static inline long double real_part_reciprocal(long double x, long double y) { long double scale; uint16_t hx, hy; int16_t ix, iy; GET_LDBL_EXPSIGN(hx, x); ix = hx & 0x7fff; GET_LDBL_EXPSIGN(hy, y); iy = hy & 0x7fff; #define BIAS (LDBL_MAX_EXP - 1) #define CUTOFF (LDBL_MANT_DIG / 2 + 1) if (ix - iy >= CUTOFF || isinf(x)) return (1 / x); if (iy - ix >= CUTOFF) return (x / y / y); if (ix <= BIAS + LDBL_MAX_EXP / 2 - CUTOFF) return (x / (x * x + y * y)); scale = 1; SET_LDBL_EXPSIGN(scale, 0x7fff - ix); x *= scale; y *= scale; return (x / (x * x + y * y) * scale); }
long double sinhl(long double x) { long double hi,lo,x2,x4; double dx2,s; int16_t ix,jx; GET_LDBL_EXPSIGN(jx,x); ix = jx&0x7fff; /* x is INF or NaN */ if(ix>=0x7fff) return x+x; ENTERI(); s = 1; if (jx<0) s = -1; /* |x| < 64, return x, s(x), or accurate s*(exp(|x|)/2-1/exp(|x|)/2) */ if (ix<0x4005) { /* |x|<64 */ if (ix<BIAS-(LDBL_MANT_DIG+1)/2) /* |x|<TINY */ if(shuge+x>1) RETURNI(x); /* sinh(tiny) = tiny with inexact */ if (ix<0x3fff) { /* |x|<1 */ x2 = x*x; #if LDBL_MANT_DIG == 64 x4 = x2*x2; RETURNI(((S17*x2 + S15)*x4 + (S13*x2 + S11))*(x2*x*x4*x4) + ((S9*x2 + S7)*x2 + S5)*(x2*x*x2) + S3*(x2*x) + x); #elif LDBL_MANT_DIG == 113 dx2 = x2; RETURNI(((((((((((S25*dx2 + S23)*dx2 + S21)*x2 + S19)*x2 + S17)*x2 + S15)*x2 + S13)*x2 + S11)*x2 + S9)*x2 + S7)*x2 + S5)* (x2*x*x2) + S3*(x2*x) + x); #endif } k_hexpl(fabsl(x), &hi, &lo); RETURNI(s*(lo - 0.25/(hi + lo) + hi)); } /* |x| in [64, o_threshold], return correctly-overflowing s*exp(|x|)/2 */ if (fabsl(x) <= o_threshold) RETURNI(s*hexpl(fabsl(x))); /* |x| > o_threshold, sinh(x) overflow */ return x*shuge; }
long double coshl(long double x) { long double hi,lo,x2,x4; #if LDBL_MANT_DIG == 113 double dx2; #endif uint16_t ix; GET_LDBL_EXPSIGN(ix,x); ix &= 0x7fff; /* x is INF or NaN */ if(ix>=0x7fff) return x*x; ENTERI(); /* |x| < 1, return 1 or c(x) */ if(ix<0x3fff) { if (ix<BIAS-(LDBL_MANT_DIG+1)/2) /* |x| < TINY */ RETURNI(1+tiny); /* cosh(tiny) = 1(+) with inexact */ x2 = x*x; #if LDBL_MANT_DIG == 64 x4 = x2*x2; RETURNI(((C16*x2 + C14)*x4 + (C12*x2 + C10))*(x4*x4*x2) + ((C8*x2 + C6)*x2 + C4)*x4 + C2*x2 + 1); #elif LDBL_MANT_DIG == 113 dx2 = x2; RETURNI((((((((((((C26*dx2 + C24)*dx2 + C22)*dx2 + C20)*x2 + C18)*x2 + C16)*x2 + C14)*x2 + C12)*x2 + C10)*x2 + C8)*x2 + C6)*x2 + C4)*(x2*x2) + C2*x2 + 1); #endif } /* |x| in [1, 64), return accurate exp(|x|)/2+1/exp(|x|)/2 */ if (ix < 0x4005) { k_hexpl(fabsl(x), &hi, &lo); RETURNI(lo + 0.25/(hi + lo) + hi); } /* |x| in [64, o_threshold], return correctly-overflowing exp(|x|)/2 */ if (fabsl(x) <= o_threshold) RETURNI(hexpl(fabsl(x))); /* |x| > o_threshold, cosh(x) overflow */ RETURNI(huge*huge); }
long double atanhl(long double x) { long double t; uint16_t hx, ix; ENTERI(); GET_LDBL_EXPSIGN(hx, x); ix = hx & 0x7fff; if (ix >= 0x3fff) /* |x| >= 1, or NaN or misnormal */ RETURNI(fabsl(x) == 1 ? x / zero : (x - x) / (x - x)); if (ix < BIAS + EXP_TINY && (huge + x) > zero) RETURNI(x); /* x is tiny */ SET_LDBL_EXPSIGN(x, ix); if (ix < 0x3ffe) { /* |x| < 0.5, or misnormal */ t = x+x; t = 0.5*log1pl(t+t*x/(one-x)); } else t = 0.5*log1pl((x+x)/(one-x)); RETURNI((hx & 0x8000) == 0 ? t : -t); }
long double roundl(long double x) { long double t; uint16_t hx; GET_LDBL_EXPSIGN(hx, x); if ((hx & 0x7fff) == 0x7fff) return (x + x); ENTERI(); if (!(hx & 0x8000)) { t = floorl(x); if (t - x <= -0.5L) t += 1; RETURNI(t); } else { t = floorl(-x); if (t + x <= -0.5L) t += 1; RETURNI(-t); } }
long double asinhl(long double x) { long double t, w; uint16_t hx, ix; ENTERI(); GET_LDBL_EXPSIGN(hx, x); ix = hx & 0x7fff; if (ix >= 0x7fff) RETURNI(x+x); /* x is inf, NaN or misnormal */ if (ix < BIAS + EXP_TINY) { /* |x| < TINY, or misnormal */ if (huge + x > one) RETURNI(x); /* return x inexact except 0 */ } if (ix >= BIAS + EXP_LARGE) { /* |x| >= LARGE, or misnormal */ w = logl(fabsl(x))+ln2; } else if (ix >= 0x4000) { /* LARGE > |x| >= 2.0, or misnormal */ t = fabsl(x); w = logl(2.0*t+one/(sqrtl(x*x+one)+t)); } else { /* 2.0 > |x| >= TINY, or misnormal */ t = x*x; w =log1pl(fabsl(x)+t/(one+sqrtl(one+t))); } RETURNI((hx & 0x8000) == 0 ? w : -w); }
long double tanhl(long double x) { long double hi,lo,s,x2,x4,z; double dx2; int16_t jx,ix; GET_LDBL_EXPSIGN(jx,x); ix = jx&0x7fff; /* x is INF or NaN */ if(ix>=0x7fff) { if (jx>=0) return one/x+one; /* tanh(+-inf)=+-1 */ else return one/x-one; /* tanh(NaN) = NaN */ } ENTERI(); /* |x| < 40 */ if (ix < 0x4004 || fabsl(x) < 40) { /* |x|<40 */ if (__predict_false(ix<BIAS-(LDBL_MANT_DIG+1)/2)) { /* |x|<TINY */ /* tanh(+-0) = +0; tanh(tiny) = tiny(-+) with inexact: */ return (x == 0 ? x : (0x1p200 * x - x) * 0x1p-200); } if (ix<0x3ffd) { /* |x|<0.25 */ x2 = x*x; #if LDBL_MANT_DIG == 64 x4 = x2*x2; RETURNI(((T19*x2 + T17)*x4 + (T15*x2 + T13))*(x2*x*x2*x4*x4) + ((T11*x2 + T9)*x4 + (T7*x2 + T5))*(x2*x*x2) + T3*(x2*x) + x); #elif LDBL_MANT_DIG == 113 dx2 = x2; #if 0 RETURNI(((((((((((((((T33*dx2 + T31)*dx2 + T29)*dx2 + T27)*dx2 + T25)*x2 + T23)*x2 + T21)*x2 + T19)*x2 + T17)*x2 + T15)*x2 + T13)*x2 + T11)*x2 + T9)*x2 + T7)*x2 + T5)* (x2*x*x2) + T3*(x2*x) + x); #else long double q = ((((((((((((((T33*dx2 + T31)*dx2 + T29)*dx2 + T27)*dx2 + T25)*x2 + T23)*x2 + T21)*x2 + T19)*x2 + T17)*x2 + T15)*x2 + T13)*x2 + T11)*x2 + T9)*x2 + T7)*x2 + T5)* (x2*x*x2); RETURNI(q + T3*(x2*x) + x); #endif #endif } k_hexpl(2*fabsl(x), &hi, &lo); if (ix<0x4001 && fabsl(x) < 1.5) /* |x|<1.5 */ z = divl(hi, lo, -0.5, hi, lo, 0.5); else z = one - one/(lo+0.5+hi); /* |x| >= 40, return +-1 */ } else { z = one - tiny; /* raise inexact flag */ } s = 1; if (jx<0) s = -1; RETURNI(s*z); }
long double complex clogl(long double complex z) { long double ax, ax2h, ax2l, axh, axl, ay, ay2h, ay2l, ayh, ayl; long double sh, sl, t; long double x, y, v; uint16_t hax, hay; int kx, ky; ENTERIT(long double complex); x = creall(z); y = cimagl(z); v = atan2l(y, x); ax = fabsl(x); ay = fabsl(y); if (ax < ay) { t = ax; ax = ay; ay = t; } GET_LDBL_EXPSIGN(hax, ax); kx = hax - 16383; GET_LDBL_EXPSIGN(hay, ay); ky = hay - 16383; /* Handle NaNs and Infs using the general formula. */ if (kx == MAX_EXP || ky == MAX_EXP) RETURNI(CMPLXL(logl(hypotl(x, y)), v)); /* Avoid spurious underflow, and reduce inaccuracies when ax is 1. */ if (ax == 1) { if (ky < (MIN_EXP - 1) / 2) RETURNI(CMPLXL((ay / 2) * ay, v)); RETURNI(CMPLXL(log1pl(ay * ay) / 2, v)); } /* Avoid underflow when ax is not small. Also handle zero args. */ if (kx - ky > MANT_DIG || ay == 0) RETURNI(CMPLXL(logl(ax), v)); /* Avoid overflow. */ if (kx >= MAX_EXP - 1) RETURNI(CMPLXL(logl(hypotl(x * 0x1p-16382L, y * 0x1p-16382L)) + (MAX_EXP - 2) * ln2l_lo + (MAX_EXP - 2) * ln2_hi, v)); if (kx >= (MAX_EXP - 1) / 2) RETURNI(CMPLXL(logl(hypotl(x, y)), v)); /* Reduce inaccuracies and avoid underflow when ax is denormal. */ if (kx <= MIN_EXP - 2) RETURNI(CMPLXL(logl(hypotl(x * 0x1p16383L, y * 0x1p16383L)) + (MIN_EXP - 2) * ln2l_lo + (MIN_EXP - 2) * ln2_hi, v)); /* Avoid remaining underflows (when ax is small but not denormal). */ if (ky < (MIN_EXP - 1) / 2 + MANT_DIG) RETURNI(CMPLXL(logl(hypotl(x, y)), v)); /* Calculate ax*ax and ay*ay exactly using Dekker's algorithm. */ t = (long double)(ax * (MULT_REDUX + 1)); axh = (long double)(ax - t) + t; axl = ax - axh; ax2h = ax * ax; ax2l = axh * axh - ax2h + 2 * axh * axl + axl * axl; t = (long double)(ay * (MULT_REDUX + 1)); ayh = (long double)(ay - t) + t; ayl = ay - ayh; ay2h = ay * ay; ay2l = ayh * ayh - ay2h + 2 * ayh * ayl + ayl * ayl; /* * When log(|z|) is far from 1, accuracy in calculating the sum * of the squares is not very important since log() reduces * inaccuracies. We depended on this to use the general * formula when log(|z|) is very far from 1. When log(|z|) is * moderately far from 1, we go through the extra-precision * calculations to reduce branches and gain a little accuracy. * * When |z| is near 1, we subtract 1 and use log1p() and don't * leave it to log() to subtract 1, since we gain at least 1 bit * of accuracy in this way. * * When |z| is very near 1, subtracting 1 can cancel almost * 3*MANT_DIG bits. We arrange that subtracting 1 is exact in * doubled precision, and then do the rest of the calculation * in sloppy doubled precision. Although large cancellations * often lose lots of accuracy, here the final result is exact * in doubled precision if the large calculation occurs (because * then it is exact in tripled precision and the cancellation * removes enough bits to fit in doubled precision). Thus the * result is accurate in sloppy doubled precision, and the only * significant loss of accuracy is when it is summed and passed * to log1p(). */ sh = ax2h; sl = ay2h; _2sumF(sh, sl); if (sh < 0.5 || sh >= 3) RETURNI(CMPLXL(logl(ay2l + ax2l + sl + sh) / 2, v)); sh -= 1; _2sum(sh, sl); _2sum(ax2l, ay2l); /* Briggs-Kahan algorithm (except we discard the final low term): */ _2sum(sh, ax2l); _2sum(sl, ay2l); t = ax2l + sl; _2sumF(sh, t); RETURNI(CMPLXL(log1pl(ay2l + t + sh) / 2, v)); }