires_tex ? (u32)hires_tex->m_levels.size() : tex_levels; // create the entry/texture TCacheEntryConfig config; config.width = width; config.height = height; config.levels = texLevels; TCacheEntryBase* entry = AllocateTexture(config); GFX_DEBUGGER_PAUSE_AT(NEXT_NEW_TEXTURE, true); iter = textures_by_address.emplace((u64)address, entry); if (g_ActiveConfig.iSafeTextureCache_ColorSamples == 0 || std::max(texture_size, palette_size) <= (u32)g_ActiveConfig.iSafeTextureCache_ColorSamples * 8) { entry->textures_by_hash_iter = textures_by_hash.emplace(full_hash, entry); } entry->SetGeneralParameters(address, texture_size, full_format); entry->SetDimensions(nativeW, nativeH, tex_levels); entry->SetHashes(base_hash, full_hash); entry->is_efb_copy = false; entry->is_custom_tex = hires_tex != nullptr; // load texture entry->Load(width, height, expandedWidth, 0); std::string basename = ""; if (g_ActiveConfig.bDumpTextures && !hires_tex) { basename = HiresTexture::GenBaseName( src_data, texture_size, &texMem[tlutaddr], palette_size, width, height, texformat, use_mipmaps, true ); DumpTexture(entry, basename, 0); } if (hires_tex) { for (u32 level = 1; level != texLevels; ++level) { auto& l = hires_tex->m_levels[level]; CheckTempSize(l.data_size); memcpy(temp, l.data, l.data_size); entry->Load(l.width, l.height, l.width, level); } } else { // load mips - TODO: Loading mipmaps from tmem is untested! src_data += texture_size; const u8* ptr_even = nullptr; const u8* ptr_odd = nullptr; if (from_tmem) { ptr_even = &texMem[bpmem.tex[stage / 4].texImage1[stage % 4].tmem_even * TMEM_LINE_SIZE + texture_size]; ptr_odd = &texMem[bpmem.tex[stage / 4].texImage2[stage % 4].tmem_odd * TMEM_LINE_SIZE]; } for (u32 level = 1; level != texLevels; ++level) { const u32 mip_width = CalculateLevelSize(width, level); const u32 mip_height = CalculateLevelSize(height, level); const u32 expanded_mip_width = ROUND_UP(mip_width, bsw); const u32 expanded_mip_height = ROUND_UP(mip_height, bsh); const u8*& mip_src_data = from_tmem ? ((level % 2) ? ptr_odd : ptr_even) : src_data; const u8* tlut = &texMem[tlutaddr]; TexDecoder_Decode(temp, mip_src_data, expanded_mip_width, expanded_mip_height, texformat, tlut, (TlutFormat)tlutfmt); mip_src_data += TexDecoder_GetTextureSizeInBytes(expanded_mip_width, expanded_mip_height, texformat); entry->Load(mip_width, mip_height, expanded_mip_width, level); if (g_ActiveConfig.bDumpTextures) DumpTexture(entry, basename, level); } } INCSTAT(stats.numTexturesUploaded); SETSTAT(stats.numTexturesAlive, textures_by_address.size()); entry = DoPartialTextureUpdates(iter); return ReturnEntry(stage, entry); }
void TextureCacheBase::ScaleTextureCacheEntryTo(TextureCacheBase::TCacheEntryBase** entry, u32 new_width, u32 new_height) { if ((*entry)->config.width == new_width && (*entry)->config.height == new_height) { return; } u32 max = g_renderer->GetMaxTextureSize(); if (max < new_width || max < new_height) { ERROR_LOG(VIDEO, "Texture too big, width = %d, height = %d", new_width, new_height); return; } TextureCacheBase::TCacheEntryConfig newconfig; newconfig.width = new_width; newconfig.height = new_height; newconfig.layers = (*entry)->config.layers; newconfig.rendertarget = true; TCacheEntryBase* newentry = AllocateTexture(newconfig); if (newentry) { newentry->SetGeneralParameters((*entry)->addr, (*entry)->size_in_bytes, (*entry)->format); newentry->SetDimensions((*entry)->native_width, (*entry)->native_height, 1); newentry->SetHashes((*entry)->base_hash, (*entry)->hash); newentry->frameCount = frameCount; newentry->is_efb_copy = (*entry)->is_efb_copy; MathUtil::Rectangle<int> srcrect, dstrect; srcrect.left = 0; srcrect.top = 0; srcrect.right = (*entry)->config.width; srcrect.bottom = (*entry)->config.height; dstrect.left = 0; dstrect.top = 0; dstrect.right = new_width; dstrect.bottom = new_height; newentry->CopyRectangleFromTexture(*entry, srcrect, dstrect); // Keep track of the pointer for textures_by_hash if ((*entry)->textures_by_hash_iter != textures_by_hash.end()) { newentry->textures_by_hash_iter = textures_by_hash.emplace((*entry)->hash, newentry); } // Remove the old texture std::pair<TexCache::iterator, TexCache::iterator>iter_range = textures_by_address.equal_range((*entry)->addr); TexCache::iterator iter = iter_range.first; while (iter != iter_range.second) { if (iter->second == *entry) { FreeTexture(iter); iter = iter_range.second; } else { iter++; } } *entry = newentry; textures_by_address.emplace((*entry)->addr, *entry); } else { ERROR_LOG(VIDEO, "Scaling failed"); } }
OpenGL_DebugFont::~OpenGL_DebugFont() { FreeTexture( m_pFontTexture ); delete m_pFontTexture; }
void CTextureMap::Flush() { if (!m_referenceCount) FreeTexture(); }
TextureCacheBase::TCacheEntryBase* TextureCacheBase::DoPartialTextureUpdates(TexCache::iterator iter_t) { TCacheEntryBase* entry_to_update = iter_t->second; const bool isPaletteTexture = (entry_to_update->format == GX_TF_C4 || entry_to_update->format == GX_TF_C8 || entry_to_update->format == GX_TF_C14X2 || entry_to_update->format >= 0x10000); // Efb copies and paletted textures are excluded from these updates, until there's an example where a game would // benefit from this. Both would require more work to be done. if (entry_to_update->IsEfbCopy() || isPaletteTexture) return entry_to_update; u32 block_width = TexDecoder_GetBlockWidthInTexels(entry_to_update->format & 0xf); u32 block_height = TexDecoder_GetBlockHeightInTexels(entry_to_update->format & 0xf); u32 block_size = block_width * block_height * TexDecoder_GetTexelSizeInNibbles(entry_to_update->format & 0xf) / 2; u32 numBlocksX = (entry_to_update->native_width + block_width - 1) / block_width; TexCache::iterator iter = textures_by_address.lower_bound(entry_to_update->addr); TexCache::iterator iterend = textures_by_address.upper_bound(entry_to_update->addr + entry_to_update->size_in_bytes); while (iter != iterend) { TCacheEntryBase* entry = iter->second; if (entry != entry_to_update && entry->IsEfbCopy() && entry->OverlapsMemoryRange(entry_to_update->addr, entry_to_update->size_in_bytes) && entry->frameCount == FRAMECOUNT_INVALID && entry->memory_stride == numBlocksX * block_size) { if (entry->hash == entry->CalculateHash()) { u32 src_x, src_y, dst_x, dst_y; // Note for understanding the math: // Normal textures can't be strided, so the 2 missing cases with src_x > 0 don't exist if (entry->addr >= entry_to_update->addr) { u32 block_offset = (entry->addr - entry_to_update->addr) / block_size; u32 block_x = block_offset % numBlocksX; u32 block_y = block_offset / numBlocksX; src_x = 0; src_y = 0; dst_x = block_x * block_width; dst_y = block_y * block_height; } else { u32 block_offset = (entry_to_update->addr - entry->addr) / block_size; u32 block_x = (~block_offset + 1) % numBlocksX; u32 block_y = (block_offset + block_x) / numBlocksX; src_x = 0; src_y = block_y * block_height; dst_x = block_x * block_width; dst_y = 0; } u32 copy_width = std::min(entry->native_width - src_x, entry_to_update->native_width - dst_x); u32 copy_height = std::min(entry->native_height - src_y, entry_to_update->native_height - dst_y); // If one of the textures is scaled, scale both with the current efb scaling factor if (entry_to_update->native_width != entry_to_update->config.width || entry_to_update->native_height != entry_to_update->config.height || entry->native_width != entry->config.width || entry->native_height != entry->config.height) { ScaleTextureCacheEntryTo(&entry_to_update, Renderer::EFBToScaledX(entry_to_update->native_width), Renderer::EFBToScaledY(entry_to_update->native_height)); ScaleTextureCacheEntryTo(&entry, Renderer::EFBToScaledX(entry->native_width), Renderer::EFBToScaledY(entry->native_height)); src_x = Renderer::EFBToScaledX(src_x); src_y = Renderer::EFBToScaledY(src_y); dst_x = Renderer::EFBToScaledX(dst_x); dst_y = Renderer::EFBToScaledY(dst_y); copy_width = Renderer::EFBToScaledX(copy_width); copy_height = Renderer::EFBToScaledY(copy_height); } MathUtil::Rectangle<int> srcrect, dstrect; srcrect.left = src_x; srcrect.top = src_y; srcrect.right = (src_x + copy_width); srcrect.bottom = (src_y + copy_height); dstrect.left = dst_x; dstrect.top = dst_y; dstrect.right = (dst_x + copy_width); dstrect.bottom = (dst_y + copy_height); entry_to_update->CopyRectangleFromTexture(entry, srcrect, dstrect); // Mark the texture update as used, so it isn't applied more than once entry->frameCount = frameCount; } else { // If the hash does not match, this EFB copy will not be used for anything, so remove it iter = FreeTexture(iter); continue; } } ++iter; } return entry_to_update; }
CCommonWnd::~CCommonWnd() { if(m_pBackTexture) FreeTexture(m_pBackTexture); }
CTextureMap::~CTextureMap() { FreeTexture(); }
void CTex::FreeTexture (std::string name) { FreeTexture (GetTexID (name)); }
/** * Destructor */ Texture::~Texture ( ) { FreeTexture(); }
void FreeTexture(const char* texture_name) { // just find font by name and free it, using FS_FreeFont(font_t*) FreeTexture(TextureByName(texture_name)); }
TextureCache::TCacheEntryBase* TextureCache::DoPartialTextureUpdates(TexCache::iterator iter_t) { TCacheEntryBase* entry_to_update = iter_t->second; const bool isPaletteTexture = (entry_to_update->format == GX_TF_C4 || entry_to_update->format == GX_TF_C8 || entry_to_update->format == GX_TF_C14X2 || entry_to_update->format >= 0x10000); // Efb copies and paletted textures are excluded from these updates, until there's an example where a game would // benefit from this. Both would require more work to be done. // TODO: Implement upscaling support for normal textures, and then remove the efb to ram and the scaled efb restrictions if (entry_to_update->IsEfbCopy() || isPaletteTexture) return entry_to_update; u32 block_width = TexDecoder_GetBlockWidthInTexels(entry_to_update->format); u32 block_height = TexDecoder_GetBlockHeightInTexels(entry_to_update->format); u32 block_size = block_width * block_height * TexDecoder_GetTexelSizeInNibbles(entry_to_update->format) / 2; u32 numBlocksX = (entry_to_update->native_width + block_width - 1) / block_width; TexCache::iterator iter = textures_by_address.lower_bound(entry_to_update->addr); TexCache::iterator iterend = textures_by_address.upper_bound(entry_to_update->addr + entry_to_update->size_in_bytes); bool entry_need_scaling = true; while (iter != iterend) { TCacheEntryBase* entry = iter->second; if (entry != entry_to_update && entry->IsEfbCopy() && entry_to_update->addr <= entry->addr && entry->addr + entry->size_in_bytes <= entry_to_update->addr + entry_to_update->size_in_bytes && entry->frameCount == FRAMECOUNT_INVALID && entry->memory_stride == numBlocksX * block_size) { u32 block_offset = (entry->addr - entry_to_update->addr) / block_size; u32 block_x = block_offset % numBlocksX; u32 block_y = block_offset / numBlocksX; u32 x = block_x * block_width; u32 y = block_y * block_height; MathUtil::Rectangle<int> srcrect, dstrect; srcrect.left = 0; srcrect.top = 0; dstrect.left = 0; dstrect.top = 0; if (entry_need_scaling) { entry_need_scaling = false; u32 w = entry_to_update->native_width * entry->config.width / entry->native_width; u32 h = entry_to_update->native_height * entry->config.height / entry->native_height; u32 max = g_renderer->GetMaxTextureSize(); if (max < w || max < h) { iter++; continue; } if (entry_to_update->config.width != w || entry_to_update->config.height != h) { TextureCache::TCacheEntryConfig newconfig; newconfig.width = w; newconfig.height = h; newconfig.rendertarget = true; TCacheEntryBase* newentry = AllocateTexture(newconfig); newentry->SetGeneralParameters(entry_to_update->addr, entry_to_update->size_in_bytes, entry_to_update->format); newentry->SetDimensions(entry_to_update->native_width, entry_to_update->native_height, 1); newentry->SetHashes(entry_to_update->base_hash, entry_to_update->hash); newentry->frameCount = frameCount; newentry->is_efb_copy = false; srcrect.right = entry_to_update->config.width; srcrect.bottom = entry_to_update->config.height; dstrect.right = w; dstrect.bottom = h; newentry->CopyRectangleFromTexture(entry_to_update, srcrect, dstrect); entry_to_update = newentry; u64 key = iter_t->first; iter_t = FreeTexture(iter_t); textures_by_address.emplace(key, entry_to_update); } } srcrect.right = entry->config.width; srcrect.bottom = entry->config.height; dstrect.left = x * entry_to_update->config.width / entry_to_update->native_width; dstrect.top = y * entry_to_update->config.height / entry_to_update->native_height; dstrect.right = (x + entry->native_width) * entry_to_update->config.width / entry_to_update->native_width; dstrect.bottom = (y + entry->native_height) * entry_to_update->config.height / entry_to_update->native_height; entry_to_update->CopyRectangleFromTexture(entry, srcrect, dstrect); // Mark the texture update as used, so it isn't applied more than once entry->frameCount = frameCount; } ++iter; } return entry_to_update; }
// WinMain int WINAPI WinMain(HINSTANCE hinstance, HINSTANCE hprev, PSTR cmdline, int ishow) { MSG msg = {0}; HWND hwnd = NULL; WNDCLASSEX wndclassex = {0}; // Fill the fields we care about wndclassex.cbSize = sizeof(WNDCLASSEX); wndclassex.style = CS_HREDRAW | CS_VREDRAW; wndclassex.lpfnWndProc = WinProc; wndclassex.hInstance = hinstance; wndclassex.lpszClassName = class_name; wndclassex.hbrBackground = (HBRUSH)GetStockObject(BLACK_BRUSH); wndclassex.hCursor = (HCURSOR)LoadImage(NULL, MAKEINTRESOURCE(IDC_ARROW), IMAGE_CURSOR, 0, 0, LR_SHARED); RegisterClassEx(&wndclassex); // Register the class RECT rect = { 0, 0, WIN_WID, WIN_HGT }; // Desired window client rect DWORD winStyleEx = WS_EX_APPWINDOW; DWORD winStyle = WS_CAPTION | WS_SYSMENU; // Window style // Adjust window rect so it gives us our desired client rect when we // create the window AdjustWindowRectEx(&rect, winStyle, false, winStyleEx); // Create our window -- Notice how we set use different "variables" when creating // the window based upon if we were able to switch to full screen or not hwnd = CreateWindowEx(winStyleEx, class_name, "www.GameTutorials.com -- Texture Mapping", winStyle, CW_USEDEFAULT, CW_USEDEFAULT, rect.right - rect.left, // Window width rect.bottom - rect.top, // Window height NULL, NULL, hinstance, NULL); // Error Check if(!hwnd) goto CLEAN_UP; // Here we are going to use goto in a "good" way // We have a few things we want to initialize so if // any of them fail, we just go to the "clean up code" // Get the client RECT GetClientRect(hwnd, &rect); // If the client width or height isn't what we requested, there's been // an error somewhere and we're going to bail ship if(rect.right != WIN_WID || rect.bottom != WIN_HGT) goto CLEAN_UP; HDC hdc = GetDC(hwnd); // Get the window's hdc // Initialize OpenGL if(gGLObj.init(hdc, 32, 32) == false) goto CLEAN_UP; // Load the texture if(LoadTexture() == false) goto CLEAN_UP; // Set up the view port gGLObj.setViewPort(WIN_WID,WIN_HGT,45.0); // Show and update window ShowWindow(hwnd, ishow); UpdateWindow(hwnd); while(1) { if(PeekMessage(&msg,NULL,0,0,PM_REMOVE)) { if(msg.message == WM_QUIT) break; TranslateMessage(&msg); DispatchMessage(&msg); } else { gGLObj.begin(); // Begin to draw // Bind the texture glBindTexture(GL_TEXTURE_2D, gTextureID); // Draw a quad (ie a square) glBegin(GL_QUADS); // glTexCoord2f() takes a U and V (U,V) into our texture. The U and V are // in the range from 0 to 1. And work like this: /* (0,1) (1,1) _______ | | | | | | Just like Cartesian coordinates :) ------- (0,0) (1,0) */ // Display the top left vertex glTexCoord2f(0.0f, 1.0f); glVertex3f(-1, 1, 0); // Display the bottom left vertex glTexCoord2f(0.0f, 0.0f); glVertex3f(-1, -1, 0); // Display the bottom right vertex glTexCoord2f(1.0f, 0.0f); glVertex3f(1, -1, 0); // Display the top right vertex glTexCoord2f(1.0f, 1.0f); glVertex3f(1, 1, 0); glEnd(); // Stop drawing QUADS gGLObj.end(); // End drawing in 3D and blit to the screen } } // end of while(1) CLEAN_UP: if(hdc) ReleaseDC(hwnd, hdc); // Be sure to free up the window's HDC FreeTexture(); // Free the texture UnregisterClass(class_name,hinstance); // Free up the WNDCLASSEX return msg.wParam; }
void TextureCache::CopyRenderTargetToTexture(u32 dstAddr, unsigned int dstFormat, u32 dstStride, PEControl::PixelFormat srcFormat, const EFBRectangle& srcRect, bool isIntensity, bool scaleByHalf) { // Emulation methods: // // - EFB to RAM: // Encodes the requested EFB data at its native resolution to the emulated RAM using shaders. // Load() decodes the data from there again (using TextureDecoder) if the EFB copy is being used as a texture again. // Advantage: CPU can read data from the EFB copy and we don't lose any important updates to the texture // Disadvantage: Encoding+decoding steps often are redundant because only some games read or modify EFB copies before using them as textures. // // - EFB to texture: // Copies the requested EFB data to a texture object in VRAM, performing any color conversion using shaders. // Advantage: Works for many games, since in most cases EFB copies aren't read or modified at all before being used as a texture again. // Since we don't do any further encoding or decoding here, this method is much faster. // It also allows enhancing the visual quality by doing scaled EFB copies. // // - Hybrid EFB copies: // 1a) Whenever this function gets called, encode the requested EFB data to RAM (like EFB to RAM) // 1b) Set type to TCET_EC_DYNAMIC for all texture cache entries in the destination address range. // If EFB copy caching is enabled, further checks will (try to) prevent redundant EFB copies. // 2) Check if a texture cache entry for the specified dstAddr already exists (i.e. if an EFB copy was triggered to that address before): // 2a) Entry doesn't exist: // - Also copy the requested EFB data to a texture object in VRAM (like EFB to texture) // - Create a texture cache entry for the target (type = TCET_EC_VRAM) // - Store a hash of the encoded RAM data in the texcache entry. // 2b) Entry exists AND type is TCET_EC_VRAM: // - Like case 2a, but reuse the old texcache entry instead of creating a new one. // 2c) Entry exists AND type is TCET_EC_DYNAMIC: // - Only encode the texture to RAM (like EFB to RAM) and store a hash of the encoded data in the existing texcache entry. // - Do NOT copy the requested EFB data to a VRAM object. Reason: the texture is dynamic, i.e. the CPU is modifying it. Storing a VRAM copy is useless, because we'd always end up deleting it and reloading the data from RAM anyway. // 3) If the EFB copy gets used as a texture, compare the source RAM hash with the hash you stored when encoding the EFB data to RAM. // 3a) If the two hashes match AND type is TCET_EC_VRAM, reuse the VRAM copy you created // 3b) If the two hashes differ AND type is TCET_EC_VRAM, screw your existing VRAM copy. Set type to TCET_EC_DYNAMIC. // Redecode the source RAM data to a VRAM object. The entry basically behaves like a normal texture now. // 3c) If type is TCET_EC_DYNAMIC, treat the EFB copy like a normal texture. // Advantage: Non-dynamic EFB copies can be visually enhanced like with EFB to texture. // Compatibility is as good as EFB to RAM. // Disadvantage: Slower than EFB to texture and often even slower than EFB to RAM. // EFB copy cache depends on accurate texture hashing being enabled. However, with accurate hashing you end up being as slow as without a copy cache anyway. // // Disadvantage of all methods: Calling this function requires the GPU to perform a pipeline flush which stalls any further CPU processing. // // For historical reasons, Dolphin doesn't actually implement "pure" EFB to RAM emulation, but only EFB to texture and hybrid EFB copies. float colmat[28] = { 0 }; float *const fConstAdd = colmat + 16; float *const ColorMask = colmat + 20; ColorMask[0] = ColorMask[1] = ColorMask[2] = ColorMask[3] = 255.0f; ColorMask[4] = ColorMask[5] = ColorMask[6] = ColorMask[7] = 1.0f / 255.0f; unsigned int cbufid = -1; bool efbHasAlpha = bpmem.zcontrol.pixel_format == PEControl::RGBA6_Z24; if (srcFormat == PEControl::Z24) { switch (dstFormat) { case 0: // Z4 colmat[3] = colmat[7] = colmat[11] = colmat[15] = 1.0f; cbufid = 0; dstFormat |= _GX_TF_CTF; break; case 8: // Z8H dstFormat |= _GX_TF_CTF; case 1: // Z8 colmat[0] = colmat[4] = colmat[8] = colmat[12] = 1.0f; cbufid = 1; break; case 3: // Z16 colmat[1] = colmat[5] = colmat[9] = colmat[12] = 1.0f; cbufid = 2; break; case 11: // Z16 (reverse order) colmat[0] = colmat[4] = colmat[8] = colmat[13] = 1.0f; cbufid = 3; dstFormat |= _GX_TF_CTF; break; case 6: // Z24X8 colmat[0] = colmat[5] = colmat[10] = 1.0f; cbufid = 4; break; case 9: // Z8M colmat[1] = colmat[5] = colmat[9] = colmat[13] = 1.0f; cbufid = 5; dstFormat |= _GX_TF_CTF; break; case 10: // Z8L colmat[2] = colmat[6] = colmat[10] = colmat[14] = 1.0f; cbufid = 6; dstFormat |= _GX_TF_CTF; break; case 12: // Z16L - copy lower 16 depth bits // expected to be used as an IA8 texture (upper 8 bits stored as intensity, lower 8 bits stored as alpha) // Used e.g. in Zelda: Skyward Sword colmat[1] = colmat[5] = colmat[9] = colmat[14] = 1.0f; cbufid = 7; dstFormat |= _GX_TF_CTF; break; default: ERROR_LOG(VIDEO, "Unknown copy zbuf format: 0x%x", dstFormat); colmat[2] = colmat[5] = colmat[8] = 1.0f; cbufid = 8; break; } dstFormat |= _GX_TF_ZTF; } else if (isIntensity) { fConstAdd[0] = fConstAdd[1] = fConstAdd[2] = 16.0f / 255.0f; switch (dstFormat) { case 0: // I4 case 1: // I8 case 2: // IA4 case 3: // IA8 case 8: // I8 // TODO - verify these coefficients colmat[0] = 0.257f; colmat[1] = 0.504f; colmat[2] = 0.098f; colmat[4] = 0.257f; colmat[5] = 0.504f; colmat[6] = 0.098f; colmat[8] = 0.257f; colmat[9] = 0.504f; colmat[10] = 0.098f; if (dstFormat < 2 || dstFormat == 8) { colmat[12] = 0.257f; colmat[13] = 0.504f; colmat[14] = 0.098f; fConstAdd[3] = 16.0f / 255.0f; if (dstFormat == 0) { ColorMask[0] = ColorMask[1] = ColorMask[2] = 15.0f; ColorMask[4] = ColorMask[5] = ColorMask[6] = 1.0f / 15.0f; cbufid = 9; } else { cbufid = 10; } } else// alpha { colmat[15] = 1; if (dstFormat == 2) { ColorMask[0] = ColorMask[1] = ColorMask[2] = ColorMask[3] = 15.0f; ColorMask[4] = ColorMask[5] = ColorMask[6] = ColorMask[7] = 1.0f / 15.0f; cbufid = 11; } else { cbufid = 12; } } break; default: ERROR_LOG(VIDEO, "Unknown copy intensity format: 0x%x", dstFormat); colmat[0] = colmat[5] = colmat[10] = colmat[15] = 1.0f; cbufid = 13; break; } } else { switch (dstFormat) { case 0: // R4 colmat[0] = colmat[4] = colmat[8] = colmat[12] = 1; ColorMask[0] = 15.0f; ColorMask[4] = 1.0f / 15.0f; cbufid = 14; dstFormat |= _GX_TF_CTF; break; case 1: // R8 case 8: // R8 colmat[0] = colmat[4] = colmat[8] = colmat[12] = 1; cbufid = 15; dstFormat |= _GX_TF_CTF; break; case 2: // RA4 colmat[0] = colmat[4] = colmat[8] = colmat[15] = 1.0f; ColorMask[0] = ColorMask[3] = 15.0f; ColorMask[4] = ColorMask[7] = 1.0f / 15.0f; cbufid = 16; if (!efbHasAlpha) { ColorMask[3] = 0.0f; fConstAdd[3] = 1.0f; cbufid = 17; } dstFormat |= _GX_TF_CTF; break; case 3: // RA8 colmat[0] = colmat[4] = colmat[8] = colmat[15] = 1.0f; cbufid = 18; if (!efbHasAlpha) { ColorMask[3] = 0.0f; fConstAdd[3] = 1.0f; cbufid = 19; } dstFormat |= _GX_TF_CTF; break; case 7: // A8 colmat[3] = colmat[7] = colmat[11] = colmat[15] = 1.0f; cbufid = 20; if (!efbHasAlpha) { ColorMask[3] = 0.0f; fConstAdd[0] = 1.0f; fConstAdd[1] = 1.0f; fConstAdd[2] = 1.0f; fConstAdd[3] = 1.0f; cbufid = 21; } dstFormat |= _GX_TF_CTF; break; case 9: // G8 colmat[1] = colmat[5] = colmat[9] = colmat[13] = 1.0f; cbufid = 22; dstFormat |= _GX_TF_CTF; break; case 10: // B8 colmat[2] = colmat[6] = colmat[10] = colmat[14] = 1.0f; cbufid = 23; dstFormat |= _GX_TF_CTF; break; case 11: // RG8 colmat[0] = colmat[4] = colmat[8] = colmat[13] = 1.0f; cbufid = 24; dstFormat |= _GX_TF_CTF; break; case 12: // GB8 colmat[1] = colmat[5] = colmat[9] = colmat[14] = 1.0f; cbufid = 25; dstFormat |= _GX_TF_CTF; break; case 4: // RGB565 colmat[0] = colmat[5] = colmat[10] = 1.0f; ColorMask[0] = ColorMask[2] = 31.0f; ColorMask[4] = ColorMask[6] = 1.0f / 31.0f; ColorMask[1] = 63.0f; ColorMask[5] = 1.0f / 63.0f; fConstAdd[3] = 1.0f; // set alpha to 1 cbufid = 26; break; case 5: // RGB5A3 colmat[0] = colmat[5] = colmat[10] = colmat[15] = 1.0f; ColorMask[0] = ColorMask[1] = ColorMask[2] = 31.0f; ColorMask[4] = ColorMask[5] = ColorMask[6] = 1.0f / 31.0f; ColorMask[3] = 7.0f; ColorMask[7] = 1.0f / 7.0f; cbufid = 27; if (!efbHasAlpha) { ColorMask[3] = 0.0f; fConstAdd[3] = 1.0f; cbufid = 28; } break; case 6: // RGBA8 colmat[0] = colmat[5] = colmat[10] = colmat[15] = 1.0f; cbufid = 29; if (!efbHasAlpha) { ColorMask[3] = 0.0f; fConstAdd[3] = 1.0f; cbufid = 30; } break; default: ERROR_LOG(VIDEO, "Unknown copy color format: 0x%x", dstFormat); colmat[0] = colmat[5] = colmat[10] = colmat[15] = 1.0f; cbufid = 31; break; } } u8* dst = Memory::GetPointer(dstAddr); if (dst == nullptr) { ERROR_LOG(VIDEO, "Trying to copy from EFB to invalid address 0x%8x", dstAddr); return; } const unsigned int tex_w = scaleByHalf ? srcRect.GetWidth() / 2 : srcRect.GetWidth(); const unsigned int tex_h = scaleByHalf ? srcRect.GetHeight() / 2 : srcRect.GetHeight(); unsigned int scaled_tex_w = g_ActiveConfig.bCopyEFBScaled ? Renderer::EFBToScaledX(tex_w) : tex_w; unsigned int scaled_tex_h = g_ActiveConfig.bCopyEFBScaled ? Renderer::EFBToScaledY(tex_h) : tex_h; // remove all texture cache entries at dstAddr { std::pair<TexCache::iterator, TexCache::iterator> iter_range = textures_by_address.equal_range((u64)dstAddr); TexCache::iterator iter = iter_range.first; while (iter != iter_range.second) { iter = FreeTexture(iter); } } // create the texture TCacheEntryConfig config; config.rendertarget = true; config.width = scaled_tex_w; config.height = scaled_tex_h; config.layers = FramebufferManagerBase::GetEFBLayers(); TCacheEntryBase* entry = AllocateTexture(config); entry->SetGeneralParameters(dstAddr, 0, dstFormat); entry->SetDimensions(tex_w, tex_h, 1); entry->frameCount = FRAMECOUNT_INVALID; entry->SetEfbCopy(dstStride); entry->is_custom_tex = false; entry->FromRenderTarget(dst, dstFormat, dstStride, srcFormat, srcRect, isIntensity, scaleByHalf, cbufid, colmat); u64 hash = entry->CalculateHash(); entry->SetHashes(hash, hash); // Invalidate all textures that overlap the range of our efb copy. // Unless our efb copy has a weird stride, then we want avoid invalidating textures which // we might be able to do a partial texture update on. if (entry->memory_stride == entry->CacheLinesPerRow() * 32) { TexCache::iterator iter = textures_by_address.begin(); while (iter != textures_by_address.end()) { if (iter->second->OverlapsMemoryRange(dstAddr, entry->size_in_bytes)) iter = FreeTexture(iter); else ++iter; } } if (g_ActiveConfig.bDumpEFBTarget) { static int count = 0; entry->Save(StringFromFormat("%sefb_frame_%i.png", File::GetUserPath(D_DUMPTEXTURES_IDX).c_str(), count++), 0); } if (g_bRecordFifoData) { // Mark the memory behind this efb copy as dynamicly generated for the Fifo log u32 address = dstAddr; for (u32 i = 0; i < entry->NumBlocksY(); i++) { FifoRecorder::GetInstance().UseMemory(address, entry->CacheLinesPerRow() * 32, MemoryUpdate::TEXTURE_MAP, true); address += entry->memory_stride; } } textures_by_address.emplace((u64)dstAddr, entry); }
void display (void) { glClearColor (0.0,0.0,0.0,1.0); //clear the screen to black glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); //clear the color buffer and the depth buffer glMatrixMode( GL_MODELVIEW ); glColor4f(1.0f,0.0f,0.0f,1.0f); glEnable(GL_SCISSOR_TEST); glMatrixMode (GL_PROJECTION); //set the matrix to projection // Draw the primary view glViewport (0, 0, (GLsizei)screen_width, (GLsizei)screen_height); //set the viewport to the current window specifications glScissor(0, 0, (GLsizei)screen_width, (GLsizei)screen_height); glLoadIdentity (); if (lighting) { GLfloat AmbientLight[] = {0.1, 0.1, 0.2}; glLightfv (GL_LIGHT0, GL_AMBIENT, AmbientLight); GLfloat DiffuseLight[] = {1, 1, 1}; glLightfv (GL_LIGHT1, GL_DIFFUSE, DiffuseLight); GLfloat LightPosition[] = {xpos, ypos, zpos, 1}; glLightfv(GL_LIGHT1, GL_POSITION, LightPosition); } gluPerspective (60, (GLfloat)screen_width / (GLfloat)screen_height, 1.0, 100.0); gluLookAt (0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0); //camera position, x,y,z, looking at x,y,z, Up Positions of the camera camera(); glPushMatrix(); if (lighting) { texture1 = LoadTexture( "texture.raw", 256, 256 ); texture2 = LoadTexture( "/dev/urandom", 256, 256 ); texture3 = LoadTexture( "water.raw", 500, 375 ); texture4 = LoadTexture( "bubbles.raw", 200, 200 ); glEnable( GL_TEXTURE_2D ); //enable 2D texturing glEnable(GL_TEXTURE_GEN_S); //enable texture coordinate generation glEnable(GL_TEXTURE_GEN_T); if (fog) { GLfloat fogColor[4]= {0.5f, 1.0f, 0.5f, 1}; // Fog Color glFogi(GL_FOG_MODE, GL_EXP); // Fog Mode glFogfv(GL_FOG_COLOR, fogColor); // Set Fog Color glFogf(GL_FOG_DENSITY, 1.0f); // How Dense Will The Fog Be glHint(GL_FOG_HINT, GL_DONT_CARE); // Fog Hint Value glFogf(GL_FOG_START, n*space); // Fog Start Depth glFogf(GL_FOG_END,-n*space); // Fog End Depth } if (nurb) { glPushMatrix(); glRotatef(270,0.0,1.0,0.0); glTranslated(n*space/2,n*space/2,-n*space); GLfloat ctlpoints[4][4][3]; GLUnurbsObj *theNurb; GLfloat knots[8] = {0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0}; int u, v; for (u = 0; u < 4; u++) { for (v = 0; v < 4; v++) { ctlpoints[u][v][0] = 2.0*((GLfloat)u - 1.5); ctlpoints[u][v][1] = 2.0*((GLfloat)v - 1.5); if ( (u == 1 || u == 2) && (v == 1 || v == 2)) ctlpoints[u][v][2] = 3.0; else ctlpoints[u][v][2] = -3.0; } } theNurb = gluNewNurbsRenderer(); gluNurbsProperty(theNurb, GLU_SAMPLING_TOLERANCE, 25.0); gluNurbsProperty(theNurb, GLU_DISPLAY_MODE, GLU_FILL); gluBeginSurface(theNurb); gluNurbsSurface(theNurb, 8, knots, 8, knots, 4 * 3, 3, &ctlpoints[0][0][0], 4, 4, GL_MAP2_VERTEX_3); gluEndSurface(theNurb); glPopMatrix(); } } cube(); //call the cube drawing function glPopMatrix(); if (lighting) { FreeTexture( texture1 ); FreeTexture( texture2 ); FreeTexture( texture3 ); FreeTexture( texture4 ); } glPushMatrix(); glTranslated(space*((n/2)+1),space*(n/2),space*(n/2)); glutWireCube(space*n); glPopMatrix(); // Draw the secondary view glViewport (3*(screen_width/4), 3*(screen_height/4), screen_width/4, screen_width/4); //set the viewport to the current window specifications glScissor(3*(screen_width/4), 3*(screen_height/4), screen_width/4, screen_width/4); glLoadIdentity(); glOrtho(-1, 13, -1, 13, -1, 13); glRotatef(90,0.0,1.0,0.0); cube(); glDisable(GL_SCISSOR_TEST); glutSwapBuffers(); //swap the buffers }