static void subchannel_ready(grpc_exec_ctx *exec_ctx, void *arg, grpc_error *error) { call_data *calld = arg; gpr_mu_lock(&calld->mu); GPR_ASSERT(calld->creation_phase == GRPC_SUBCHANNEL_CALL_HOLDER_PICKING_SUBCHANNEL); calld->creation_phase = GRPC_SUBCHANNEL_CALL_HOLDER_NOT_CREATING; if (calld->connected_subchannel == NULL) { gpr_atm_no_barrier_store(&calld->subchannel_call, 1); fail_locked(exec_ctx, calld, GRPC_ERROR_CREATE_REFERENCING( "Failed to create subchannel", &error, 1)); } else if (1 == gpr_atm_acq_load(&calld->subchannel_call)) { /* already cancelled before subchannel became ready */ fail_locked(exec_ctx, calld, GRPC_ERROR_CREATE_REFERENCING( "Cancelled before creating subchannel", &error, 1)); } else { grpc_subchannel_call *subchannel_call = NULL; grpc_error *new_error = grpc_connected_subchannel_create_call( exec_ctx, calld->connected_subchannel, calld->pollent, &subchannel_call); if (new_error != GRPC_ERROR_NONE) { new_error = grpc_error_add_child(new_error, error); subchannel_call = CANCELLED_CALL; fail_locked(exec_ctx, calld, new_error); } gpr_atm_rel_store(&calld->subchannel_call, (gpr_atm)(uintptr_t)subchannel_call); retry_waiting_locked(exec_ctx, calld); } gpr_mu_unlock(&calld->mu); GRPC_CALL_STACK_UNREF(exec_ctx, calld->owning_call, "pick_subchannel"); }
static void subchannel_ready(grpc_exec_ctx *exec_ctx, void *arg, grpc_error *error) { grpc_subchannel_call_holder *holder = arg; gpr_mu_lock(&holder->mu); GPR_ASSERT(holder->creation_phase == GRPC_SUBCHANNEL_CALL_HOLDER_PICKING_SUBCHANNEL); holder->creation_phase = GRPC_SUBCHANNEL_CALL_HOLDER_NOT_CREATING; if (holder->connected_subchannel == NULL) { gpr_atm_no_barrier_store(&holder->subchannel_call, 1); fail_locked(exec_ctx, holder, GRPC_ERROR_CREATE_REFERENCING("Failed to create subchannel", &error, 1)); } else if (1 == gpr_atm_acq_load(&holder->subchannel_call)) { /* already cancelled before subchannel became ready */ fail_locked(exec_ctx, holder, GRPC_ERROR_CREATE_REFERENCING( "Cancelled before creating subchannel", &error, 1)); } else { gpr_atm_rel_store( &holder->subchannel_call, (gpr_atm)(uintptr_t)grpc_connected_subchannel_create_call( exec_ctx, holder->connected_subchannel, holder->pollent)); retry_waiting_locked(exec_ctx, holder); } gpr_mu_unlock(&holder->mu); GRPC_CALL_STACK_UNREF(exec_ctx, holder->owning_call, "pick_subchannel"); }
static void pf_cancel_picks(grpc_exec_ctx *exec_ctx, grpc_lb_policy *pol, uint32_t initial_metadata_flags_mask, uint32_t initial_metadata_flags_eq, grpc_error *error) { pick_first_lb_policy *p = (pick_first_lb_policy *)pol; pending_pick *pp; gpr_mu_lock(&p->mu); pp = p->pending_picks; p->pending_picks = NULL; while (pp != NULL) { pending_pick *next = pp->next; if ((pp->initial_metadata_flags & initial_metadata_flags_mask) == initial_metadata_flags_eq) { grpc_exec_ctx_sched( exec_ctx, pp->on_complete, GRPC_ERROR_CREATE_REFERENCING("Pick Cancelled", &error, 1), NULL); gpr_free(pp); } else { pp->next = p->pending_picks; p->pending_picks = pp; } pp = next; } gpr_mu_unlock(&p->mu); GRPC_ERROR_UNREF(error); }
static void on_handshake_data_sent_to_peer(grpc_exec_ctx *exec_ctx, void *arg, grpc_error *error) { security_handshaker *h = arg; gpr_mu_lock(&h->mu); if (error != GRPC_ERROR_NONE || h->shutdown) { security_handshake_failed_locked( exec_ctx, h, GRPC_ERROR_CREATE_REFERENCING("Handshake write failed", &error, 1)); gpr_mu_unlock(&h->mu); security_handshaker_unref(exec_ctx, h); return; } /* We may be done. */ if (tsi_handshaker_is_in_progress(h->handshaker)) { grpc_endpoint_read(exec_ctx, h->args->endpoint, h->args->read_buffer, &h->on_handshake_data_received_from_peer); } else { error = check_peer_locked(exec_ctx, h); if (error != GRPC_ERROR_NONE) { security_handshake_failed_locked(exec_ctx, h, error); gpr_mu_unlock(&h->mu); security_handshaker_unref(exec_ctx, h); return; } } gpr_mu_unlock(&h->mu); }
static void pf_cancel_pick(grpc_exec_ctx *exec_ctx, grpc_lb_policy *pol, grpc_connected_subchannel **target, grpc_error *error) { pick_first_lb_policy *p = (pick_first_lb_policy *)pol; pending_pick *pp; gpr_mu_lock(&p->mu); pp = p->pending_picks; p->pending_picks = NULL; while (pp != NULL) { pending_pick *next = pp->next; if (pp->target == target) { *target = NULL; grpc_exec_ctx_sched( exec_ctx, pp->on_complete, GRPC_ERROR_CREATE_REFERENCING("Pick Cancelled", &error, 1), NULL); gpr_free(pp); } else { pp->next = p->pending_picks; p->pending_picks = pp; } pp = next; } gpr_mu_unlock(&p->mu); GRPC_ERROR_UNREF(error); }
/* Prepare a recently-created socket for listening. */ static grpc_error *prepare_socket(int fd, const struct sockaddr *addr, size_t addr_len, bool so_reuseport, int *port) { struct sockaddr_storage sockname_temp; socklen_t sockname_len; grpc_error *err = GRPC_ERROR_NONE; GPR_ASSERT(fd >= 0); if (so_reuseport) { err = grpc_set_socket_reuse_port(fd, 1); if (err != GRPC_ERROR_NONE) goto error; } err = grpc_set_socket_nonblocking(fd, 1); if (err != GRPC_ERROR_NONE) goto error; err = grpc_set_socket_cloexec(fd, 1); if (err != GRPC_ERROR_NONE) goto error; if (!grpc_is_unix_socket(addr)) { err = grpc_set_socket_low_latency(fd, 1); if (err != GRPC_ERROR_NONE) goto error; err = grpc_set_socket_reuse_addr(fd, 1); if (err != GRPC_ERROR_NONE) goto error; } err = grpc_set_socket_no_sigpipe_if_possible(fd); if (err != GRPC_ERROR_NONE) goto error; GPR_ASSERT(addr_len < ~(socklen_t)0); if (bind(fd, addr, (socklen_t)addr_len) < 0) { err = GRPC_OS_ERROR(errno, "bind"); goto error; } if (listen(fd, get_max_accept_queue_size()) < 0) { err = GRPC_OS_ERROR(errno, "listen"); goto error; } sockname_len = sizeof(sockname_temp); if (getsockname(fd, (struct sockaddr *)&sockname_temp, &sockname_len) < 0) { err = GRPC_OS_ERROR(errno, "getsockname"); goto error; } *port = grpc_sockaddr_get_port((struct sockaddr *)&sockname_temp); return GRPC_ERROR_NONE; error: GPR_ASSERT(err != GRPC_ERROR_NONE); if (fd >= 0) { close(fd); } grpc_error *ret = grpc_error_set_int( GRPC_ERROR_CREATE_REFERENCING("Unable to configure socket", &err, 1), GRPC_ERROR_INT_FD, fd); GRPC_ERROR_UNREF(err); return ret; }
static void subchannel_ready(grpc_exec_ctx *exec_ctx, void *arg, grpc_error *error) { grpc_call_element *elem = arg; call_data *calld = elem->call_data; channel_data *chand = elem->channel_data; gpr_mu_lock(&calld->mu); GPR_ASSERT(calld->creation_phase == GRPC_SUBCHANNEL_CALL_HOLDER_PICKING_SUBCHANNEL); grpc_polling_entity_del_from_pollset_set(exec_ctx, calld->pollent, chand->interested_parties); calld->creation_phase = GRPC_SUBCHANNEL_CALL_HOLDER_NOT_CREATING; if (calld->connected_subchannel == NULL) { gpr_atm_no_barrier_store(&calld->subchannel_call, 1); fail_locked(exec_ctx, calld, GRPC_ERROR_CREATE_REFERENCING( "Failed to create subchannel", &error, 1)); } else if (GET_CALL(calld) == CANCELLED_CALL) { /* already cancelled before subchannel became ready */ fail_locked(exec_ctx, calld, GRPC_ERROR_CREATE_REFERENCING( "Cancelled before creating subchannel", &error, 1)); } else { /* Create call on subchannel. */ grpc_subchannel_call *subchannel_call = NULL; grpc_error *new_error = grpc_connected_subchannel_create_call( exec_ctx, calld->connected_subchannel, calld->pollent, calld->path, calld->deadline, &subchannel_call); if (new_error != GRPC_ERROR_NONE) { new_error = grpc_error_add_child(new_error, error); subchannel_call = CANCELLED_CALL; fail_locked(exec_ctx, calld, new_error); } gpr_atm_rel_store(&calld->subchannel_call, (gpr_atm)(uintptr_t)subchannel_call); retry_waiting_locked(exec_ctx, calld); } gpr_mu_unlock(&calld->mu); GRPC_CALL_STACK_UNREF(exec_ctx, calld->owning_call, "pick_subchannel"); }
grpc_error *grpc_load_file(const char *filename, int add_null_terminator, grpc_slice *output) { unsigned char *contents = NULL; size_t contents_size = 0; grpc_slice result = gpr_empty_slice(); FILE *file; size_t bytes_read = 0; grpc_error *error = GRPC_ERROR_NONE; GRPC_SCHEDULING_START_BLOCKING_REGION; file = fopen(filename, "rb"); if (file == NULL) { error = GRPC_OS_ERROR(errno, "fopen"); goto end; } fseek(file, 0, SEEK_END); /* Converting to size_t on the assumption that it will not fail */ contents_size = (size_t)ftell(file); fseek(file, 0, SEEK_SET); contents = gpr_malloc(contents_size + (add_null_terminator ? 1 : 0)); bytes_read = fread(contents, 1, contents_size, file); if (bytes_read < contents_size) { error = GRPC_OS_ERROR(errno, "fread"); GPR_ASSERT(ferror(file)); goto end; } if (add_null_terminator) { contents[contents_size++] = 0; } result = grpc_slice_new(contents, contents_size, gpr_free); end: *output = result; if (file != NULL) fclose(file); if (error != GRPC_ERROR_NONE) { grpc_error *error_out = grpc_error_set_str( GRPC_ERROR_CREATE_REFERENCING("Failed to load file", &error, 1), GRPC_ERROR_STR_FILENAME, filename); GRPC_ERROR_UNREF(error); error = error_out; } GRPC_SCHEDULING_END_BLOCKING_REGION; return error; }
/* If handshake is NULL, the handshake is done. */ static void on_handshake_data_sent_to_peer(grpc_exec_ctx *exec_ctx, void *handshake, grpc_error *error) { grpc_security_handshake *h = handshake; /* Make sure that write is OK. */ if (error != GRPC_ERROR_NONE) { if (handshake != NULL) security_handshake_done( exec_ctx, h, GRPC_ERROR_CREATE_REFERENCING("Handshake write failed", &error, 1)); return; } /* We may be done. */ if (tsi_handshaker_is_in_progress(h->handshaker)) { /* TODO(klempner,jboeuf): This should probably use the client setup deadline */ grpc_endpoint_read(exec_ctx, h->wrapped_endpoint, &h->incoming, &h->on_handshake_data_received_from_peer); } else { check_peer(exec_ctx, h); } }
static void server_on_recv_initial_metadata(grpc_exec_ctx *exec_ctx, void *ptr, grpc_error *error) { grpc_call_element *elem = ptr; call_data *calld = elem->call_data; gpr_timespec op_deadline; GRPC_ERROR_REF(error); grpc_metadata_batch_filter(calld->recv_initial_metadata, server_filter, elem); op_deadline = calld->recv_initial_metadata->deadline; if (0 != gpr_time_cmp(op_deadline, gpr_inf_future(op_deadline.clock_type))) { calld->deadline = op_deadline; } if (calld->host && calld->path) { /* do nothing */ } else { GRPC_ERROR_UNREF(error); error = GRPC_ERROR_CREATE_REFERENCING("Missing :authority or :path", &error, 1); } grpc_exec_ctx_sched(exec_ctx, calld->on_done_recv_initial_metadata, error, NULL); }
/* Tries to issue one async connection, then schedules both an IOCP notification request for the connection, and one timeout alert. */ void grpc_tcp_client_connect(grpc_exec_ctx *exec_ctx, grpc_closure *on_done, grpc_endpoint **endpoint, grpc_pollset_set *interested_parties, const grpc_channel_args *channel_args, const grpc_resolved_address *addr, gpr_timespec deadline) { SOCKET sock = INVALID_SOCKET; BOOL success; int status; grpc_resolved_address addr6_v4mapped; grpc_resolved_address local_address; async_connect *ac; grpc_winsocket *socket = NULL; LPFN_CONNECTEX ConnectEx; GUID guid = WSAID_CONNECTEX; DWORD ioctl_num_bytes; grpc_winsocket_callback_info *info; grpc_error *error = GRPC_ERROR_NONE; grpc_resource_quota *resource_quota = grpc_resource_quota_create(NULL); if (channel_args != NULL) { for (size_t i = 0; i < channel_args->num_args; i++) { if (0 == strcmp(channel_args->args[i].key, GRPC_ARG_RESOURCE_QUOTA)) { grpc_resource_quota_internal_unref(exec_ctx, resource_quota); resource_quota = grpc_resource_quota_internal_ref( channel_args->args[i].value.pointer.p); } } } *endpoint = NULL; /* Use dualstack sockets where available. */ if (grpc_sockaddr_to_v4mapped(addr, &addr6_v4mapped)) { addr = &addr6_v4mapped; } sock = WSASocket(AF_INET6, SOCK_STREAM, IPPROTO_TCP, NULL, 0, WSA_FLAG_OVERLAPPED); if (sock == INVALID_SOCKET) { error = GRPC_WSA_ERROR(WSAGetLastError(), "WSASocket"); goto failure; } error = grpc_tcp_prepare_socket(sock); if (error != GRPC_ERROR_NONE) { goto failure; } /* Grab the function pointer for ConnectEx for that specific socket. It may change depending on the interface. */ status = WSAIoctl(sock, SIO_GET_EXTENSION_FUNCTION_POINTER, &guid, sizeof(guid), &ConnectEx, sizeof(ConnectEx), &ioctl_num_bytes, NULL, NULL); if (status != 0) { error = GRPC_WSA_ERROR(WSAGetLastError(), "WSAIoctl(SIO_GET_EXTENSION_FUNCTION_POINTER)"); goto failure; } grpc_sockaddr_make_wildcard6(0, &local_address); status = bind(sock, (struct sockaddr *)&local_address.addr, (int)local_address.len); if (status != 0) { error = GRPC_WSA_ERROR(WSAGetLastError(), "bind"); goto failure; } socket = grpc_winsocket_create(sock, "client"); info = &socket->write_info; success = ConnectEx(sock, (struct sockaddr *)&addr->addr, (int)addr->len, NULL, 0, NULL, &info->overlapped); /* It wouldn't be unusual to get a success immediately. But we'll still get an IOCP notification, so let's ignore it. */ if (!success) { int last_error = WSAGetLastError(); if (last_error != ERROR_IO_PENDING) { error = GRPC_WSA_ERROR(last_error, "ConnectEx"); goto failure; } } ac = gpr_malloc(sizeof(async_connect)); ac->on_done = on_done; ac->socket = socket; gpr_mu_init(&ac->mu); ac->refs = 2; ac->addr_name = grpc_sockaddr_to_uri(addr); ac->endpoint = endpoint; ac->resource_quota = resource_quota; grpc_closure_init(&ac->on_connect, on_connect, ac); grpc_timer_init(exec_ctx, &ac->alarm, deadline, on_alarm, ac, gpr_now(GPR_CLOCK_MONOTONIC)); grpc_socket_notify_on_write(exec_ctx, socket, &ac->on_connect); return; failure: GPR_ASSERT(error != GRPC_ERROR_NONE); char *target_uri = grpc_sockaddr_to_uri(addr); grpc_error *final_error = grpc_error_set_str( GRPC_ERROR_CREATE_REFERENCING("Failed to connect", &error, 1), GRPC_ERROR_STR_TARGET_ADDRESS, target_uri); GRPC_ERROR_UNREF(error); if (socket != NULL) { grpc_winsocket_destroy(socket); } else if (sock != INVALID_SOCKET) { closesocket(sock); } grpc_resource_quota_internal_unref(exec_ctx, resource_quota); grpc_exec_ctx_sched(exec_ctx, on_done, final_error, NULL); }
static void on_handshake_data_received_from_peer(grpc_exec_ctx *exec_ctx, void *handshake, grpc_error *error) { grpc_security_handshake *h = handshake; size_t consumed_slice_size = 0; tsi_result result = TSI_OK; size_t i; size_t num_left_overs; int has_left_overs_in_current_slice = 0; if (error != GRPC_ERROR_NONE) { security_handshake_done( exec_ctx, h, GRPC_ERROR_CREATE_REFERENCING("Handshake read failed", &error, 1)); return; } for (i = 0; i < h->incoming.count; i++) { consumed_slice_size = GPR_SLICE_LENGTH(h->incoming.slices[i]); result = tsi_handshaker_process_bytes_from_peer( h->handshaker, GPR_SLICE_START_PTR(h->incoming.slices[i]), &consumed_slice_size); if (!tsi_handshaker_is_in_progress(h->handshaker)) break; } if (tsi_handshaker_is_in_progress(h->handshaker)) { /* We may need more data. */ if (result == TSI_INCOMPLETE_DATA) { grpc_endpoint_read(exec_ctx, h->wrapped_endpoint, &h->incoming, &h->on_handshake_data_received_from_peer); return; } else { send_handshake_bytes_to_peer(exec_ctx, h); return; } } if (result != TSI_OK) { security_handshake_done(exec_ctx, h, grpc_set_tsi_error_result( GRPC_ERROR_CREATE("Handshake failed"), result)); return; } /* Handshake is done and successful this point. */ has_left_overs_in_current_slice = (consumed_slice_size < GPR_SLICE_LENGTH(h->incoming.slices[i])); num_left_overs = (has_left_overs_in_current_slice ? 1 : 0) + h->incoming.count - i - 1; if (num_left_overs == 0) { check_peer(exec_ctx, h); return; } /* Put the leftovers in our buffer (ownership transfered). */ if (has_left_overs_in_current_slice) { gpr_slice_buffer_add( &h->left_overs, gpr_slice_split_tail(&h->incoming.slices[i], consumed_slice_size)); gpr_slice_unref( h->incoming.slices[i]); /* split_tail above increments refcount. */ } gpr_slice_buffer_addn( &h->left_overs, &h->incoming.slices[i + 1], num_left_overs - (size_t)has_left_overs_in_current_slice); check_peer(exec_ctx, h); }
static void on_read(grpc_exec_ctx *exec_ctx, void *user_data, grpc_error *error) { unsigned i; uint8_t keep_looping = 0; tsi_result result = TSI_OK; secure_endpoint *ep = (secure_endpoint *)user_data; uint8_t *cur = GPR_SLICE_START_PTR(ep->read_staging_buffer); uint8_t *end = GPR_SLICE_END_PTR(ep->read_staging_buffer); if (error != GRPC_ERROR_NONE) { gpr_slice_buffer_reset_and_unref(ep->read_buffer); call_read_cb(exec_ctx, ep, GRPC_ERROR_CREATE_REFERENCING( "Secure read failed", &error, 1)); return; } /* TODO(yangg) check error, maybe bail out early */ for (i = 0; i < ep->source_buffer.count; i++) { gpr_slice encrypted = ep->source_buffer.slices[i]; uint8_t *message_bytes = GPR_SLICE_START_PTR(encrypted); size_t message_size = GPR_SLICE_LENGTH(encrypted); while (message_size > 0 || keep_looping) { size_t unprotected_buffer_size_written = (size_t)(end - cur); size_t processed_message_size = message_size; gpr_mu_lock(&ep->protector_mu); result = tsi_frame_protector_unprotect(ep->protector, message_bytes, &processed_message_size, cur, &unprotected_buffer_size_written); gpr_mu_unlock(&ep->protector_mu); if (result != TSI_OK) { gpr_log(GPR_ERROR, "Decryption error: %s", tsi_result_to_string(result)); break; } message_bytes += processed_message_size; message_size -= processed_message_size; cur += unprotected_buffer_size_written; if (cur == end) { flush_read_staging_buffer(ep, &cur, &end); /* Force to enter the loop again to extract buffered bytes in protector. The bytes could be buffered because of running out of staging_buffer. If this happens at the end of all slices, doing another unprotect avoids leaving data in the protector. */ keep_looping = 1; } else if (unprotected_buffer_size_written > 0) { keep_looping = 1; } else { keep_looping = 0; } } if (result != TSI_OK) break; } if (cur != GPR_SLICE_START_PTR(ep->read_staging_buffer)) { gpr_slice_buffer_add( ep->read_buffer, gpr_slice_split_head( &ep->read_staging_buffer, (size_t)(cur - GPR_SLICE_START_PTR(ep->read_staging_buffer)))); } /* TODO(yangg) experiment with moving this block after read_cb to see if it helps latency */ gpr_slice_buffer_reset_and_unref(&ep->source_buffer); if (result != TSI_OK) { gpr_slice_buffer_reset_and_unref(ep->read_buffer); call_read_cb(exec_ctx, ep, grpc_set_tsi_error_result( GRPC_ERROR_CREATE("Unwrap failed"), result)); return; } call_read_cb(exec_ctx, ep, GRPC_ERROR_NONE); }
static void rr_connectivity_changed(grpc_exec_ctx *exec_ctx, void *arg, grpc_error *error) { subchannel_data *sd = arg; round_robin_lb_policy *p = sd->policy; pending_pick *pp; ready_list *selected; int unref = 0; GRPC_ERROR_REF(error); gpr_mu_lock(&p->mu); if (p->shutdown) { unref = 1; } else { switch (sd->connectivity_state) { case GRPC_CHANNEL_READY: grpc_connectivity_state_set(exec_ctx, &p->state_tracker, GRPC_CHANNEL_READY, GRPC_ERROR_REF(error), "connecting_ready"); /* add the newly connected subchannel to the list of connected ones. * Note that it goes to the "end of the line". */ sd->ready_list_node = add_connected_sc_locked(p, sd); /* at this point we know there's at least one suitable subchannel. Go * ahead and pick one and notify the pending suitors in * p->pending_picks. This preemtively replicates rr_pick()'s actions. */ selected = peek_next_connected_locked(p); if (p->pending_picks != NULL) { /* if the selected subchannel is going to be used for the pending * picks, update the last picked pointer */ advance_last_picked_locked(p); } while ((pp = p->pending_picks)) { p->pending_picks = pp->next; *pp->target = grpc_subchannel_get_connected_subchannel(selected->subchannel); if (pp->user_data != NULL) { *pp->user_data = selected->user_data; } if (grpc_lb_round_robin_trace) { gpr_log(GPR_DEBUG, "[RR CONN CHANGED] TARGET <-- SUBCHANNEL %p (NODE %p)", (void *)selected->subchannel, (void *)selected); } grpc_exec_ctx_sched(exec_ctx, pp->on_complete, GRPC_ERROR_NONE, NULL); gpr_free(pp); } grpc_subchannel_notify_on_state_change( exec_ctx, sd->subchannel, p->base.interested_parties, &sd->connectivity_state, &sd->connectivity_changed_closure); break; case GRPC_CHANNEL_CONNECTING: case GRPC_CHANNEL_IDLE: grpc_connectivity_state_set( exec_ctx, &p->state_tracker, sd->connectivity_state, GRPC_ERROR_REF(error), "connecting_changed"); grpc_subchannel_notify_on_state_change( exec_ctx, sd->subchannel, p->base.interested_parties, &sd->connectivity_state, &sd->connectivity_changed_closure); break; case GRPC_CHANNEL_TRANSIENT_FAILURE: /* renew state notification */ grpc_subchannel_notify_on_state_change( exec_ctx, sd->subchannel, p->base.interested_parties, &sd->connectivity_state, &sd->connectivity_changed_closure); /* remove from ready list if still present */ if (sd->ready_list_node != NULL) { remove_disconnected_sc_locked(p, sd->ready_list_node); sd->ready_list_node = NULL; } grpc_connectivity_state_set( exec_ctx, &p->state_tracker, GRPC_CHANNEL_TRANSIENT_FAILURE, GRPC_ERROR_REF(error), "connecting_transient_failure"); break; case GRPC_CHANNEL_SHUTDOWN: if (sd->ready_list_node != NULL) { remove_disconnected_sc_locked(p, sd->ready_list_node); sd->ready_list_node = NULL; } p->num_subchannels--; GPR_SWAP(subchannel_data *, p->subchannels[sd->index], p->subchannels[p->num_subchannels]); GRPC_SUBCHANNEL_UNREF(exec_ctx, sd->subchannel, "round_robin"); p->subchannels[sd->index]->index = sd->index; gpr_free(sd); unref = 1; if (p->num_subchannels == 0) { grpc_connectivity_state_set( exec_ctx, &p->state_tracker, GRPC_CHANNEL_SHUTDOWN, GRPC_ERROR_CREATE_REFERENCING("Round Robin Channels Exhausted", &error, 1), "no_more_channels"); while ((pp = p->pending_picks)) { p->pending_picks = pp->next; *pp->target = NULL; grpc_exec_ctx_sched(exec_ctx, pp->on_complete, GRPC_ERROR_NONE, NULL); gpr_free(pp); } } else { grpc_connectivity_state_set( exec_ctx, &p->state_tracker, GRPC_CHANNEL_TRANSIENT_FAILURE, GRPC_ERROR_REF(error), "subchannel_failed"); } } /* switch */ } /* !unref */ gpr_mu_unlock(&p->mu); if (unref) { GRPC_LB_POLICY_WEAK_UNREF(exec_ctx, &p->base, "round_robin_connectivity"); } GRPC_ERROR_UNREF(error); }
static void pf_connectivity_changed(grpc_exec_ctx *exec_ctx, void *arg, grpc_error *error) { pick_first_lb_policy *p = arg; grpc_subchannel *selected_subchannel; pending_pick *pp; grpc_connected_subchannel *selected; GRPC_ERROR_REF(error); gpr_mu_lock(&p->mu); selected = GET_SELECTED(p); if (p->shutdown) { gpr_mu_unlock(&p->mu); GRPC_LB_POLICY_WEAK_UNREF(exec_ctx, &p->base, "pick_first_connectivity"); GRPC_ERROR_UNREF(error); return; } else if (selected != NULL) { if (p->checking_connectivity == GRPC_CHANNEL_TRANSIENT_FAILURE) { /* if the selected channel goes bad, we're done */ p->checking_connectivity = GRPC_CHANNEL_SHUTDOWN; } grpc_connectivity_state_set(exec_ctx, &p->state_tracker, p->checking_connectivity, GRPC_ERROR_REF(error), "selected_changed"); if (p->checking_connectivity != GRPC_CHANNEL_SHUTDOWN) { grpc_connected_subchannel_notify_on_state_change( exec_ctx, selected, p->base.interested_parties, &p->checking_connectivity, &p->connectivity_changed); } else { GRPC_LB_POLICY_WEAK_UNREF(exec_ctx, &p->base, "pick_first_connectivity"); } } else { loop: switch (p->checking_connectivity) { case GRPC_CHANNEL_READY: grpc_connectivity_state_set(exec_ctx, &p->state_tracker, GRPC_CHANNEL_READY, GRPC_ERROR_NONE, "connecting_ready"); selected_subchannel = p->subchannels[p->checking_subchannel]; selected = grpc_subchannel_get_connected_subchannel(selected_subchannel); GPR_ASSERT(selected != NULL); GRPC_CONNECTED_SUBCHANNEL_REF(selected, "picked_first"); /* drop the pick list: we are connected now */ GRPC_LB_POLICY_WEAK_REF(&p->base, "destroy_subchannels"); gpr_atm_rel_store(&p->selected, (gpr_atm)selected); grpc_exec_ctx_sched(exec_ctx, grpc_closure_create(destroy_subchannels, p), GRPC_ERROR_NONE, NULL); /* update any calls that were waiting for a pick */ while ((pp = p->pending_picks)) { p->pending_picks = pp->next; *pp->target = selected; grpc_exec_ctx_sched(exec_ctx, pp->on_complete, GRPC_ERROR_NONE, NULL); gpr_free(pp); } grpc_connected_subchannel_notify_on_state_change( exec_ctx, selected, p->base.interested_parties, &p->checking_connectivity, &p->connectivity_changed); break; case GRPC_CHANNEL_TRANSIENT_FAILURE: p->checking_subchannel = (p->checking_subchannel + 1) % p->num_subchannels; if (p->checking_subchannel == 0) { /* only trigger transient failure when we've tried all alternatives */ grpc_connectivity_state_set( exec_ctx, &p->state_tracker, GRPC_CHANNEL_TRANSIENT_FAILURE, GRPC_ERROR_REF(error), "connecting_transient_failure"); } GRPC_ERROR_UNREF(error); p->checking_connectivity = grpc_subchannel_check_connectivity( p->subchannels[p->checking_subchannel], &error); if (p->checking_connectivity == GRPC_CHANNEL_TRANSIENT_FAILURE) { grpc_subchannel_notify_on_state_change( exec_ctx, p->subchannels[p->checking_subchannel], p->base.interested_parties, &p->checking_connectivity, &p->connectivity_changed); } else { goto loop; } break; case GRPC_CHANNEL_CONNECTING: case GRPC_CHANNEL_IDLE: grpc_connectivity_state_set( exec_ctx, &p->state_tracker, GRPC_CHANNEL_CONNECTING, GRPC_ERROR_REF(error), "connecting_changed"); grpc_subchannel_notify_on_state_change( exec_ctx, p->subchannels[p->checking_subchannel], p->base.interested_parties, &p->checking_connectivity, &p->connectivity_changed); break; case GRPC_CHANNEL_SHUTDOWN: p->num_subchannels--; GPR_SWAP(grpc_subchannel *, p->subchannels[p->checking_subchannel], p->subchannels[p->num_subchannels]); GRPC_SUBCHANNEL_UNREF(exec_ctx, p->subchannels[p->num_subchannels], "pick_first"); if (p->num_subchannels == 0) { grpc_connectivity_state_set( exec_ctx, &p->state_tracker, GRPC_CHANNEL_SHUTDOWN, GRPC_ERROR_CREATE_REFERENCING("Pick first exhausted channels", &error, 1), "no_more_channels"); while ((pp = p->pending_picks)) { p->pending_picks = pp->next; *pp->target = NULL; grpc_exec_ctx_sched(exec_ctx, pp->on_complete, GRPC_ERROR_NONE, NULL); gpr_free(pp); } GRPC_LB_POLICY_WEAK_UNREF(exec_ctx, &p->base, "pick_first_connectivity"); } else { grpc_connectivity_state_set( exec_ctx, &p->state_tracker, GRPC_CHANNEL_TRANSIENT_FAILURE, GRPC_ERROR_REF(error), "subchannel_failed"); p->checking_subchannel %= p->num_subchannels; GRPC_ERROR_UNREF(error); p->checking_connectivity = grpc_subchannel_check_connectivity( p->subchannels[p->checking_subchannel], &error); goto loop; } } } gpr_mu_unlock(&p->mu); GRPC_ERROR_UNREF(error); }
int grpc_server_add_insecure_http2_port(grpc_server *server, const char *addr) { grpc_resolved_addresses *resolved = NULL; grpc_tcp_server *tcp = NULL; size_t i; size_t count = 0; int port_num = -1; int port_temp; grpc_exec_ctx exec_ctx = GRPC_EXEC_CTX_INIT; grpc_error *err = GRPC_ERROR_NONE; GRPC_API_TRACE("grpc_server_add_insecure_http2_port(server=%p, addr=%s)", 2, (server, addr)); grpc_error **errors = NULL; err = grpc_blocking_resolve_address(addr, "https", &resolved); if (err != GRPC_ERROR_NONE) { goto error; } err = grpc_tcp_server_create(NULL, &tcp); if (err != GRPC_ERROR_NONE) { goto error; } const size_t naddrs = resolved->naddrs; errors = gpr_malloc(sizeof(*errors) * naddrs); for (i = 0; i < naddrs; i++) { errors[i] = grpc_tcp_server_add_port( tcp, (struct sockaddr *)&resolved->addrs[i].addr, resolved->addrs[i].len, &port_temp); if (errors[i] == GRPC_ERROR_NONE) { if (port_num == -1) { port_num = port_temp; } else { GPR_ASSERT(port_num == port_temp); } count++; } } if (count == 0) { char *msg; gpr_asprintf(&msg, "No address added out of total %" PRIuPTR " resolved", naddrs); err = GRPC_ERROR_CREATE_REFERENCING(msg, errors, naddrs); gpr_free(msg); goto error; } else if (count != naddrs) { char *msg; gpr_asprintf(&msg, "Only %" PRIuPTR " addresses added out of total %" PRIuPTR " resolved", count, naddrs); err = GRPC_ERROR_CREATE_REFERENCING(msg, errors, naddrs); gpr_free(msg); const char *warning_message = grpc_error_string(err); gpr_log(GPR_INFO, "WARNING: %s", warning_message); grpc_error_free_string(warning_message); /* we managed to bind some addresses: continue */ } grpc_resolved_addresses_destroy(resolved); /* Register with the server only upon success */ grpc_server_add_listener(&exec_ctx, server, tcp, start, destroy); goto done; /* Error path: cleanup and return */ error: GPR_ASSERT(err != GRPC_ERROR_NONE); if (resolved) { grpc_resolved_addresses_destroy(resolved); } if (tcp) { grpc_tcp_server_unref(&exec_ctx, tcp); } port_num = 0; const char *msg = grpc_error_string(err); gpr_log(GPR_ERROR, "%s", msg); grpc_error_free_string(msg); GRPC_ERROR_UNREF(err); done: grpc_exec_ctx_finish(&exec_ctx); if (errors != NULL) { for (i = 0; i < naddrs; i++) { GRPC_ERROR_UNREF(errors[i]); } } gpr_free(errors); return port_num; }
grpc_error *grpc_tcp_server_add_port(grpc_tcp_server *s, const void *addr, size_t addr_len, int *out_port) { grpc_tcp_listener *sp; grpc_tcp_listener *sp2 = NULL; int fd; grpc_dualstack_mode dsmode; struct sockaddr_in6 addr6_v4mapped; struct sockaddr_in wild4; struct sockaddr_in6 wild6; struct sockaddr_in addr4_copy; struct sockaddr *allocated_addr = NULL; struct sockaddr_storage sockname_temp; socklen_t sockname_len; int port; unsigned port_index = 0; unsigned fd_index = 0; grpc_error *errs[2] = {GRPC_ERROR_NONE, GRPC_ERROR_NONE}; if (s->tail != NULL) { port_index = s->tail->port_index + 1; } grpc_unlink_if_unix_domain_socket((struct sockaddr *)addr); /* Check if this is a wildcard port, and if so, try to keep the port the same as some previously created listener. */ if (grpc_sockaddr_get_port(addr) == 0) { for (sp = s->head; sp; sp = sp->next) { sockname_len = sizeof(sockname_temp); if (0 == getsockname(sp->fd, (struct sockaddr *)&sockname_temp, &sockname_len)) { port = grpc_sockaddr_get_port((struct sockaddr *)&sockname_temp); if (port > 0) { allocated_addr = gpr_malloc(addr_len); memcpy(allocated_addr, addr, addr_len); grpc_sockaddr_set_port(allocated_addr, port); addr = allocated_addr; break; } } } } sp = NULL; if (grpc_sockaddr_to_v4mapped(addr, &addr6_v4mapped)) { addr = (const struct sockaddr *)&addr6_v4mapped; addr_len = sizeof(addr6_v4mapped); } /* Treat :: or 0.0.0.0 as a family-agnostic wildcard. */ if (grpc_sockaddr_is_wildcard(addr, &port)) { grpc_sockaddr_make_wildcards(port, &wild4, &wild6); /* Try listening on IPv6 first. */ addr = (struct sockaddr *)&wild6; addr_len = sizeof(wild6); errs[0] = grpc_create_dualstack_socket(addr, SOCK_STREAM, 0, &dsmode, &fd); if (errs[0] == GRPC_ERROR_NONE) { errs[0] = add_socket_to_server(s, fd, addr, addr_len, port_index, fd_index, &sp); if (fd >= 0 && dsmode == GRPC_DSMODE_DUALSTACK) { goto done; } if (sp != NULL) { ++fd_index; } /* If we didn't get a dualstack socket, also listen on 0.0.0.0. */ if (port == 0 && sp != NULL) { grpc_sockaddr_set_port((struct sockaddr *)&wild4, sp->port); } } addr = (struct sockaddr *)&wild4; addr_len = sizeof(wild4); } errs[1] = grpc_create_dualstack_socket(addr, SOCK_STREAM, 0, &dsmode, &fd); if (errs[1] == GRPC_ERROR_NONE) { if (dsmode == GRPC_DSMODE_IPV4 && grpc_sockaddr_is_v4mapped(addr, &addr4_copy)) { addr = (struct sockaddr *)&addr4_copy; addr_len = sizeof(addr4_copy); } sp2 = sp; errs[1] = add_socket_to_server(s, fd, addr, addr_len, port_index, fd_index, &sp); if (sp2 != NULL && sp != NULL) { sp2->sibling = sp; sp->is_sibling = 1; } } done: gpr_free(allocated_addr); if (sp != NULL) { *out_port = sp->port; GRPC_ERROR_UNREF(errs[0]); GRPC_ERROR_UNREF(errs[1]); return GRPC_ERROR_NONE; } else { *out_port = -1; char *addr_str = grpc_sockaddr_to_uri(addr); grpc_error *err = grpc_error_set_str( GRPC_ERROR_CREATE_REFERENCING("Failed to add port to server", errs, GPR_ARRAY_SIZE(errs)), GRPC_ERROR_STR_TARGET_ADDRESS, addr_str); GRPC_ERROR_UNREF(errs[0]); GRPC_ERROR_UNREF(errs[1]); gpr_free(addr_str); return err; } }
static void on_resolver_result_changed(grpc_exec_ctx *exec_ctx, void *arg, grpc_error *error) { channel_data *chand = arg; grpc_lb_policy *lb_policy = NULL; grpc_lb_policy *old_lb_policy; grpc_connectivity_state state = GRPC_CHANNEL_TRANSIENT_FAILURE; bool exit_idle = false; grpc_error *state_error = GRPC_ERROR_CREATE("No load balancing policy"); if (chand->resolver_result != NULL) { lb_policy = grpc_resolver_result_get_lb_policy(chand->resolver_result); if (lb_policy != NULL) { GRPC_LB_POLICY_REF(lb_policy, "channel"); GRPC_LB_POLICY_REF(lb_policy, "config_change"); GRPC_ERROR_UNREF(state_error); state = grpc_lb_policy_check_connectivity(exec_ctx, lb_policy, &state_error); } grpc_resolver_result_unref(exec_ctx, chand->resolver_result); } chand->resolver_result = NULL; if (lb_policy != NULL) { grpc_pollset_set_add_pollset_set(exec_ctx, lb_policy->interested_parties, chand->interested_parties); } gpr_mu_lock(&chand->mu); old_lb_policy = chand->lb_policy; chand->lb_policy = lb_policy; if (lb_policy != NULL) { grpc_exec_ctx_enqueue_list(exec_ctx, &chand->waiting_for_config_closures, NULL); } else if (chand->resolver == NULL /* disconnected */) { grpc_closure_list_fail_all( &chand->waiting_for_config_closures, GRPC_ERROR_CREATE_REFERENCING("Channel disconnected", &error, 1)); grpc_exec_ctx_enqueue_list(exec_ctx, &chand->waiting_for_config_closures, NULL); } if (lb_policy != NULL && chand->exit_idle_when_lb_policy_arrives) { GRPC_LB_POLICY_REF(lb_policy, "exit_idle"); exit_idle = true; chand->exit_idle_when_lb_policy_arrives = false; } if (error == GRPC_ERROR_NONE && chand->resolver) { set_channel_connectivity_state_locked( exec_ctx, chand, state, GRPC_ERROR_REF(state_error), "new_lb+resolver"); if (lb_policy != NULL) { watch_lb_policy(exec_ctx, chand, lb_policy, state); } GRPC_CHANNEL_STACK_REF(chand->owning_stack, "resolver"); grpc_resolver_next(exec_ctx, chand->resolver, &chand->resolver_result, &chand->on_resolver_result_changed); gpr_mu_unlock(&chand->mu); } else { if (chand->resolver != NULL) { grpc_resolver_shutdown(exec_ctx, chand->resolver); GRPC_RESOLVER_UNREF(exec_ctx, chand->resolver, "channel"); chand->resolver = NULL; } grpc_error *refs[] = {error, state_error}; set_channel_connectivity_state_locked( exec_ctx, chand, GRPC_CHANNEL_SHUTDOWN, GRPC_ERROR_CREATE_REFERENCING("Got config after disconnection", refs, GPR_ARRAY_SIZE(refs)), "resolver_gone"); gpr_mu_unlock(&chand->mu); } if (exit_idle) { grpc_lb_policy_exit_idle(exec_ctx, lb_policy); GRPC_LB_POLICY_UNREF(exec_ctx, lb_policy, "exit_idle"); } if (old_lb_policy != NULL) { grpc_pollset_set_del_pollset_set( exec_ctx, old_lb_policy->interested_parties, chand->interested_parties); GRPC_LB_POLICY_UNREF(exec_ctx, old_lb_policy, "channel"); } if (lb_policy != NULL) { GRPC_LB_POLICY_UNREF(exec_ctx, lb_policy, "config_change"); } GRPC_CHANNEL_STACK_UNREF(exec_ctx, chand->owning_stack, "resolver"); GRPC_ERROR_UNREF(state_error); }
int grpc_server_add_secure_http2_port(grpc_server *server, const char *addr, grpc_server_credentials *creds) { grpc_resolved_addresses *resolved = NULL; grpc_tcp_server *tcp = NULL; server_secure_state *state = NULL; size_t i; size_t count = 0; int port_num = -1; int port_temp; grpc_security_status status = GRPC_SECURITY_ERROR; grpc_server_security_connector *sc = NULL; grpc_exec_ctx exec_ctx = GRPC_EXEC_CTX_INIT; grpc_error *err = GRPC_ERROR_NONE; grpc_error **errors = NULL; GRPC_API_TRACE( "grpc_server_add_secure_http2_port(" "server=%p, addr=%s, creds=%p)", 3, (server, addr, creds)); /* create security context */ if (creds == NULL) { err = GRPC_ERROR_CREATE( "No credentials specified for secure server port (creds==NULL)"); goto error; } status = grpc_server_credentials_create_security_connector(creds, &sc); if (status != GRPC_SECURITY_OK) { char *msg; gpr_asprintf(&msg, "Unable to create secure server with credentials of type %s.", creds->type); err = grpc_error_set_int(GRPC_ERROR_CREATE(msg), GRPC_ERROR_INT_SECURITY_STATUS, status); gpr_free(msg); goto error; } sc->channel_args = grpc_server_get_channel_args(server); /* resolve address */ err = grpc_blocking_resolve_address(addr, "https", &resolved); if (err != GRPC_ERROR_NONE) { goto error; } state = gpr_malloc(sizeof(*state)); memset(state, 0, sizeof(*state)); grpc_closure_init(&state->destroy_closure, destroy_done, state); err = grpc_tcp_server_create(&state->destroy_closure, grpc_server_get_channel_args(server), &tcp); if (err != GRPC_ERROR_NONE) { goto error; } state->server = server; state->tcp = tcp; state->sc = sc; state->creds = grpc_server_credentials_ref(creds); state->is_shutdown = false; gpr_mu_init(&state->mu); gpr_ref_init(&state->refcount, 1); errors = gpr_malloc(sizeof(*errors) * resolved->naddrs); for (i = 0; i < resolved->naddrs; i++) { errors[i] = grpc_tcp_server_add_port( tcp, (struct sockaddr *)&resolved->addrs[i].addr, resolved->addrs[i].len, &port_temp); if (errors[i] == GRPC_ERROR_NONE) { if (port_num == -1) { port_num = port_temp; } else { GPR_ASSERT(port_num == port_temp); } count++; } } if (count == 0) { char *msg; gpr_asprintf(&msg, "No address added out of total %" PRIuPTR " resolved", resolved->naddrs); err = GRPC_ERROR_CREATE_REFERENCING(msg, errors, resolved->naddrs); gpr_free(msg); goto error; } else if (count != resolved->naddrs) { char *msg; gpr_asprintf(&msg, "Only %" PRIuPTR " addresses added out of total %" PRIuPTR " resolved", count, resolved->naddrs); err = GRPC_ERROR_CREATE_REFERENCING(msg, errors, resolved->naddrs); gpr_free(msg); const char *warning_message = grpc_error_string(err); gpr_log(GPR_INFO, "WARNING: %s", warning_message); grpc_error_free_string(warning_message); /* we managed to bind some addresses: continue */ } else { for (i = 0; i < resolved->naddrs; i++) { GRPC_ERROR_UNREF(errors[i]); } } gpr_free(errors); errors = NULL; grpc_resolved_addresses_destroy(resolved); /* Register with the server only upon success */ grpc_server_add_listener(&exec_ctx, server, state, start, destroy); grpc_exec_ctx_finish(&exec_ctx); return port_num; /* Error path: cleanup and return */ error: GPR_ASSERT(err != GRPC_ERROR_NONE); if (errors != NULL) { for (i = 0; i < resolved->naddrs; i++) { GRPC_ERROR_UNREF(errors[i]); } gpr_free(errors); } if (resolved) { grpc_resolved_addresses_destroy(resolved); } if (tcp) { grpc_tcp_server_unref(&exec_ctx, tcp); } else { if (sc) { GRPC_SECURITY_CONNECTOR_UNREF(&sc->base, "server"); } if (state) { gpr_free(state); } } grpc_exec_ctx_finish(&exec_ctx); const char *msg = grpc_error_string(err); GRPC_ERROR_UNREF(err); gpr_log(GPR_ERROR, "%s", msg); grpc_error_free_string(msg); return 0; }
static void on_resolver_result_changed(grpc_exec_ctx *exec_ctx, void *arg, grpc_error *error) { channel_data *chand = arg; grpc_lb_policy *lb_policy = NULL; grpc_lb_policy *old_lb_policy; grpc_mdstr_hash_table *method_params_table = NULL; grpc_connectivity_state state = GRPC_CHANNEL_TRANSIENT_FAILURE; bool exit_idle = false; grpc_error *state_error = GRPC_ERROR_CREATE("No load balancing policy"); if (chand->resolver_result != NULL) { grpc_lb_policy_args lb_policy_args; lb_policy_args.args = chand->resolver_result; lb_policy_args.client_channel_factory = chand->client_channel_factory; // Find LB policy name. const char *lb_policy_name = NULL; const grpc_arg *channel_arg = grpc_channel_args_find(lb_policy_args.args, GRPC_ARG_LB_POLICY_NAME); if (channel_arg != NULL) { GPR_ASSERT(channel_arg->type == GRPC_ARG_STRING); lb_policy_name = channel_arg->value.string; } // Special case: If all of the addresses are balancer addresses, // assume that we should use the grpclb policy, regardless of what the // resolver actually specified. channel_arg = grpc_channel_args_find(lb_policy_args.args, GRPC_ARG_LB_ADDRESSES); if (channel_arg != NULL) { GPR_ASSERT(channel_arg->type == GRPC_ARG_POINTER); grpc_lb_addresses *addresses = channel_arg->value.pointer.p; bool found_backend_address = false; for (size_t i = 0; i < addresses->num_addresses; ++i) { if (!addresses->addresses[i].is_balancer) { found_backend_address = true; break; } } if (!found_backend_address) { if (lb_policy_name != NULL && strcmp(lb_policy_name, "grpclb") != 0) { gpr_log(GPR_INFO, "resolver requested LB policy %s but provided only balancer " "addresses, no backend addresses -- forcing use of grpclb LB " "policy", lb_policy_name); } lb_policy_name = "grpclb"; } } // Use pick_first if nothing was specified and we didn't select grpclb // above. if (lb_policy_name == NULL) lb_policy_name = "pick_first"; lb_policy = grpc_lb_policy_create(exec_ctx, lb_policy_name, &lb_policy_args); if (lb_policy != NULL) { GRPC_LB_POLICY_REF(lb_policy, "config_change"); GRPC_ERROR_UNREF(state_error); state = grpc_lb_policy_check_connectivity(exec_ctx, lb_policy, &state_error); } channel_arg = grpc_channel_args_find(lb_policy_args.args, GRPC_ARG_SERVICE_CONFIG); if (channel_arg != NULL) { GPR_ASSERT(channel_arg->type == GRPC_ARG_POINTER); method_params_table = grpc_method_config_table_convert( (grpc_method_config_table *)channel_arg->value.pointer.p, method_config_convert_value, &method_parameters_vtable); } grpc_channel_args_destroy(chand->resolver_result); chand->resolver_result = NULL; } if (lb_policy != NULL) { grpc_pollset_set_add_pollset_set(exec_ctx, lb_policy->interested_parties, chand->interested_parties); } gpr_mu_lock(&chand->mu); old_lb_policy = chand->lb_policy; chand->lb_policy = lb_policy; if (chand->method_params_table != NULL) { grpc_mdstr_hash_table_unref(chand->method_params_table); } chand->method_params_table = method_params_table; if (lb_policy != NULL) { grpc_exec_ctx_enqueue_list(exec_ctx, &chand->waiting_for_config_closures, NULL); } else if (chand->resolver == NULL /* disconnected */) { grpc_closure_list_fail_all( &chand->waiting_for_config_closures, GRPC_ERROR_CREATE_REFERENCING("Channel disconnected", &error, 1)); grpc_exec_ctx_enqueue_list(exec_ctx, &chand->waiting_for_config_closures, NULL); } if (lb_policy != NULL && chand->exit_idle_when_lb_policy_arrives) { GRPC_LB_POLICY_REF(lb_policy, "exit_idle"); exit_idle = true; chand->exit_idle_when_lb_policy_arrives = false; } if (error == GRPC_ERROR_NONE && chand->resolver) { set_channel_connectivity_state_locked( exec_ctx, chand, state, GRPC_ERROR_REF(state_error), "new_lb+resolver"); if (lb_policy != NULL) { watch_lb_policy(exec_ctx, chand, lb_policy, state); } GRPC_CHANNEL_STACK_REF(chand->owning_stack, "resolver"); grpc_resolver_next(exec_ctx, chand->resolver, &chand->resolver_result, &chand->on_resolver_result_changed); gpr_mu_unlock(&chand->mu); } else { if (chand->resolver != NULL) { grpc_resolver_shutdown(exec_ctx, chand->resolver); GRPC_RESOLVER_UNREF(exec_ctx, chand->resolver, "channel"); chand->resolver = NULL; } grpc_error *refs[] = {error, state_error}; set_channel_connectivity_state_locked( exec_ctx, chand, GRPC_CHANNEL_SHUTDOWN, GRPC_ERROR_CREATE_REFERENCING("Got config after disconnection", refs, GPR_ARRAY_SIZE(refs)), "resolver_gone"); gpr_mu_unlock(&chand->mu); } if (exit_idle) { grpc_lb_policy_exit_idle(exec_ctx, lb_policy); GRPC_LB_POLICY_UNREF(exec_ctx, lb_policy, "exit_idle"); } if (old_lb_policy != NULL) { grpc_pollset_set_del_pollset_set( exec_ctx, old_lb_policy->interested_parties, chand->interested_parties); GRPC_LB_POLICY_UNREF(exec_ctx, old_lb_policy, "channel"); } if (lb_policy != NULL) { GRPC_LB_POLICY_UNREF(exec_ctx, lb_policy, "config_change"); } GRPC_CHANNEL_STACK_UNREF(exec_ctx, chand->owning_stack, "resolver"); GRPC_ERROR_UNREF(state_error); }
static void on_handshake_data_received_from_peer(grpc_exec_ctx *exec_ctx, void *arg, grpc_error *error) { security_handshaker *h = arg; gpr_mu_lock(&h->mu); if (error != GRPC_ERROR_NONE || h->shutdown) { security_handshake_failed_locked( exec_ctx, h, GRPC_ERROR_CREATE_REFERENCING("Handshake read failed", &error, 1)); gpr_mu_unlock(&h->mu); security_handshaker_unref(exec_ctx, h); return; } // Process received data. tsi_result result = TSI_OK; size_t consumed_slice_size = 0; size_t i; for (i = 0; i < h->args->read_buffer->count; i++) { consumed_slice_size = GRPC_SLICE_LENGTH(h->args->read_buffer->slices[i]); result = tsi_handshaker_process_bytes_from_peer( h->handshaker, GRPC_SLICE_START_PTR(h->args->read_buffer->slices[i]), &consumed_slice_size); if (!tsi_handshaker_is_in_progress(h->handshaker)) break; } if (tsi_handshaker_is_in_progress(h->handshaker)) { /* We may need more data. */ if (result == TSI_INCOMPLETE_DATA) { grpc_endpoint_read(exec_ctx, h->args->endpoint, h->args->read_buffer, &h->on_handshake_data_received_from_peer); goto done; } else { error = send_handshake_bytes_to_peer_locked(exec_ctx, h); if (error != GRPC_ERROR_NONE) { security_handshake_failed_locked(exec_ctx, h, error); gpr_mu_unlock(&h->mu); security_handshaker_unref(exec_ctx, h); return; } goto done; } } if (result != TSI_OK) { security_handshake_failed_locked( exec_ctx, h, grpc_set_tsi_error_result( GRPC_ERROR_CREATE("Handshake failed"), result)); gpr_mu_unlock(&h->mu); security_handshaker_unref(exec_ctx, h); return; } /* Handshake is done and successful this point. */ bool has_left_overs_in_current_slice = (consumed_slice_size < GRPC_SLICE_LENGTH(h->args->read_buffer->slices[i])); size_t num_left_overs = (has_left_overs_in_current_slice ? 1 : 0) + h->args->read_buffer->count - i - 1; if (num_left_overs > 0) { /* Put the leftovers in our buffer (ownership transfered). */ if (has_left_overs_in_current_slice) { grpc_slice_buffer_add( &h->left_overs, grpc_slice_split_tail(&h->args->read_buffer->slices[i], consumed_slice_size)); /* split_tail above increments refcount. */ grpc_slice_unref(h->args->read_buffer->slices[i]); } grpc_slice_buffer_addn( &h->left_overs, &h->args->read_buffer->slices[i + 1], num_left_overs - (size_t)has_left_overs_in_current_slice); } // Check peer. error = check_peer_locked(exec_ctx, h); if (error != GRPC_ERROR_NONE) { security_handshake_failed_locked(exec_ctx, h, error); gpr_mu_unlock(&h->mu); security_handshaker_unref(exec_ctx, h); return; } done: gpr_mu_unlock(&h->mu); }
static bool pick_subchannel(grpc_exec_ctx *exec_ctx, grpc_call_element *elem, grpc_metadata_batch *initial_metadata, uint32_t initial_metadata_flags, grpc_connected_subchannel **connected_subchannel, grpc_closure *on_ready, grpc_error *error) { GPR_TIMER_BEGIN("pick_subchannel", 0); channel_data *chand = elem->channel_data; call_data *calld = elem->call_data; continue_picking_args *cpa; grpc_closure *closure; GPR_ASSERT(connected_subchannel); gpr_mu_lock(&chand->mu); if (initial_metadata == NULL) { if (chand->lb_policy != NULL) { grpc_lb_policy_cancel_pick(exec_ctx, chand->lb_policy, connected_subchannel, GRPC_ERROR_REF(error)); } for (closure = chand->waiting_for_config_closures.head; closure != NULL; closure = closure->next_data.next) { cpa = closure->cb_arg; if (cpa->connected_subchannel == connected_subchannel) { cpa->connected_subchannel = NULL; grpc_exec_ctx_sched( exec_ctx, cpa->on_ready, GRPC_ERROR_CREATE_REFERENCING("Pick cancelled", &error, 1), NULL); } } gpr_mu_unlock(&chand->mu); GPR_TIMER_END("pick_subchannel", 0); GRPC_ERROR_UNREF(error); return true; } GPR_ASSERT(error == GRPC_ERROR_NONE); if (chand->lb_policy != NULL) { grpc_lb_policy *lb_policy = chand->lb_policy; GRPC_LB_POLICY_REF(lb_policy, "pick_subchannel"); gpr_mu_unlock(&chand->mu); // If the application explicitly set wait_for_ready, use that. // Otherwise, if the service config specified a value for this // method, use that. const bool wait_for_ready_set_from_api = initial_metadata_flags & GRPC_INITIAL_METADATA_WAIT_FOR_READY_EXPLICITLY_SET; const bool wait_for_ready_set_from_service_config = calld->wait_for_ready_from_service_config != WAIT_FOR_READY_UNSET; if (!wait_for_ready_set_from_api && wait_for_ready_set_from_service_config) { if (calld->wait_for_ready_from_service_config == WAIT_FOR_READY_TRUE) { initial_metadata_flags |= GRPC_INITIAL_METADATA_WAIT_FOR_READY; } else { initial_metadata_flags &= ~GRPC_INITIAL_METADATA_WAIT_FOR_READY; } } // TODO(dgq): make this deadline configurable somehow. const grpc_lb_policy_pick_args inputs = { initial_metadata, initial_metadata_flags, &calld->lb_token_mdelem, gpr_inf_future(GPR_CLOCK_MONOTONIC)}; const bool result = grpc_lb_policy_pick( exec_ctx, lb_policy, &inputs, connected_subchannel, NULL, on_ready); GRPC_LB_POLICY_UNREF(exec_ctx, lb_policy, "pick_subchannel"); GPR_TIMER_END("pick_subchannel", 0); return result; } if (chand->resolver != NULL && !chand->started_resolving) { chand->started_resolving = true; GRPC_CHANNEL_STACK_REF(chand->owning_stack, "resolver"); grpc_resolver_next(exec_ctx, chand->resolver, &chand->resolver_result, &chand->on_resolver_result_changed); } if (chand->resolver != NULL) { cpa = gpr_malloc(sizeof(*cpa)); cpa->initial_metadata = initial_metadata; cpa->initial_metadata_flags = initial_metadata_flags; cpa->connected_subchannel = connected_subchannel; cpa->on_ready = on_ready; cpa->elem = elem; grpc_closure_init(&cpa->closure, continue_picking, cpa); grpc_closure_list_append(&chand->waiting_for_config_closures, &cpa->closure, GRPC_ERROR_NONE); } else { grpc_exec_ctx_sched(exec_ctx, on_ready, GRPC_ERROR_CREATE("Disconnected"), NULL); } gpr_mu_unlock(&chand->mu); GPR_TIMER_END("pick_subchannel", 0); return false; }
grpc_error *grpc_tcp_server_add_port(grpc_tcp_server *s, const grpc_resolved_address *addr, int *port) { // This function is mostly copied from tcp_server_windows.c grpc_tcp_listener *sp = NULL; uv_tcp_t *handle; grpc_resolved_address addr6_v4mapped; grpc_resolved_address wildcard; grpc_resolved_address *allocated_addr = NULL; grpc_resolved_address sockname_temp; unsigned port_index = 0; int status; grpc_error *error = GRPC_ERROR_NONE; if (s->tail != NULL) { port_index = s->tail->port_index + 1; } /* Check if this is a wildcard port, and if so, try to keep the port the same as some previously created listener. */ if (grpc_sockaddr_get_port(addr) == 0) { for (sp = s->head; sp; sp = sp->next) { sockname_temp.len = sizeof(struct sockaddr_storage); if (0 == uv_tcp_getsockname(sp->handle, (struct sockaddr *)&sockname_temp.addr, (int *)&sockname_temp.len)) { *port = grpc_sockaddr_get_port(&sockname_temp); if (*port > 0) { allocated_addr = gpr_malloc(sizeof(grpc_resolved_address)); memcpy(allocated_addr, addr, sizeof(grpc_resolved_address)); grpc_sockaddr_set_port(allocated_addr, *port); addr = allocated_addr; break; } } } } if (grpc_sockaddr_to_v4mapped(addr, &addr6_v4mapped)) { addr = &addr6_v4mapped; } /* Treat :: or 0.0.0.0 as a family-agnostic wildcard. */ if (grpc_sockaddr_is_wildcard(addr, port)) { grpc_sockaddr_make_wildcard6(*port, &wildcard); addr = &wildcard; } handle = gpr_malloc(sizeof(uv_tcp_t)); status = uv_tcp_init(uv_default_loop(), handle); if (status == 0) { error = add_socket_to_server(s, handle, addr, port_index, &sp); } else { error = GRPC_ERROR_CREATE("Failed to initialize UV tcp handle"); error = grpc_error_set_str(error, GRPC_ERROR_STR_OS_ERROR, uv_strerror(status)); } gpr_free(allocated_addr); if (error != GRPC_ERROR_NONE) { grpc_error *error_out = GRPC_ERROR_CREATE_REFERENCING( "Failed to add port to server", &error, 1); GRPC_ERROR_UNREF(error); error = error_out; *port = -1; } else { GPR_ASSERT(sp != NULL); *port = sp->port; } return error; }