REAL BUS_get_total_gen_Q(Bus* bus, int t) { Gen* gen; REAL Q = 0; if (!bus || t < 0 || t >= bus->num_periods) return 0; for (gen = bus->gen; gen != NULL; gen = GEN_get_next(gen)) Q += GEN_get_Q(gen,t); return Q; }
void CONSTR_FIX_analyze_step(Constr* c, Branch* br, int t) { // Local variables Bus* buses[2]; Bus* bus; Gen* gen; Vargen* vargen; Bat* bat; Load* load; Shunt* shunt; int* A_nnz; int* A_row; char* bus_counted; Vec* b; Mat* A; int i; REAL Pc; REAL Pd; int T; // Number of periods T = BRANCH_get_num_periods(br); // Cosntr data b = CONSTR_get_b(c); A = CONSTR_get_A(c); A_nnz = CONSTR_get_A_nnz_ptr(c); A_row = CONSTR_get_A_row_ptr(c); bus_counted = CONSTR_get_bus_counted(c); // Check pointers if (!A_nnz || !A_row || !bus_counted) return; // Check outage if (BRANCH_is_on_outage(br)) return; // Bus data buses[0] = BRANCH_get_bus_k(br); buses[1] = BRANCH_get_bus_m(br); // Tap ratio if (BRANCH_has_flags(br,FLAG_FIXED,BRANCH_VAR_RATIO) && BRANCH_has_flags(br,FLAG_VARS,BRANCH_VAR_RATIO)) { VEC_set(b,*A_row,BRANCH_get_ratio(br,t)); MAT_set_i(A,*A_nnz,*A_row); MAT_set_j(A,*A_nnz,BRANCH_get_index_ratio(br,t)); MAT_set_d(A,*A_nnz,1.); (*A_nnz)++; (*A_row)++; } // Phase shift if (BRANCH_has_flags(br,FLAG_FIXED,BRANCH_VAR_PHASE) && BRANCH_has_flags(br,FLAG_VARS,BRANCH_VAR_PHASE)) { VEC_set(b,*A_row,BRANCH_get_phase(br,t)); MAT_set_i(A,*A_nnz,*A_row); MAT_set_j(A,*A_nnz,BRANCH_get_index_phase(br,t)); MAT_set_d(A,*A_nnz,1.); (*A_nnz)++; (*A_row)++; } // Buses for (i = 0; i < 2; i++) { bus = buses[i]; if (!bus_counted[BUS_get_index(bus)*T+t]) { // Voltage magnitude (V_MAG) if (BUS_has_flags(bus,FLAG_FIXED,BUS_VAR_VMAG) && BUS_has_flags(bus,FLAG_VARS,BUS_VAR_VMAG)) { if (BUS_is_regulated_by_gen(bus)) VEC_set(b,*A_row,BUS_get_v_set(bus,t)); else VEC_set(b,*A_row,BUS_get_v_mag(bus,t)); MAT_set_i(A,*A_nnz,*A_row); MAT_set_j(A,*A_nnz,BUS_get_index_v_mag(bus,t)); MAT_set_d(A,*A_nnz,1.); (*A_nnz)++; // Extra nz for regulating generator (for PV-PQ switching?) if (BUS_is_regulated_by_gen(bus) && GEN_has_flags(BUS_get_reg_gen(bus),FLAG_VARS,GEN_VAR_Q)) { MAT_set_i(A,*A_nnz,*A_row); MAT_set_j(A,*A_nnz,GEN_get_index_Q(BUS_get_reg_gen(bus),t)); MAT_set_d(A,*A_nnz,0.); // placeholder (*A_nnz)++; } (*A_row)++; } // Voltage angle (V_ANG) if (BUS_has_flags(bus,FLAG_FIXED,BUS_VAR_VANG) && BUS_has_flags(bus,FLAG_VARS,BUS_VAR_VANG)) { VEC_set(b,*A_row,BUS_get_v_ang(bus,t)); MAT_set_i(A,*A_nnz,*A_row); MAT_set_j(A,*A_nnz,BUS_get_index_v_ang(bus,t)); MAT_set_d(A,*A_nnz,1.); (*A_nnz)++; (*A_row)++; } // Generators for (gen = BUS_get_gen(bus); gen != NULL; gen = GEN_get_next(gen)) { // Active power (P) if (GEN_has_flags(gen,FLAG_FIXED,GEN_VAR_P) && GEN_has_flags(gen,FLAG_VARS,GEN_VAR_P)) { VEC_set(b,*A_row,GEN_get_P(gen,t)); MAT_set_i(A,*A_nnz,*A_row); MAT_set_j(A,*A_nnz,GEN_get_index_P(gen,t)); MAT_set_d(A,*A_nnz,1.); (*A_nnz)++; (*A_row)++; } // Reactive power (Q) if (GEN_has_flags(gen,FLAG_FIXED,GEN_VAR_Q) && GEN_has_flags(gen,FLAG_VARS,GEN_VAR_Q)) { VEC_set(b,*A_row,GEN_get_Q(gen,t)); MAT_set_i(A,*A_nnz,*A_row); MAT_set_j(A,*A_nnz,GEN_get_index_Q(gen,t)); MAT_set_d(A,*A_nnz,1.); (*A_nnz)++; (*A_row)++; } } // Variable generators for (vargen = BUS_get_vargen(bus); vargen != NULL; vargen = VARGEN_get_next(vargen)) { // Active power (P) if (VARGEN_has_flags(vargen,FLAG_FIXED,VARGEN_VAR_P) && VARGEN_has_flags(vargen,FLAG_VARS,VARGEN_VAR_P)) { VEC_set(b,*A_row,VARGEN_get_P(vargen,t)); MAT_set_i(A,*A_nnz,*A_row); MAT_set_j(A,*A_nnz,VARGEN_get_index_P(vargen,t)); MAT_set_d(A,*A_nnz,1.); (*A_nnz)++; (*A_row)++; } // Reactive power (Q) if (VARGEN_has_flags(vargen,FLAG_FIXED,VARGEN_VAR_Q) && VARGEN_has_flags(vargen,FLAG_VARS,VARGEN_VAR_Q)) { VEC_set(b,*A_row,VARGEN_get_Q(vargen,t)); MAT_set_i(A,*A_nnz,*A_row); MAT_set_j(A,*A_nnz,VARGEN_get_index_Q(vargen,t)); MAT_set_d(A,*A_nnz,1.); (*A_nnz)++; (*A_row)++; } } // Shunts for (shunt = BUS_get_shunt(bus); shunt != NULL; shunt = SHUNT_get_next(shunt)) { // Susceptance (b) if (SHUNT_has_flags(shunt,FLAG_FIXED,SHUNT_VAR_SUSC) && SHUNT_has_flags(shunt,FLAG_VARS,SHUNT_VAR_SUSC)) { VEC_set(b,*A_row,SHUNT_get_b(shunt,t)); MAT_set_i(A,*A_nnz,*A_row); MAT_set_j(A,*A_nnz,SHUNT_get_index_b(shunt,t)); MAT_set_d(A,*A_nnz,1.); (*A_nnz)++; (*A_row)++; } } // Batteries for (bat = BUS_get_bat(bus); bat != NULL; bat = BAT_get_next(bat)) { // Charging/discharging power (P) if (BAT_has_flags(bat,FLAG_FIXED,BAT_VAR_P) && BAT_has_flags(bat,FLAG_VARS,BAT_VAR_P)) { if (BAT_get_P(bat,t) >= 0) { Pc = BAT_get_P(bat,t); Pd = 0.; } else { Pc = 0.; Pd = -BAT_get_P(bat,t); } // Pc VEC_set(b,*A_row,Pc); MAT_set_i(A,*A_nnz,*A_row); MAT_set_j(A,*A_nnz,BAT_get_index_Pc(bat,t)); MAT_set_d(A,*A_nnz,1.); (*A_nnz)++; (*A_row)++; // Pd VEC_set(b,*A_row,Pd); MAT_set_i(A,*A_nnz,*A_row); MAT_set_j(A,*A_nnz,BAT_get_index_Pd(bat,t)); MAT_set_d(A,*A_nnz,1.); (*A_nnz)++; (*A_row)++; } // Energy level (E) if (BAT_has_flags(bat,FLAG_FIXED,BAT_VAR_E) && BAT_has_flags(bat,FLAG_VARS,BAT_VAR_E)) { VEC_set(b,*A_row,BAT_get_E(bat,t)); MAT_set_i(A,*A_nnz,*A_row); MAT_set_j(A,*A_nnz,BAT_get_index_E(bat,t)); MAT_set_d(A,*A_nnz,1.); (*A_nnz)++; (*A_row)++; } } // Loads for (load = BUS_get_load(bus); load != NULL; load = LOAD_get_next(load)) { // Active power (P) if (LOAD_has_flags(load,FLAG_FIXED,LOAD_VAR_P) && LOAD_has_flags(load,FLAG_VARS,LOAD_VAR_P)) { VEC_set(b,*A_row,LOAD_get_P(load,t)); MAT_set_i(A,*A_nnz,*A_row); MAT_set_j(A,*A_nnz,LOAD_get_index_P(load,t)); MAT_set_d(A,*A_nnz,1.); (*A_nnz)++; (*A_row)++; } } } // Update counted flag bus_counted[BUS_get_index(bus)*T+t] = TRUE; } }
void FUNC_REG_PQ_eval_step(Func* f, Branch* br, int t, Vec* var_values) { // Local variables Bus* bus[2]; Gen* gen; int bus_index_t[2]; char* bus_counted; REAL* phi; REAL* gphi; REAL Qmid; REAL Pmid; REAL P; REAL Q; REAL dP; REAL dQ; int k; int T; // Num periods T = BRANCH_get_num_periods(br); // Constr data phi = FUNC_get_phi_ptr(f); gphi = VEC_get_data(FUNC_get_gphi(f)); bus_counted = FUNC_get_bus_counted(f); // Check pointers if (!phi || !gphi || !bus_counted) return; // Check outage if (BRANCH_is_on_outage(br)) return; // Bus data bus[0] = BRANCH_get_bus_from(br); bus[1] = BRANCH_get_bus_to(br); for (k = 0; k < 2; k++) bus_index_t[k] = BUS_get_index(bus[k])*T+t; // Buses for (k = 0; k < 2; k++) { if (!bus_counted[bus_index_t[k]]) { // Generators for (gen = BUS_get_gen(bus[k]); gen != NULL; gen = GEN_get_next(gen)) { // Mid value Qmid = (GEN_get_Q_max(gen)+GEN_get_Q_min(gen))/2.; // p.u. Pmid = (GEN_get_P_max(gen)+GEN_get_P_min(gen))/2.; // p.u. // Normalization factor dQ = GEN_get_Q_max(gen)-GEN_get_Q_min(gen); // p.u. if (dQ < FUNC_REG_PQ_PARAM) dQ = FUNC_REG_PQ_PARAM; dP = GEN_get_P_max(gen)-GEN_get_P_min(gen); // p.u. if (dP < FUNC_REG_PQ_PARAM) dP = FUNC_REG_PQ_PARAM; if (GEN_has_flags(gen,FLAG_VARS,GEN_VAR_Q)) { // Q var // Value Q = VEC_get(var_values,GEN_get_index_Q(gen,t)); // phi (*phi) += 0.5*pow((Q-Qmid)/dQ,2.); // gphi gphi[GEN_get_index_Q(gen,t)] = (Q-Qmid)/(dQ*dQ); } else { // Value Q = GEN_get_Q(gen,t); // phi (*phi) += 0.5*pow((Q-Qmid)/dQ,2.); } if (GEN_has_flags(gen,FLAG_VARS,GEN_VAR_P)) { // P var // Value P = VEC_get(var_values,GEN_get_index_P(gen,t)); // phi (*phi) += 0.5*pow((P-Pmid)/dP,2.); // gphi gphi[GEN_get_index_P(gen,t)] = (P-Pmid)/(dP*dP); } else { // Value P = GEN_get_P(gen,t); // phi (*phi) += 0.5*pow((P-Pmid)/dP,2.); } } } // Update counted flag bus_counted[bus_index_t[k]] = TRUE; } }
void CONSTR_PAR_GEN_Q_analyze_branch(Constr* c, Branch* br) { // Local variables Bus* buses[2]; Bus* bus; Gen* gen1; Gen* gen2; int* Acounter; int* Aconstr_index; char* bus_counted; Vec* b; Mat* A; int i; int j; REAL Qmin1; REAL Qmin2; REAL dQ1; REAL dQ2; // Cosntr data b = CONSTR_get_b(c); A = CONSTR_get_A(c); Acounter = CONSTR_get_Acounter_ptr(c); Aconstr_index = CONSTR_get_Aconstr_index_ptr(c); bus_counted = CONSTR_get_bus_counted(c); if (!Acounter || !Aconstr_index || !bus_counted) return; // Bus data buses[0] = BRANCH_get_bus_from(br); buses[1] = BRANCH_get_bus_to(br); // Buses for (i = 0; i < 2; i++) { bus = buses[i]; if (!bus_counted[BUS_get_index(bus)]) { // Reactive power of regulating generators if (BUS_is_regulated_by_gen(bus)) { gen1 = BUS_get_reg_gen(bus); Qmin1 = GEN_get_Q_min(gen1); dQ1 = GEN_get_Q_max(gen1)-Qmin1; if (dQ1 < CONSTR_PAR_GEN_Q_PARAM) dQ1 = CONSTR_PAR_GEN_Q_PARAM; for (gen2 = GEN_get_reg_next(gen1); gen2 != NULL; gen2 = GEN_get_reg_next(gen2)) { Qmin2 = GEN_get_Q_min(gen2); dQ2 = GEN_get_Q_max(gen2)-Qmin2; if (dQ2 < CONSTR_PAR_GEN_Q_PARAM) dQ2 = CONSTR_PAR_GEN_Q_PARAM; VEC_set(b,*Aconstr_index,Qmin1/dQ1-Qmin2/dQ2); if (GEN_has_flags(gen1,FLAG_VARS,GEN_VAR_Q)) { MAT_set_i(A,*Acounter,*Aconstr_index); MAT_set_j(A,*Acounter,GEN_get_index_Q(gen1)); MAT_set_d(A,*Acounter,1./dQ1); (*Acounter)++; } else VEC_add_to_entry(b,*Aconstr_index,-GEN_get_Q(gen1)/dQ1); if (GEN_has_flags(gen2,FLAG_VARS,GEN_VAR_Q)) { MAT_set_i(A,*Acounter,*Aconstr_index); MAT_set_j(A,*Acounter,GEN_get_index_Q(gen2)); MAT_set_d(A,*Acounter,-1./dQ2); (*Acounter)++; } else VEC_add_to_entry(b,*Aconstr_index,GEN_get_Q(gen2)/dQ2); (*Aconstr_index)++; } } } // Update counted flag bus_counted[BUS_get_index(bus)] = TRUE; } }