예제 #1
0
void GBMemoryReset(struct GB* gb) {
	if (gb->memory.wram) {
		mappedMemoryFree(gb->memory.wram, GB_SIZE_WORKING_RAM);
	}
	gb->memory.wram = anonymousMemoryMap(GB_SIZE_WORKING_RAM);
	if (gb->model >= GB_MODEL_CGB) {
		uint32_t* base = (uint32_t*) gb->memory.wram;
		size_t i;
		uint32_t pattern = 0;
		for (i = 0; i < GB_SIZE_WORKING_RAM / 4; i += 4) {
			if ((i & 0x1FF) == 0) {
				pattern = ~pattern;
			}
			base[i + 0] = pattern;
			base[i + 1] = pattern;
			base[i + 2] = ~pattern;
			base[i + 3] = ~pattern;
		}
	}
	GBMemorySwitchWramBank(&gb->memory, 1);
	gb->memory.romBank = &gb->memory.rom[GB_SIZE_CART_BANK0];
	gb->memory.currentBank = 1;
	gb->memory.sramCurrentBank = 0;

	gb->memory.ime = false;
	gb->memory.ie = 0;

	gb->memory.dmaNext = INT_MAX;
	gb->memory.dmaRemaining = 0;
	gb->memory.dmaSource = 0;
	gb->memory.dmaDest = 0;
	gb->memory.hdmaNext = INT_MAX;
	gb->memory.hdmaRemaining = 0;
	gb->memory.hdmaSource = 0;
	gb->memory.hdmaDest = 0;
	gb->memory.isHdma = false;

	gb->memory.sramAccess = false;
	gb->memory.rtcAccess = false;
	gb->memory.activeRtcReg = 0;
	gb->memory.rtcLatched = false;
	memset(&gb->memory.rtcRegs, 0, sizeof(gb->memory.rtcRegs));

	memset(&gb->memory.hram, 0, sizeof(gb->memory.hram));
	memset(&gb->memory.mbcState, 0, sizeof(gb->memory.mbcState));

	GBMBCInit(gb);
	gb->memory.sramBank = gb->memory.sram;

	if (!gb->memory.wram) {
		GBMemoryDeinit(gb);
	}
}
예제 #2
0
void GBIOWrite(struct GB* gb, unsigned address, uint8_t value) {
	switch (address) {
	case REG_DIV:
		GBTimerDivReset(&gb->timer);
		return;
	case REG_NR10:
		if (gb->audio.enable) {
			GBAudioWriteNR10(&gb->audio, value);
		} else {
			value = 0;
		}
		break;
	case REG_NR11:
		if (gb->audio.enable) {
			GBAudioWriteNR11(&gb->audio, value);
		} else {
			if (gb->audio.style == GB_AUDIO_DMG) {
				GBAudioWriteNR11(&gb->audio, value & _registerMask[REG_NR11]);
			}
			value = 0;
		}
		break;
	case REG_NR12:
		if (gb->audio.enable) {
			GBAudioWriteNR12(&gb->audio, value);
		} else {
			value = 0;
		}
		break;
	case REG_NR13:
		if (gb->audio.enable) {
			GBAudioWriteNR13(&gb->audio, value);
		} else {
			value = 0;
		}
		break;
	case REG_NR14:
		if (gb->audio.enable) {
			GBAudioWriteNR14(&gb->audio, value);
		} else {
			value = 0;
		}
		break;
	case REG_NR21:
		if (gb->audio.enable) {
			GBAudioWriteNR21(&gb->audio, value);
		} else {
			if (gb->audio.style == GB_AUDIO_DMG) {
				GBAudioWriteNR21(&gb->audio, value & _registerMask[REG_NR21]);
			}
			value = 0;
		}
		break;
	case REG_NR22:
		if (gb->audio.enable) {
			GBAudioWriteNR22(&gb->audio, value);
		} else {
			value = 0;
		}
		break;
	case REG_NR23:
		if (gb->audio.enable) {
			GBAudioWriteNR23(&gb->audio, value);
		} else {
			value = 0;
		}
		break;
	case REG_NR24:
		if (gb->audio.enable) {
			GBAudioWriteNR24(&gb->audio, value);
		} else {
			value = 0;
		}
		break;
	case REG_NR30:
		if (gb->audio.enable) {
			GBAudioWriteNR30(&gb->audio, value);
		} else {
			value = 0;
		}
		break;
	case REG_NR31:
		if (gb->audio.enable || gb->audio.style == GB_AUDIO_DMG) {
			GBAudioWriteNR31(&gb->audio, value);
		} else {
			value = 0;
		}
		break;
	case REG_NR32:
		if (gb->audio.enable) {
			GBAudioWriteNR32(&gb->audio, value);
		} else {
			value = 0;
		}
		break;
	case REG_NR33:
		if (gb->audio.enable) {
			GBAudioWriteNR33(&gb->audio, value);
		} else {
			value = 0;
		}
		break;
	case REG_NR34:
		if (gb->audio.enable) {
			GBAudioWriteNR34(&gb->audio, value);
		} else {
			value = 0;
		}
		break;
	case REG_NR41:
		if (gb->audio.enable || gb->audio.style == GB_AUDIO_DMG) {
			GBAudioWriteNR41(&gb->audio, value);
		} else {
			value = 0;
		}
		break;
	case REG_NR42:
		if (gb->audio.enable) {
			GBAudioWriteNR42(&gb->audio, value);
		} else {
			value = 0;
		}
		break;
	case REG_NR43:
		if (gb->audio.enable) {
			GBAudioWriteNR43(&gb->audio, value);
		} else {
			value = 0;
		}
		break;
	case REG_NR44:
		if (gb->audio.enable) {
			GBAudioWriteNR44(&gb->audio, value);
		} else {
			value = 0;
		}
		break;
	case REG_NR50:
		if (gb->audio.enable) {
			GBAudioWriteNR50(&gb->audio, value);
		} else {
			value = 0;
		}
		break;
	case REG_NR51:
		if (gb->audio.enable) {
			GBAudioWriteNR51(&gb->audio, value);
		} else {
			value = 0;
		}
		break;
	case REG_NR52:
		GBAudioWriteNR52(&gb->audio, value);
		value &= 0x80;
		value |= gb->memory.io[REG_NR52] & 0x0F;
		break;
	case REG_WAVE_0:
	case REG_WAVE_1:
	case REG_WAVE_2:
	case REG_WAVE_3:
	case REG_WAVE_4:
	case REG_WAVE_5:
	case REG_WAVE_6:
	case REG_WAVE_7:
	case REG_WAVE_8:
	case REG_WAVE_9:
	case REG_WAVE_A:
	case REG_WAVE_B:
	case REG_WAVE_C:
	case REG_WAVE_D:
	case REG_WAVE_E:
	case REG_WAVE_F:
		if (!gb->audio.playingCh3 || gb->audio.style != GB_AUDIO_DMG) {
			gb->audio.ch3.wavedata8[address - REG_WAVE_0] = value;
		} else if(gb->audio.ch3.readable) {
			gb->audio.ch3.wavedata8[gb->audio.ch3.window >> 1] = value;
		}
		break;
	case REG_JOYP:
	case REG_TIMA:
	case REG_TMA:
	case REG_LYC:
		// Handled transparently by the registers
		break;
	case REG_TAC:
		value = GBTimerUpdateTAC(&gb->timer, value);
		break;
	case REG_IF:
		gb->memory.io[REG_IF] = value | 0xE0;
		GBUpdateIRQs(gb);
		return;
	case REG_LCDC:
		// TODO: handle GBC differences
		value = gb->video.renderer->writeVideoRegister(gb->video.renderer, address, value);
		GBVideoWriteLCDC(&gb->video, value);
		break;
	case REG_DMA:
		GBMemoryDMA(gb, value << 8);
		break;
	case REG_SCY:
	case REG_SCX:
	case REG_WY:
	case REG_WX:
		GBVideoProcessDots(&gb->video);
		value = gb->video.renderer->writeVideoRegister(gb->video.renderer, address, value);
		break;
	case REG_BGP:
	case REG_OBP0:
	case REG_OBP1:
		GBVideoProcessDots(&gb->video);
		GBVideoWritePalette(&gb->video, address, value);
		break;
	case REG_STAT:
		GBVideoWriteSTAT(&gb->video, value);
		break;
	case REG_IE:
		gb->memory.ie = value;
		GBUpdateIRQs(gb);
		return;
	default:
		if (gb->model >= GB_MODEL_CGB) {
			switch (address) {
			case REG_KEY1:
				value &= 0x1;
				value |= gb->memory.io[address] & 0x80;
				break;
			case REG_VBK:
				GBVideoSwitchBank(&gb->video, value);
				break;
			case REG_HDMA1:
			case REG_HDMA2:
			case REG_HDMA3:
			case REG_HDMA4:
				// Handled transparently by the registers
				break;
			case REG_HDMA5:
				GBMemoryWriteHDMA5(gb, value);
				value &= 0x7F;
				break;
			case REG_BCPS:
				gb->video.bcpIndex = value & 0x3F;
				gb->video.bcpIncrement = value & 0x80;
				gb->memory.io[REG_BCPD] = gb->video.palette[gb->video.bcpIndex >> 1] >> (8 * (gb->video.bcpIndex & 1));
				break;
			case REG_BCPD:
				GBVideoProcessDots(&gb->video);
				GBVideoWritePalette(&gb->video, address, value);
				break;
			case REG_OCPS:
				gb->video.ocpIndex = value & 0x3F;
				gb->video.ocpIncrement = value & 0x80;
				gb->memory.io[REG_OCPD] = gb->video.palette[8 * 4 + (gb->video.ocpIndex >> 1)] >> (8 * (gb->video.ocpIndex & 1));
				break;
			case REG_OCPD:
				GBVideoProcessDots(&gb->video);
				GBVideoWritePalette(&gb->video, address, value);
				break;
			case REG_SVBK:
				GBMemorySwitchWramBank(&gb->memory, value);
				value = gb->memory.wramCurrentBank;
				break;
			default:
				goto failed;
			}
			goto success;
		}
		failed:
		mLOG(GB_IO, STUB, "Writing to unknown register FF%02X:%02X", address, value);
		if (address >= GB_SIZE_IO) {
			return;
		}
		break;
	}
예제 #3
0
파일: memory.c 프로젝트: OpenEmu/mGBA-Core
void GBMemoryDeserialize(struct GB* gb, const struct GBSerializedState* state) {
	struct GBMemory* memory = &gb->memory;
	memcpy(memory->wram, state->wram, GB_SIZE_WORKING_RAM);
	memcpy(memory->hram, state->hram, GB_SIZE_HRAM);
	LOAD_16LE(memory->currentBank, 0, &state->memory.currentBank);
	memory->wramCurrentBank = state->memory.wramCurrentBank;
	memory->sramCurrentBank = state->memory.sramCurrentBank;

	GBMBCSwitchBank(gb, memory->currentBank);
	GBMemorySwitchWramBank(memory, memory->wramCurrentBank);
	GBMBCSwitchSramBank(gb, memory->sramCurrentBank);

	LOAD_16LE(memory->dmaSource, 0, &state->memory.dmaSource);
	LOAD_16LE(memory->dmaDest, 0, &state->memory.dmaDest);

	LOAD_16LE(memory->hdmaSource, 0, &state->memory.hdmaSource);
	LOAD_16LE(memory->hdmaDest, 0, &state->memory.hdmaDest);

	LOAD_16LE(memory->hdmaRemaining, 0, &state->memory.hdmaRemaining);
	memory->dmaRemaining = state->memory.dmaRemaining;
	memcpy(memory->rtcRegs, state->memory.rtcRegs, sizeof(state->memory.rtcRegs));

	uint32_t when;
	LOAD_32LE(when, 0, &state->memory.dmaNext);
	if (memory->dmaRemaining) {
		mTimingSchedule(&gb->timing, &memory->dmaEvent, when);
	}
	LOAD_32LE(when, 0, &state->memory.hdmaNext);
	if (memory->hdmaRemaining) {
		mTimingSchedule(&gb->timing, &memory->hdmaEvent, when);
	}

	GBSerializedMemoryFlags flags;
	LOAD_16LE(flags, 0, &state->memory.flags);
	memory->sramAccess = GBSerializedMemoryFlagsGetSramAccess(flags);
	memory->rtcAccess = GBSerializedMemoryFlagsGetRtcAccess(flags);
	memory->rtcLatched = GBSerializedMemoryFlagsGetRtcLatched(flags);
	memory->ime = GBSerializedMemoryFlagsGetIme(flags);
	memory->isHdma = GBSerializedMemoryFlagsGetIsHdma(flags);
	memory->activeRtcReg = GBSerializedMemoryFlagsGetActiveRtcReg(flags);

	switch (memory->mbcType) {
	case GB_MBC1:
		memory->mbcState.mbc1.mode = state->memory.mbc1.mode;
		memory->mbcState.mbc1.multicartStride = state->memory.mbc1.multicartStride;
		if (memory->mbcState.mbc1.mode) {
			GBMBCSwitchBank0(gb, memory->currentBank >> memory->mbcState.mbc1.multicartStride);
		}
		break;
	case GB_MBC3_RTC:
		LOAD_64LE(gb->memory.rtcLastLatch, 0, &state->memory.rtc.lastLatch);
		break;
	case GB_MBC7:
		memory->mbcState.mbc7.state = state->memory.mbc7.state;
		memory->mbcState.mbc7.eeprom = state->memory.mbc7.eeprom;
		memory->mbcState.mbc7.address = state->memory.mbc7.address & 0x7F;
		memory->mbcState.mbc7.access = state->memory.mbc7.access;
		memory->mbcState.mbc7.latch = state->memory.mbc7.latch;
		memory->mbcState.mbc7.srBits = state->memory.mbc7.srBits;
		LOAD_16LE(memory->mbcState.mbc7.sr, 0, &state->memory.mbc7.sr);
		LOAD_32LE(memory->mbcState.mbc7.writable, 0, &state->memory.mbc7.writable);
		break;
	default:
		break;
	}
예제 #4
0
파일: memory.c 프로젝트: OpenEmu/mGBA-Core
void GBMemoryReset(struct GB* gb) {
	if (gb->memory.wram) {
		mappedMemoryFree(gb->memory.wram, GB_SIZE_WORKING_RAM);
	}
	gb->memory.wram = anonymousMemoryMap(GB_SIZE_WORKING_RAM);
	if (gb->model >= GB_MODEL_CGB) {
		uint32_t* base = (uint32_t*) gb->memory.wram;
		size_t i;
		uint32_t pattern = 0;
		for (i = 0; i < GB_SIZE_WORKING_RAM / 4; i += 4) {
			if ((i & 0x1FF) == 0) {
				pattern = ~pattern;
			}
			base[i + 0] = pattern;
			base[i + 1] = pattern;
			base[i + 2] = ~pattern;
			base[i + 3] = ~pattern;
		}
	}
	GBMemorySwitchWramBank(&gb->memory, 1);
	gb->memory.romBank = &gb->memory.rom[GB_SIZE_CART_BANK0];
	gb->memory.currentBank = 1;
	gb->memory.sramCurrentBank = 0;

	gb->memory.ime = false;
	gb->memory.ie = 0;

	gb->memory.dmaRemaining = 0;
	gb->memory.dmaSource = 0;
	gb->memory.dmaDest = 0;
	gb->memory.hdmaRemaining = 0;
	gb->memory.hdmaSource = 0;
	gb->memory.hdmaDest = 0;
	gb->memory.isHdma = false;


	gb->memory.dmaEvent.context = gb;
	gb->memory.dmaEvent.name = "GB DMA";
	gb->memory.dmaEvent.callback = _GBMemoryDMAService;
	gb->memory.dmaEvent.priority = 0x40;
	gb->memory.hdmaEvent.context = gb;
	gb->memory.hdmaEvent.name = "GB HDMA";
	gb->memory.hdmaEvent.callback = _GBMemoryHDMAService;
	gb->memory.hdmaEvent.priority = 0x41;

	memset(&gb->memory.hram, 0, sizeof(gb->memory.hram));
	switch (gb->memory.mbcType) {
	case GB_MBC1:
		gb->memory.mbcState.mbc1.mode = 0;
		break;
	default:
		memset(&gb->memory.mbcState, 0, sizeof(gb->memory.mbcState));
	}

	GBMBCInit(gb);
	gb->memory.sramBank = gb->memory.sram;

	if (!gb->memory.wram) {
		GBMemoryDeinit(gb);
	}
}