static void InitHQPanning(ALCdevice *device, const AmbDecConf *conf, const ALuint speakermap[MAX_OUTPUT_CHANNELS]) { const char *devname; int decflags = 0; size_t count; ALuint i; devname = al_string_get_cstr(device->DeviceName); if(GetConfigValueBool(devname, "decoder", "distance-comp", 1)) decflags |= BFDF_DistanceComp; if((conf->ChanMask&AMBI_PERIPHONIC_MASK)) { count = (conf->ChanMask > 0x1ff) ? 16 : (conf->ChanMask > 0xf) ? 9 : 4; for(i = 0;i < count;i++) { device->Dry.Ambi.Map[i].Scale = 1.0f; device->Dry.Ambi.Map[i].Index = i; } } else { static int map[MAX_AMBI_COEFFS] = { 0, 1, 3, 4, 8, 9, 15 }; count = (conf->ChanMask > 0x1ff) ? 7 : (conf->ChanMask > 0xf) ? 5 : 3; for(i = 0;i < count;i++) { device->Dry.Ambi.Map[i].Scale = 1.0f; device->Dry.Ambi.Map[i].Index = map[i]; } } device->Dry.CoeffCount = 0; device->Dry.NumChannels = count; TRACE("Enabling %s-band %s-order%s ambisonic decoder\n", (conf->FreqBands == 1) ? "single" : "dual", (conf->ChanMask > 0xf) ? (conf->ChanMask > 0x1ff) ? "third" : "second" : "first", (conf->ChanMask&AMBI_PERIPHONIC_MASK) ? " periphonic" : "" ); bformatdec_reset(device->AmbiDecoder, conf, count, device->Frequency, speakermap, decflags); if(bformatdec_getOrder(device->AmbiDecoder) < 2) { memcpy(&device->FOAOut.Ambi, &device->Dry.Ambi, sizeof(device->FOAOut.Ambi)); device->FOAOut.CoeffCount = device->Dry.CoeffCount; } else { memset(&device->FOAOut.Ambi, 0, sizeof(device->FOAOut.Ambi)); for(i = 0;i < 4;i++) { device->FOAOut.Ambi.Map[i].Scale = 1.0f; device->FOAOut.Ambi.Map[i].Index = i; } device->FOAOut.CoeffCount = 0; } }
void alc_pulse_init(BackendFuncs *func_list) //{{{ { *func_list = pulse_funcs; pulse_ctx_flags = 0; if(!GetConfigValueBool("pulse", "spawn-server", 0)) pulse_ctx_flags |= PA_CONTEXT_NOAUTOSPAWN; } //}}}
ALCboolean alc_pulse_init(BackendFuncs *func_list) //{{{ { if(!pulse_load()) return ALC_FALSE; *func_list = pulse_funcs; pulse_ctx_flags = 0; if(!GetConfigValueBool("pulse", "spawn-server", 0)) pulse_ctx_flags |= PA_CONTEXT_NOAUTOSPAWN; return ALC_TRUE; } //}}}
ALCboolean alc_pulse_init(BackendFuncs *func_list) { ALCboolean ret = ALC_FALSE; if(pulse_load()) { pa_threaded_mainloop *loop; pulse_ctx_flags = 0; if(!GetConfigValueBool("pulse", "spawn-server", 0)) pulse_ctx_flags |= PA_CONTEXT_NOAUTOSPAWN; if((loop=pa_threaded_mainloop_new()) && pa_threaded_mainloop_start(loop) >= 0) { pa_context *context; pa_threaded_mainloop_lock(loop); context = connect_context(loop, AL_TRUE); if(context) { *func_list = pulse_funcs; ret = ALC_TRUE; /* Some libraries (Phonon, Qt) set some pulseaudio properties * through environment variables, which causes all streams in * the process to inherit them. This attempts to filter those * properties out by setting them to 0-length data. */ prop_filter = pa_proplist_new(); pa_proplist_set(prop_filter, PA_PROP_MEDIA_ROLE, NULL, 0); pa_proplist_set(prop_filter, "phonon.streamid", NULL, 0); pa_context_disconnect(context); pa_context_unref(context); } pa_threaded_mainloop_unlock(loop); pa_threaded_mainloop_stop(loop); } if(loop) pa_threaded_mainloop_free(loop); } return ret; }
static ALCboolean alsa_reset_playback(ALCdevice *device) { alsa_data *data = (alsa_data*)device->ExtraData; snd_pcm_uframes_t periodSizeInFrames; snd_pcm_sw_params_t *sp = NULL; snd_pcm_hw_params_t *p = NULL; snd_pcm_access_t access; unsigned int periods; unsigned int rate; int allowmmap; char *err; int i; switch(aluBytesFromFormat(device->Format)) { case 1: data->format = SND_PCM_FORMAT_U8; break; case 2: data->format = SND_PCM_FORMAT_S16; break; case 4: data->format = SND_PCM_FORMAT_FLOAT; break; default: AL_PRINT("Unknown format: 0x%x\n", device->Format); return ALC_FALSE; } allowmmap = GetConfigValueBool("alsa", "mmap", 1); periods = device->NumUpdates; periodSizeInFrames = device->UpdateSize; rate = device->Frequency; err = NULL; psnd_pcm_hw_params_malloc(&p); if((i=psnd_pcm_hw_params_any(data->pcmHandle, p)) < 0) err = "any"; /* set interleaved access */ if(err == NULL && (!allowmmap || (i=psnd_pcm_hw_params_set_access(data->pcmHandle, p, SND_PCM_ACCESS_MMAP_INTERLEAVED)) < 0)) { if(periods > 2) periods--; if((i=psnd_pcm_hw_params_set_access(data->pcmHandle, p, SND_PCM_ACCESS_RW_INTERLEAVED)) < 0) err = "set access"; } /* set format (implicitly sets sample bits) */ if(err == NULL && (i=psnd_pcm_hw_params_set_format(data->pcmHandle, p, data->format)) < 0) err = "set format"; /* set channels (implicitly sets frame bits) */ if(err == NULL && (i=psnd_pcm_hw_params_set_channels(data->pcmHandle, p, aluChannelsFromFormat(device->Format))) < 0) err = "set channels"; /* set periods (implicitly constrains period/buffer parameters) */ if(err == NULL && (i=psnd_pcm_hw_params_set_periods_near(data->pcmHandle, p, &periods, NULL)) < 0) err = "set periods near"; /* set rate (implicitly constrains period/buffer parameters) */ if(err == NULL && (i=psnd_pcm_hw_params_set_rate_near(data->pcmHandle, p, &rate, NULL)) < 0) err = "set rate near"; /* set period size in frame units (implicitly sets buffer size/bytes/time and period time/bytes) */ if(err == NULL && (i=psnd_pcm_hw_params_set_period_size_near(data->pcmHandle, p, &periodSizeInFrames, NULL)) < 0) err = "set period size near"; /* install and prepare hardware configuration */ if(err == NULL && (i=psnd_pcm_hw_params(data->pcmHandle, p)) < 0) err = "set params"; if(err == NULL && (i=psnd_pcm_hw_params_get_access(p, &access)) < 0) err = "get access"; if(err == NULL && (i=psnd_pcm_hw_params_get_period_size(p, &periodSizeInFrames, NULL)) < 0) err = "get period size"; if(err == NULL && (i=psnd_pcm_hw_params_get_periods(p, &periods, NULL)) < 0) err = "get periods"; if(err != NULL) { AL_PRINT("%s failed: %s\n", err, psnd_strerror(i)); psnd_pcm_hw_params_free(p); return ALC_FALSE; } psnd_pcm_hw_params_free(p); err = NULL; psnd_pcm_sw_params_malloc(&sp); if((i=psnd_pcm_sw_params_current(data->pcmHandle, sp)) != 0) err = "sw current"; if(err == NULL && (i=psnd_pcm_sw_params_set_avail_min(data->pcmHandle, sp, periodSizeInFrames)) != 0) err = "sw set avail min"; if(err == NULL && (i=psnd_pcm_sw_params(data->pcmHandle, sp)) != 0) err = "sw set params"; if(err != NULL) { AL_PRINT("%s failed: %s\n", err, psnd_strerror(i)); psnd_pcm_sw_params_free(sp); return ALC_FALSE; } psnd_pcm_sw_params_free(sp); data->size = psnd_pcm_frames_to_bytes(data->pcmHandle, periodSizeInFrames); if(access == SND_PCM_ACCESS_RW_INTERLEAVED) { /* Increase periods by one, since the temp buffer counts as an extra * period */ periods++; data->buffer = malloc(data->size); if(!data->buffer) { AL_PRINT("buffer malloc failed\n"); return ALC_FALSE; } data->thread = StartThread(ALSANoMMapProc, device); } else { i = psnd_pcm_prepare(data->pcmHandle); if(i < 0) { AL_PRINT("prepare error: %s\n", psnd_strerror(i)); free(data->buffer); data->buffer = NULL; return ALC_FALSE; } data->thread = StartThread(ALSAProc, device); } if(data->thread == NULL) { AL_PRINT("Could not create playback thread\n"); free(data->buffer); data->buffer = NULL; return ALC_FALSE; } device->UpdateSize = periodSizeInFrames; device->NumUpdates = periods; device->Frequency = rate; return ALC_TRUE; }
void aluInitRenderer(ALCdevice *device, ALint hrtf_id, enum HrtfRequestMode hrtf_appreq, enum HrtfRequestMode hrtf_userreq) { const char *mode; bool headphones; int bs2blevel; size_t i; device->Hrtf = NULL; al_string_clear(&device->Hrtf_Name); device->Render_Mode = NormalRender; memset(&device->Dry.Ambi, 0, sizeof(device->Dry.Ambi)); device->Dry.CoeffCount = 0; device->Dry.NumChannels = 0; if(device->FmtChans != DevFmtStereo) { ALuint speakermap[MAX_OUTPUT_CHANNELS]; const char *devname, *layout = NULL; AmbDecConf conf, *pconf = NULL; if(hrtf_appreq == Hrtf_Enable) device->Hrtf_Status = ALC_HRTF_UNSUPPORTED_FORMAT_SOFT; ambdec_init(&conf); devname = al_string_get_cstr(device->DeviceName); switch(device->FmtChans) { case DevFmtQuad: layout = "quad"; break; case DevFmtX51: layout = "surround51"; break; case DevFmtX51Rear: layout = "surround51rear"; break; case DevFmtX61: layout = "surround61"; break; case DevFmtX71: layout = "surround71"; break; /* Mono, Stereo, and B-Fornat output don't use custom decoders. */ case DevFmtMono: case DevFmtStereo: case DevFmtBFormat3D: break; } if(layout) { const char *fname; if(ConfigValueStr(devname, "decoder", layout, &fname)) { if(!ambdec_load(&conf, fname)) ERR("Failed to load layout file %s\n", fname); else { if(conf.ChanMask > 0xffff) ERR("Unsupported channel mask 0x%04x (max 0xffff)\n", conf.ChanMask); else { if(MakeSpeakerMap(device, &conf, speakermap)) pconf = &conf; } } } } if(pconf && GetConfigValueBool(devname, "decoder", "hq-mode", 0)) { if(!device->AmbiDecoder) device->AmbiDecoder = bformatdec_alloc(); } else { bformatdec_free(device->AmbiDecoder); device->AmbiDecoder = NULL; } if(!pconf) InitPanning(device); else if(device->AmbiDecoder) InitHQPanning(device, pconf, speakermap); else InitCustomPanning(device, pconf, speakermap); ambdec_deinit(&conf); return; } bformatdec_free(device->AmbiDecoder); device->AmbiDecoder = NULL; headphones = device->IsHeadphones; if(device->Type != Loopback) { const char *mode; if(ConfigValueStr(al_string_get_cstr(device->DeviceName), NULL, "stereo-mode", &mode)) { if(strcasecmp(mode, "headphones") == 0) headphones = true; else if(strcasecmp(mode, "speakers") == 0) headphones = false; else if(strcasecmp(mode, "auto") != 0) ERR("Unexpected stereo-mode: %s\n", mode); } } if(hrtf_userreq == Hrtf_Default) { bool usehrtf = (headphones && hrtf_appreq != Hrtf_Disable) || (hrtf_appreq == Hrtf_Enable); if(!usehrtf) goto no_hrtf; device->Hrtf_Status = ALC_HRTF_ENABLED_SOFT; if(headphones && hrtf_appreq != Hrtf_Disable) device->Hrtf_Status = ALC_HRTF_HEADPHONES_DETECTED_SOFT; } else { if(hrtf_userreq != Hrtf_Enable) { if(hrtf_appreq == Hrtf_Enable) device->Hrtf_Status = ALC_HRTF_DENIED_SOFT; goto no_hrtf; } device->Hrtf_Status = ALC_HRTF_REQUIRED_SOFT; } if(VECTOR_SIZE(device->Hrtf_List) == 0) { VECTOR_DEINIT(device->Hrtf_List); device->Hrtf_List = EnumerateHrtf(device->DeviceName); } if(hrtf_id >= 0 && (size_t)hrtf_id < VECTOR_SIZE(device->Hrtf_List)) { const HrtfEntry *entry = &VECTOR_ELEM(device->Hrtf_List, hrtf_id); if(GetHrtfSampleRate(entry->hrtf) == device->Frequency) { device->Hrtf = entry->hrtf; al_string_copy(&device->Hrtf_Name, entry->name); } } for(i = 0;!device->Hrtf && i < VECTOR_SIZE(device->Hrtf_List);i++) { const HrtfEntry *entry = &VECTOR_ELEM(device->Hrtf_List, i); if(GetHrtfSampleRate(entry->hrtf) == device->Frequency) { device->Hrtf = entry->hrtf; al_string_copy(&device->Hrtf_Name, entry->name); } } if(device->Hrtf) { device->Render_Mode = HrtfRender; if(ConfigValueStr(al_string_get_cstr(device->DeviceName), NULL, "hrtf-mode", &mode)) { if(strcasecmp(mode, "full") == 0) device->Render_Mode = HrtfRender; else if(strcasecmp(mode, "basic") == 0) device->Render_Mode = NormalRender; else ERR("Unexpected hrtf-mode: %s\n", mode); } TRACE("HRTF enabled, \"%s\"\n", al_string_get_cstr(device->Hrtf_Name)); InitHrtfPanning(device); return; } device->Hrtf_Status = ALC_HRTF_UNSUPPORTED_FORMAT_SOFT; no_hrtf: TRACE("HRTF disabled\n"); bs2blevel = ((headphones && hrtf_appreq != Hrtf_Disable) || (hrtf_appreq == Hrtf_Enable)) ? 5 : 0; if(device->Type != Loopback) ConfigValueInt(al_string_get_cstr(device->DeviceName), NULL, "cf_level", &bs2blevel); if(bs2blevel > 0 && bs2blevel <= 6) { device->Bs2b = al_calloc(16, sizeof(*device->Bs2b)); bs2b_set_params(device->Bs2b, bs2blevel, device->Frequency); device->Render_Mode = StereoPair; TRACE("BS2B enabled\n"); InitPanning(device); return; } TRACE("BS2B disabled\n"); device->Render_Mode = NormalRender; if(ConfigValueStr(al_string_get_cstr(device->DeviceName), NULL, "stereo-panning", &mode)) { if(strcasecmp(mode, "paired") == 0) device->Render_Mode = StereoPair; else if(strcasecmp(mode, "uhj") != 0) ERR("Unexpected stereo-panning: %s\n", mode); } if(device->Render_Mode == NormalRender) { device->Uhj_Encoder = al_calloc(16, sizeof(Uhj2Encoder)); TRACE("UHJ enabled\n"); InitUhjPanning(device); return; } TRACE("UHJ disabled\n"); InitPanning(device); }
static ALCboolean alsa_reset_playback(ALCdevice *device) { alsa_data *data = (alsa_data*)device->ExtraData; snd_pcm_uframes_t periodSizeInFrames; unsigned int periodLen, bufferLen; snd_pcm_sw_params_t *sp = NULL; snd_pcm_hw_params_t *hp = NULL; snd_pcm_access_t access; snd_pcm_format_t format; unsigned int periods; unsigned int rate; const char *funcerr; int allowmmap; int err; format = -1; switch(device->FmtType) { case DevFmtByte: format = SND_PCM_FORMAT_S8; break; case DevFmtUByte: format = SND_PCM_FORMAT_U8; break; case DevFmtShort: format = SND_PCM_FORMAT_S16; break; case DevFmtUShort: format = SND_PCM_FORMAT_U16; break; case DevFmtInt: format = SND_PCM_FORMAT_S32; break; case DevFmtUInt: format = SND_PCM_FORMAT_U32; break; case DevFmtFloat: format = SND_PCM_FORMAT_FLOAT; break; } allowmmap = GetConfigValueBool("alsa", "mmap", 1); periods = device->NumUpdates; periodLen = (ALuint64)device->UpdateSize * 1000000 / device->Frequency; bufferLen = periodLen * periods; rate = device->Frequency; snd_pcm_hw_params_malloc(&hp); #define CHECK(x) if((funcerr=#x),(err=(x)) < 0) goto error CHECK(snd_pcm_hw_params_any(data->pcmHandle, hp)); /* set interleaved access */ if(!allowmmap || snd_pcm_hw_params_set_access(data->pcmHandle, hp, SND_PCM_ACCESS_MMAP_INTERLEAVED) < 0) { if(periods > 2) { periods--; bufferLen = periodLen * periods; } CHECK(snd_pcm_hw_params_set_access(data->pcmHandle, hp, SND_PCM_ACCESS_RW_INTERLEAVED)); } /* test and set format (implicitly sets sample bits) */ if(snd_pcm_hw_params_test_format(data->pcmHandle, hp, format) < 0) { static const struct { snd_pcm_format_t format; enum DevFmtType fmttype; } formatlist[] = { { SND_PCM_FORMAT_FLOAT, DevFmtFloat }, { SND_PCM_FORMAT_S32, DevFmtInt }, { SND_PCM_FORMAT_U32, DevFmtUInt }, { SND_PCM_FORMAT_S16, DevFmtShort }, { SND_PCM_FORMAT_U16, DevFmtUShort }, { SND_PCM_FORMAT_S8, DevFmtByte }, { SND_PCM_FORMAT_U8, DevFmtUByte }, }; size_t k; for(k = 0;k < COUNTOF(formatlist);k++) { format = formatlist[k].format; if(snd_pcm_hw_params_test_format(data->pcmHandle, hp, format) >= 0) { device->FmtType = formatlist[k].fmttype; break; } } } CHECK(snd_pcm_hw_params_set_format(data->pcmHandle, hp, format)); /* test and set channels (implicitly sets frame bits) */ if(snd_pcm_hw_params_test_channels(data->pcmHandle, hp, ChannelsFromDevFmt(device->FmtChans)) < 0) { static const enum DevFmtChannels channellist[] = { DevFmtStereo, DevFmtQuad, DevFmtX51, DevFmtX71, DevFmtMono, }; size_t k; for(k = 0;k < COUNTOF(channellist);k++) { if(snd_pcm_hw_params_test_channels(data->pcmHandle, hp, ChannelsFromDevFmt(channellist[k])) >= 0) { device->FmtChans = channellist[k]; break; } } } CHECK(snd_pcm_hw_params_set_channels(data->pcmHandle, hp, ChannelsFromDevFmt(device->FmtChans))); /* set rate (implicitly constrains period/buffer parameters) */ if(snd_pcm_hw_params_set_rate_resample(data->pcmHandle, hp, 0) < 0) ERR("Failed to disable ALSA resampler\n"); CHECK(snd_pcm_hw_params_set_rate_near(data->pcmHandle, hp, &rate, NULL)); /* set buffer time (implicitly constrains period/buffer parameters) */ CHECK(snd_pcm_hw_params_set_buffer_time_near(data->pcmHandle, hp, &bufferLen, NULL)); /* set period time (implicitly sets buffer size/bytes/time and period size/bytes) */ CHECK(snd_pcm_hw_params_set_period_time_near(data->pcmHandle, hp, &periodLen, NULL)); /* install and prepare hardware configuration */ CHECK(snd_pcm_hw_params(data->pcmHandle, hp)); /* retrieve configuration info */ CHECK(snd_pcm_hw_params_get_access(hp, &access)); CHECK(snd_pcm_hw_params_get_period_size(hp, &periodSizeInFrames, NULL)); CHECK(snd_pcm_hw_params_get_periods(hp, &periods, NULL)); snd_pcm_hw_params_free(hp); hp = NULL; snd_pcm_sw_params_malloc(&sp); CHECK(snd_pcm_sw_params_current(data->pcmHandle, sp)); CHECK(snd_pcm_sw_params_set_avail_min(data->pcmHandle, sp, periodSizeInFrames)); CHECK(snd_pcm_sw_params_set_stop_threshold(data->pcmHandle, sp, periodSizeInFrames*periods)); CHECK(snd_pcm_sw_params(data->pcmHandle, sp)); #undef CHECK snd_pcm_sw_params_free(sp); sp = NULL; /* Increase periods by one, since the temp buffer counts as an extra * period */ if(access == SND_PCM_ACCESS_RW_INTERLEAVED) device->NumUpdates = periods+1; else device->NumUpdates = periods; device->UpdateSize = periodSizeInFrames; device->Frequency = rate; SetDefaultChannelOrder(device); return ALC_TRUE; error: ERR("%s failed: %s\n", funcerr, snd_strerror(err)); if(hp) snd_pcm_hw_params_free(hp); if(sp) snd_pcm_sw_params_free(sp); return ALC_FALSE; }
int MOB_File_GetConfigValueBool(const char *blockName, const char *keyName, int def) { char buffer[ 64 ]; return GetConfigValueBool( ConvertBlockName( blockName ), ConvertKeyName( buffer, keyName ), def ); }
ALvoid aluInitPanning(ALCdevice *Device) { ALfloat SpeakerAngle[MAXCHANNELS]; ALfloat (*Matrix)[MAXCHANNELS]; Channel *Speaker2Chan; ALfloat Alpha, Theta; ALfloat *PanningLUT; ALint pos, offset; ALuint s, s2; for(s = 0;s < MAXCHANNELS;s++) { for(s2 = 0;s2 < MAXCHANNELS;s2++) Device->ChannelMatrix[s][s2] = ((s==s2) ? 1.0f : 0.0f); } Speaker2Chan = Device->Speaker2Chan; Matrix = Device->ChannelMatrix; switch(Device->FmtChans) { case DevFmtMono: Matrix[FRONT_LEFT][FRONT_CENTER] = aluSqrt(0.5); Matrix[FRONT_RIGHT][FRONT_CENTER] = aluSqrt(0.5); Matrix[SIDE_LEFT][FRONT_CENTER] = aluSqrt(0.5); Matrix[SIDE_RIGHT][FRONT_CENTER] = aluSqrt(0.5); Matrix[BACK_LEFT][FRONT_CENTER] = aluSqrt(0.5); Matrix[BACK_RIGHT][FRONT_CENTER] = aluSqrt(0.5); Matrix[BACK_CENTER][FRONT_CENTER] = 1.0f; Device->NumChan = 1; Speaker2Chan[0] = FRONT_CENTER; SpeakerAngle[0] = 0.0f * M_PI/180.0f; break; case DevFmtStereo: Matrix[FRONT_CENTER][FRONT_LEFT] = aluSqrt(0.5); Matrix[FRONT_CENTER][FRONT_RIGHT] = aluSqrt(0.5); Matrix[SIDE_LEFT][FRONT_LEFT] = 1.0f; Matrix[SIDE_RIGHT][FRONT_RIGHT] = 1.0f; Matrix[BACK_LEFT][FRONT_LEFT] = 1.0f; Matrix[BACK_RIGHT][FRONT_RIGHT] = 1.0f; Matrix[BACK_CENTER][FRONT_LEFT] = aluSqrt(0.5); Matrix[BACK_CENTER][FRONT_RIGHT] = aluSqrt(0.5); Device->NumChan = 2; Speaker2Chan[0] = FRONT_LEFT; Speaker2Chan[1] = FRONT_RIGHT; SpeakerAngle[0] = -90.0f * M_PI/180.0f; SpeakerAngle[1] = 90.0f * M_PI/180.0f; SetSpeakerArrangement("layout_STEREO", SpeakerAngle, Speaker2Chan, Device->NumChan); break; case DevFmtQuad: Matrix[FRONT_CENTER][FRONT_LEFT] = aluSqrt(0.5); Matrix[FRONT_CENTER][FRONT_RIGHT] = aluSqrt(0.5); Matrix[SIDE_LEFT][FRONT_LEFT] = aluSqrt(0.5); Matrix[SIDE_LEFT][BACK_LEFT] = aluSqrt(0.5); Matrix[SIDE_RIGHT][FRONT_RIGHT] = aluSqrt(0.5); Matrix[SIDE_RIGHT][BACK_RIGHT] = aluSqrt(0.5); Matrix[BACK_CENTER][BACK_LEFT] = aluSqrt(0.5); Matrix[BACK_CENTER][BACK_RIGHT] = aluSqrt(0.5); Device->NumChan = 4; Speaker2Chan[0] = BACK_LEFT; Speaker2Chan[1] = FRONT_LEFT; Speaker2Chan[2] = FRONT_RIGHT; Speaker2Chan[3] = BACK_RIGHT; SpeakerAngle[0] = -135.0f * M_PI/180.0f; SpeakerAngle[1] = -45.0f * M_PI/180.0f; SpeakerAngle[2] = 45.0f * M_PI/180.0f; SpeakerAngle[3] = 135.0f * M_PI/180.0f; SetSpeakerArrangement("layout_QUAD", SpeakerAngle, Speaker2Chan, Device->NumChan); break; case DevFmtX51: Matrix[SIDE_LEFT][FRONT_LEFT] = aluSqrt(0.5); Matrix[SIDE_LEFT][BACK_LEFT] = aluSqrt(0.5); Matrix[SIDE_RIGHT][FRONT_RIGHT] = aluSqrt(0.5); Matrix[SIDE_RIGHT][BACK_RIGHT] = aluSqrt(0.5); Matrix[BACK_CENTER][BACK_LEFT] = aluSqrt(0.5); Matrix[BACK_CENTER][BACK_RIGHT] = aluSqrt(0.5); Device->NumChan = 5; Speaker2Chan[0] = BACK_LEFT; Speaker2Chan[1] = FRONT_LEFT; Speaker2Chan[2] = FRONT_CENTER; Speaker2Chan[3] = FRONT_RIGHT; Speaker2Chan[4] = BACK_RIGHT; SpeakerAngle[0] = -110.0f * M_PI/180.0f; SpeakerAngle[1] = -30.0f * M_PI/180.0f; SpeakerAngle[2] = 0.0f * M_PI/180.0f; SpeakerAngle[3] = 30.0f * M_PI/180.0f; SpeakerAngle[4] = 110.0f * M_PI/180.0f; SetSpeakerArrangement("layout_51CHN", SpeakerAngle, Speaker2Chan, Device->NumChan); break; case DevFmtX61: Matrix[BACK_LEFT][BACK_CENTER] = aluSqrt(0.5); Matrix[BACK_LEFT][SIDE_LEFT] = aluSqrt(0.5); Matrix[BACK_RIGHT][BACK_CENTER] = aluSqrt(0.5); Matrix[BACK_RIGHT][SIDE_RIGHT] = aluSqrt(0.5); Device->NumChan = 6; Speaker2Chan[0] = SIDE_LEFT; Speaker2Chan[1] = FRONT_LEFT; Speaker2Chan[2] = FRONT_CENTER; Speaker2Chan[3] = FRONT_RIGHT; Speaker2Chan[4] = SIDE_RIGHT; Speaker2Chan[5] = BACK_CENTER; SpeakerAngle[0] = -90.0f * M_PI/180.0f; SpeakerAngle[1] = -30.0f * M_PI/180.0f; SpeakerAngle[2] = 0.0f * M_PI/180.0f; SpeakerAngle[3] = 30.0f * M_PI/180.0f; SpeakerAngle[4] = 90.0f * M_PI/180.0f; SpeakerAngle[5] = 180.0f * M_PI/180.0f; SetSpeakerArrangement("layout_61CHN", SpeakerAngle, Speaker2Chan, Device->NumChan); break; case DevFmtX71: Matrix[BACK_CENTER][BACK_LEFT] = aluSqrt(0.5); Matrix[BACK_CENTER][BACK_RIGHT] = aluSqrt(0.5); Device->NumChan = 7; Speaker2Chan[0] = BACK_LEFT; Speaker2Chan[1] = SIDE_LEFT; Speaker2Chan[2] = FRONT_LEFT; Speaker2Chan[3] = FRONT_CENTER; Speaker2Chan[4] = FRONT_RIGHT; Speaker2Chan[5] = SIDE_RIGHT; Speaker2Chan[6] = BACK_RIGHT; SpeakerAngle[0] = -150.0f * M_PI/180.0f; SpeakerAngle[1] = -90.0f * M_PI/180.0f; SpeakerAngle[2] = -30.0f * M_PI/180.0f; SpeakerAngle[3] = 0.0f * M_PI/180.0f; SpeakerAngle[4] = 30.0f * M_PI/180.0f; SpeakerAngle[5] = 90.0f * M_PI/180.0f; SpeakerAngle[6] = 150.0f * M_PI/180.0f; SetSpeakerArrangement("layout_71CHN", SpeakerAngle, Speaker2Chan, Device->NumChan); break; } if(GetConfigValueBool(NULL, "scalemix", 0)) { ALfloat maxout = 1.0f; for(s = 0;s < MAXCHANNELS;s++) { ALfloat out = 0.0f; for(s2 = 0;s2 < MAXCHANNELS;s2++) out += Device->ChannelMatrix[s2][s]; maxout = __max(maxout, out); } maxout = 1.0f/maxout; for(s = 0;s < MAXCHANNELS;s++) { for(s2 = 0;s2 < MAXCHANNELS;s2++) Device->ChannelMatrix[s2][s] *= maxout; } } PanningLUT = Device->PanningLUT; for(pos = 0; pos < LUT_NUM; pos++) { /* clear all values */ offset = MAXCHANNELS * pos; for(s = 0; s < MAXCHANNELS; s++) PanningLUT[offset+s] = 0.0f; if(Device->NumChan == 1) { PanningLUT[offset + Speaker2Chan[0]] = 1.0f; continue; } /* source angle */ Theta = aluLUTpos2Angle(pos); /* set panning values */ for(s = 0; s < Device->NumChan - 1; s++) { if(Theta >= SpeakerAngle[s] && Theta < SpeakerAngle[s+1]) { /* source between speaker s and speaker s+1 */ Alpha = M_PI_2 * (Theta-SpeakerAngle[s]) / (SpeakerAngle[s+1]-SpeakerAngle[s]); PanningLUT[offset + Speaker2Chan[s]] = cos(Alpha); PanningLUT[offset + Speaker2Chan[s+1]] = sin(Alpha); break; } } if(s == Device->NumChan - 1) { /* source between last and first speaker */ if(Theta < SpeakerAngle[0]) Theta += 2.0f * M_PI; Alpha = M_PI_2 * (Theta-SpeakerAngle[s]) / (2.0f * M_PI + SpeakerAngle[0]-SpeakerAngle[s]); PanningLUT[offset + Speaker2Chan[s]] = cos(Alpha); PanningLUT[offset + Speaker2Chan[0]] = sin(Alpha); } } }
static void alc_init(void) { int i; const char *devs, *str; InitializeCriticalSection(&g_csMutex); ALTHUNK_INIT(); ReadALConfig(); tls_create(&LocalContext); devs = GetConfigValue(NULL, "drivers", ""); if(devs[0]) { int n; size_t len; const char *next = devs; i = 0; do { devs = next; next = strchr(devs, ','); if(!devs[0] || devs[0] == ',') continue; len = (next ? ((size_t)(next-devs)) : strlen(devs)); for(n = i;BackendList[n].Init;n++) { if(len == strlen(BackendList[n].name) && strncmp(BackendList[n].name, devs, len) == 0) { BackendInfo Bkp = BackendList[i]; BackendList[i] = BackendList[n]; BackendList[n] = Bkp; i++; } } } while(next++); BackendList[i].name = NULL; BackendList[i].Init = NULL; BackendList[i].Deinit = NULL; BackendList[i].Probe = NULL; } for(i = 0;BackendList[i].Init;i++) { BackendList[i].Init(&BackendList[i].Funcs); BackendList[i].Probe(DEVICE_PROBE); BackendList[i].Probe(ALL_DEVICE_PROBE); BackendList[i].Probe(CAPTURE_DEVICE_PROBE); } DuplicateStereo = GetConfigValueBool(NULL, "stereodup", 0); str = GetConfigValue(NULL, "excludefx", ""); if(str[0]) { const struct { const char *name; int type; } EffectList[] = { { "eaxreverb", EAXREVERB }, { "reverb", REVERB }, { "echo", ECHO }, { NULL, 0 } }; int n; size_t len; const char *next = str; do { str = next; next = strchr(str, ','); if(!str[0] || next == str) continue; len = (next ? ((size_t)(next-str)) : strlen(str)); for(n = 0;EffectList[n].name;n++) { if(len == strlen(EffectList[n].name) && strncmp(EffectList[n].name, str, len) == 0) DisabledEffects[EffectList[n].type] = AL_TRUE; } } while(next++); } }
/* OpenAL */ static ALCenum pulse_open_playback(ALCdevice *device, const ALCchar *device_name) { const char *pulse_name = NULL; pa_stream_flags_t flags; pa_sample_spec spec; pulse_data *data; pa_operation *o; if(device_name) { ALuint i; if(!allDevNameMap) probe_devices(AL_FALSE); for(i = 0; i < numDevNames; i++) { if(strcmp(device_name, allDevNameMap[i].name) == 0) { pulse_name = allDevNameMap[i].device_name; break; } } if(i == numDevNames) return ALC_INVALID_VALUE; } if(pulse_open(device) == ALC_FALSE) return ALC_INVALID_VALUE; data = device->ExtraData; pa_threaded_mainloop_lock(data->loop); flags = PA_STREAM_FIX_FORMAT | PA_STREAM_FIX_RATE | PA_STREAM_FIX_CHANNELS; if(!GetConfigValueBool("pulse", "allow-moves", 0)) flags |= PA_STREAM_DONT_MOVE; spec.format = PA_SAMPLE_S16NE; spec.rate = 44100; spec.channels = 2; data->stream = connect_playback_stream(pulse_name, data->loop, data->context, flags, NULL, &spec, NULL); if(!data->stream) { pa_threaded_mainloop_unlock(data->loop); pulse_close(device); return ALC_INVALID_VALUE; } data->device_name = strdup(pa_stream_get_device_name(data->stream)); o = pa_context_get_sink_info_by_name(data->context, data->device_name, sink_name_callback, device); wait_for_operation(o, data->loop); pa_stream_set_moved_callback(data->stream, stream_moved_callback, device); pa_threaded_mainloop_unlock(data->loop); return ALC_NO_ERROR; }
static ALCenum pulse_open_capture(ALCdevice *device, const ALCchar *device_name) { const char *pulse_name = NULL; pa_stream_flags_t flags = 0; pa_channel_map chanmap; pulse_data *data; pa_operation *o; ALuint samples; if(device_name) { ALuint i; if(!allCaptureDevNameMap) probe_devices(AL_TRUE); for(i = 0; i < numCaptureDevNames; i++) { if(strcmp(device_name, allCaptureDevNameMap[i].name) == 0) { pulse_name = allCaptureDevNameMap[i].device_name; break; } } if(i == numCaptureDevNames) return ALC_INVALID_VALUE; } if(pulse_open(device) == ALC_FALSE) return ALC_INVALID_VALUE; data = device->ExtraData; pa_threaded_mainloop_lock(data->loop); data->spec.rate = device->Frequency; data->spec.channels = ChannelsFromDevFmt(device->FmtChans); switch(device->FmtType) { case DevFmtUByte: data->spec.format = PA_SAMPLE_U8; break; case DevFmtShort: data->spec.format = PA_SAMPLE_S16NE; break; case DevFmtInt: data->spec.format = PA_SAMPLE_S32NE; break; case DevFmtFloat: data->spec.format = PA_SAMPLE_FLOAT32NE; break; case DevFmtByte: case DevFmtUShort: case DevFmtUInt: ERR("%s capture samples not supported\n", DevFmtTypeString(device->FmtType)); pa_threaded_mainloop_unlock(data->loop); goto fail; } if(pa_sample_spec_valid(&data->spec) == 0) { ERR("Invalid sample format\n"); pa_threaded_mainloop_unlock(data->loop); goto fail; } if(!pa_channel_map_init_auto(&chanmap, data->spec.channels, PA_CHANNEL_MAP_WAVEEX)) { ERR("Couldn't build map for channel count (%d)!\n", data->spec.channels); pa_threaded_mainloop_unlock(data->loop); goto fail; } samples = device->UpdateSize * device->NumUpdates; samples = maxu(samples, 100 * device->Frequency / 1000); data->attr.minreq = -1; data->attr.prebuf = -1; data->attr.maxlength = samples * pa_frame_size(&data->spec); data->attr.tlength = -1; data->attr.fragsize = minu(samples, 50*device->Frequency/1000) * pa_frame_size(&data->spec); flags |= PA_STREAM_START_CORKED|PA_STREAM_ADJUST_LATENCY; if(!GetConfigValueBool("pulse", "allow-moves", 0)) flags |= PA_STREAM_DONT_MOVE; data->stream = connect_record_stream(pulse_name, data->loop, data->context, flags, &data->attr, &data->spec, &chanmap); if(!data->stream) { pa_threaded_mainloop_unlock(data->loop); goto fail; } pa_stream_set_state_callback(data->stream, stream_state_callback2, device); data->device_name = strdup(pa_stream_get_device_name(data->stream)); o = pa_context_get_source_info_by_name(data->context, data->device_name, source_name_callback, device); wait_for_operation(o, data->loop); pa_stream_set_moved_callback(data->stream, stream_moved_callback, device); pa_threaded_mainloop_unlock(data->loop); return ALC_NO_ERROR; fail: pulse_close(device); return ALC_INVALID_VALUE; }
static ALCboolean pulse_reset_playback(ALCdevice *device) { pulse_data *data = device->ExtraData; pa_stream_flags_t flags = 0; pa_channel_map chanmap; ALuint len; pa_threaded_mainloop_lock(data->loop); if(data->stream) { pa_stream_set_moved_callback(data->stream, NULL, NULL); #if PA_CHECK_VERSION(0,9,15) if(pa_stream_set_buffer_attr_callback) pa_stream_set_buffer_attr_callback(data->stream, NULL, NULL); #endif pa_stream_disconnect(data->stream); pa_stream_unref(data->stream); data->stream = NULL; } if(!(device->Flags&DEVICE_CHANNELS_REQUEST)) { pa_operation *o; o = pa_context_get_sink_info_by_name(data->context, data->device_name, sink_info_callback, device); wait_for_operation(o, data->loop); } if(!(device->Flags&DEVICE_FREQUENCY_REQUEST)) flags |= PA_STREAM_FIX_RATE; flags |= PA_STREAM_INTERPOLATE_TIMING | PA_STREAM_AUTO_TIMING_UPDATE; flags |= PA_STREAM_ADJUST_LATENCY; flags |= PA_STREAM_START_CORKED; if(!GetConfigValueBool("pulse", "allow-moves", 0)) flags |= PA_STREAM_DONT_MOVE; switch(device->FmtType) { case DevFmtByte: device->FmtType = DevFmtUByte; /* fall-through */ case DevFmtUByte: data->spec.format = PA_SAMPLE_U8; break; case DevFmtUShort: device->FmtType = DevFmtShort; /* fall-through */ case DevFmtShort: data->spec.format = PA_SAMPLE_S16NE; break; case DevFmtUInt: device->FmtType = DevFmtInt; /* fall-through */ case DevFmtInt: data->spec.format = PA_SAMPLE_S32NE; break; case DevFmtFloat: data->spec.format = PA_SAMPLE_FLOAT32NE; break; } data->spec.rate = device->Frequency; data->spec.channels = ChannelsFromDevFmt(device->FmtChans); if(pa_sample_spec_valid(&data->spec) == 0) { ERR("Invalid sample format\n"); pa_threaded_mainloop_unlock(data->loop); return ALC_FALSE; } if(!pa_channel_map_init_auto(&chanmap, data->spec.channels, PA_CHANNEL_MAP_WAVEEX)) { ERR("Couldn't build map for channel count (%d)!\n", data->spec.channels); pa_threaded_mainloop_unlock(data->loop); return ALC_FALSE; } SetDefaultWFXChannelOrder(device); data->attr.fragsize = -1; data->attr.prebuf = 0; data->attr.minreq = device->UpdateSize * pa_frame_size(&data->spec); data->attr.tlength = data->attr.minreq * maxu(device->NumUpdates, 2); data->attr.maxlength = -1; data->stream = connect_playback_stream(data->device_name, data->loop, data->context, flags, &data->attr, &data->spec, &chanmap); if(!data->stream) { pa_threaded_mainloop_unlock(data->loop); return ALC_FALSE; } pa_stream_set_state_callback(data->stream, stream_state_callback2, device); data->spec = *(pa_stream_get_sample_spec(data->stream)); if(device->Frequency != data->spec.rate) { pa_operation *o; /* Server updated our playback rate, so modify the buffer attribs * accordingly. */ device->NumUpdates = (ALuint)((ALdouble)device->NumUpdates / device->Frequency * data->spec.rate + 0.5); data->attr.minreq = device->UpdateSize * pa_frame_size(&data->spec); data->attr.tlength = data->attr.minreq * clampu(device->NumUpdates, 2, 16); data->attr.maxlength = -1; data->attr.prebuf = 0; o = pa_stream_set_buffer_attr(data->stream, &data->attr, stream_success_callback, device); wait_for_operation(o, data->loop); device->Frequency = data->spec.rate; } pa_stream_set_moved_callback(data->stream, stream_moved_callback, device); #if PA_CHECK_VERSION(0,9,15) if(pa_stream_set_buffer_attr_callback) pa_stream_set_buffer_attr_callback(data->stream, stream_buffer_attr_callback, device); #endif stream_buffer_attr_callback(data->stream, device); len = data->attr.minreq / pa_frame_size(&data->spec); if((CPUCapFlags&CPU_CAP_SSE)) len = (len+3)&~3; device->NumUpdates = (ALuint)((ALdouble)device->NumUpdates/len*device->UpdateSize + 0.5); device->NumUpdates = clampu(device->NumUpdates, 2, 16); device->UpdateSize = len; pa_threaded_mainloop_unlock(data->loop); return ALC_TRUE; }
static ALCboolean alsa_reset_playback(ALCdevice *device) { alsa_data *data = (alsa_data*)device->ExtraData; snd_pcm_uframes_t periodSizeInFrames; unsigned int periodLen, bufferLen; snd_pcm_sw_params_t *sp = NULL; snd_pcm_hw_params_t *p = NULL; snd_pcm_access_t access; snd_pcm_format_t format; unsigned int periods; unsigned int rate; int allowmmap; char *err; int i; format = -1; switch(device->FmtType) { case DevFmtByte: format = SND_PCM_FORMAT_S8; break; case DevFmtUByte: format = SND_PCM_FORMAT_U8; break; case DevFmtShort: format = SND_PCM_FORMAT_S16; break; case DevFmtUShort: format = SND_PCM_FORMAT_U16; break; case DevFmtFloat: format = SND_PCM_FORMAT_FLOAT; break; } allowmmap = GetConfigValueBool("alsa", "mmap", 1); periods = device->NumUpdates; periodLen = (ALuint64)device->UpdateSize * 1000000 / device->Frequency; bufferLen = periodLen * periods; rate = device->Frequency; err = NULL; snd_pcm_hw_params_malloc(&p); if((i=snd_pcm_hw_params_any(data->pcmHandle, p)) < 0) err = "any"; /* set interleaved access */ if(i >= 0 && (!allowmmap || (i=snd_pcm_hw_params_set_access(data->pcmHandle, p, SND_PCM_ACCESS_MMAP_INTERLEAVED)) < 0)) { if(periods > 2) { periods--; bufferLen = periodLen * periods; } if((i=snd_pcm_hw_params_set_access(data->pcmHandle, p, SND_PCM_ACCESS_RW_INTERLEAVED)) < 0) err = "set access"; } /* set format (implicitly sets sample bits) */ if(i >= 0 && (i=snd_pcm_hw_params_set_format(data->pcmHandle, p, format)) < 0) { device->FmtType = DevFmtFloat; if(format == SND_PCM_FORMAT_FLOAT || (i=snd_pcm_hw_params_set_format(data->pcmHandle, p, SND_PCM_FORMAT_FLOAT)) < 0) { device->FmtType = DevFmtShort; if(format == SND_PCM_FORMAT_S16 || (i=snd_pcm_hw_params_set_format(data->pcmHandle, p, SND_PCM_FORMAT_S16)) < 0) { device->FmtType = DevFmtUByte; if(format == SND_PCM_FORMAT_U8 || (i=snd_pcm_hw_params_set_format(data->pcmHandle, p, SND_PCM_FORMAT_U8)) < 0) err = "set format"; } } } /* set channels (implicitly sets frame bits) */ if(i >= 0 && (i=snd_pcm_hw_params_set_channels(data->pcmHandle, p, ChannelsFromDevFmt(device->FmtChans))) < 0) { if((i=snd_pcm_hw_params_set_channels(data->pcmHandle, p, 2)) < 0) { if((i=snd_pcm_hw_params_set_channels(data->pcmHandle, p, 1)) < 0) err = "set channels"; else device->FmtChans = DevFmtMono; } else device->FmtChans = DevFmtStereo; } if(i >= 0 && (i=snd_pcm_hw_params_set_rate_resample(data->pcmHandle, p, 0)) < 0) { ERR("Failed to disable ALSA resampler\n"); i = 0; } /* set rate (implicitly constrains period/buffer parameters) */ if(i >= 0 && (i=snd_pcm_hw_params_set_rate_near(data->pcmHandle, p, &rate, NULL)) < 0) err = "set rate near"; /* set buffer time (implicitly constrains period/buffer parameters) */ if(i >= 0 && (i=snd_pcm_hw_params_set_buffer_time_near(data->pcmHandle, p, &bufferLen, NULL)) < 0) err = "set buffer time near"; /* set period time in frame units (implicitly sets buffer size/bytes/time and period size/bytes) */ if(i >= 0 && (i=snd_pcm_hw_params_set_period_time_near(data->pcmHandle, p, &periodLen, NULL)) < 0) err = "set period time near"; /* install and prepare hardware configuration */ if(i >= 0 && (i=snd_pcm_hw_params(data->pcmHandle, p)) < 0) err = "set params"; if(i >= 0 && (i=snd_pcm_hw_params_get_access(p, &access)) < 0) err = "get access"; if(i >= 0 && (i=snd_pcm_hw_params_get_period_size(p, &periodSizeInFrames, NULL)) < 0) err = "get period size"; if(i >= 0 && (i=snd_pcm_hw_params_get_periods(p, &periods, NULL)) < 0) err = "get periods"; if(i < 0) { ERR("%s failed: %s\n", err, snd_strerror(i)); snd_pcm_hw_params_free(p); return ALC_FALSE; } snd_pcm_hw_params_free(p); err = NULL; snd_pcm_sw_params_malloc(&sp); if((i=snd_pcm_sw_params_current(data->pcmHandle, sp)) != 0) err = "sw current"; if(i == 0 && (i=snd_pcm_sw_params_set_avail_min(data->pcmHandle, sp, periodSizeInFrames)) != 0) err = "sw set avail min"; if(i == 0 && (i=snd_pcm_sw_params_set_stop_threshold(data->pcmHandle, sp, periodSizeInFrames*periods)) != 0) err = "sw set stop threshold"; if(i == 0 && (i=snd_pcm_sw_params(data->pcmHandle, sp)) != 0) err = "sw set params"; if(i != 0) { ERR("%s failed: %s\n", err, snd_strerror(i)); snd_pcm_sw_params_free(sp); return ALC_FALSE; } snd_pcm_sw_params_free(sp); device->Frequency = rate; SetDefaultChannelOrder(device); data->size = snd_pcm_frames_to_bytes(data->pcmHandle, periodSizeInFrames); if(access == SND_PCM_ACCESS_RW_INTERLEAVED) { /* Increase periods by one, since the temp buffer counts as an extra * period */ periods++; data->buffer = malloc(data->size); if(!data->buffer) { ERR("buffer malloc failed\n"); return ALC_FALSE; } device->UpdateSize = periodSizeInFrames; device->NumUpdates = periods; data->thread = StartThread(ALSANoMMapProc, device); } else { i = snd_pcm_prepare(data->pcmHandle); if(i < 0) { ERR("prepare error: %s\n", snd_strerror(i)); return ALC_FALSE; } device->UpdateSize = periodSizeInFrames; device->NumUpdates = periods; data->thread = StartThread(ALSAProc, device); } if(data->thread == NULL) { ERR("Could not create playback thread\n"); free(data->buffer); data->buffer = NULL; return ALC_FALSE; } return ALC_TRUE; }