예제 #1
0
/**
   Submits the I/O and memory resource requirements for the specified PCI root bridge.

   This function is used to submit all the I/O and memory resources that are required by the specified
   PCI root bridge. The input parameter Configuration is used to specify the following:
   - The various types of resources that are required
   - The associated lengths in terms of ACPI 2.0 resource descriptor format

   @param[in] This              Pointer to the EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL instance.
   @param[in] RootBridgeHandle  The PCI root bridge whose I/O and memory resource requirements are being submitted.
   @param[in] Configuration     The pointer to the PCI I/O and PCI memory resource descriptor.

   @retval EFI_SUCCESS            The I/O and memory resource requests for a PCI root bridge were accepted.
   @retval EFI_INVALID_PARAMETER  RootBridgeHandle is not a valid root bridge handle.
   @retval EFI_INVALID_PARAMETER  Configuration is NULL.
   @retval EFI_INVALID_PARAMETER  Configuration does not point to a valid ACPI 2.0 resource descriptor.
   @retval EFI_INVALID_PARAMETER  Configuration includes requests for one or more resource types that are
                                  not supported by this PCI root bridge. This error will happen if the caller
                                  did not combine resources according to Attributes that were returned by
                                  GetAllocAttributes().
   @retval EFI_INVALID_PARAMETER  Address Range Maximum" is invalid.
   @retval EFI_INVALID_PARAMETER  "Address Range Length" is invalid for this PCI root bridge.
   @retval EFI_INVALID_PARAMETER  "Address Space Granularity" is invalid for this PCI root bridge.

**/
EFI_STATUS
EFIAPI
SubmitResources(
  IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
  IN EFI_HANDLE                                       RootBridgeHandle,
  IN VOID                                             *Configuration
  )
{
  LIST_ENTRY                            *List;
  PCI_HOST_BRIDGE_INSTANCE              *HostBridgeInstance;
  PCI_ROOT_BRIDGE_INSTANCE              *RootBridgeInstance;
  UINT8                                 *Temp;
  EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR     *Ptr;
  UINT64                                AddrLen;
  UINT64                                Alignment;

  //
  // Check the input parameter: Configuration
  //
  if (Configuration == NULL) {
    return EFI_INVALID_PARAMETER;
  }

  HostBridgeInstance = INSTANCE_FROM_RESOURCE_ALLOCATION_THIS (This);
  List = HostBridgeInstance->Head.ForwardLink;

  Temp = (UINT8 *)Configuration;
  while ( *Temp == 0x8A) {
    Temp += sizeof (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR) ;
  }
  if (*Temp != 0x79) {
    return EFI_INVALID_PARAMETER;
  }

  Temp = (UINT8 *)Configuration;
  while (List != &HostBridgeInstance->Head) {
    RootBridgeInstance = DRIVER_INSTANCE_FROM_LIST_ENTRY (List);
    if (RootBridgeHandle == RootBridgeInstance->Handle) {
      while ( *Temp == 0x8A) {
        Ptr = (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *) Temp ;

        //
        // Check Address Length
        //
        if (Ptr->AddrLen > 0xffffffff) {
          return EFI_INVALID_PARAMETER;
        }

        //
        // Check address range alignment
        //
        if (Ptr->AddrRangeMax >= 0xffffffff || Ptr->AddrRangeMax != (GetPowerOfTwo64 (Ptr->AddrRangeMax + 1) - 1)) {
          return EFI_INVALID_PARAMETER;
        }

        switch (Ptr->ResType) {

        case 0:

          //
          // Check invalid Address Sapce Granularity
          //
          if (Ptr->AddrSpaceGranularity != 32) {
            return EFI_INVALID_PARAMETER;
          }

          //
          // check the memory resource request is supported by PCI root bridge
          //
          if (RootBridgeInstance->RootBridgeAttrib == EFI_PCI_HOST_BRIDGE_COMBINE_MEM_PMEM &&
               Ptr->SpecificFlag == 0x06) {
            return EFI_INVALID_PARAMETER;
          }

          AddrLen = Ptr->AddrLen;
          Alignment = Ptr->AddrRangeMax;
          if (Ptr->AddrSpaceGranularity == 32) {
            if (Ptr->SpecificFlag == 0x06) {
              //
              // Apply from GCD
              //
              RootBridgeInstance->ResAllocNode[TypePMem32].Status = ResSubmitted;
            } else {
              RootBridgeInstance->ResAllocNode[TypeMem32].Length = AddrLen;
              RootBridgeInstance->ResAllocNode[TypeMem32].Alignment = Alignment;
              RootBridgeInstance->ResAllocNode[TypeMem32].Status = ResRequested;
              HostBridgeInstance->ResourceSubmited = TRUE;
            }
          }

          if (Ptr->AddrSpaceGranularity == 64) {
            if (Ptr->SpecificFlag == 0x06) {
              RootBridgeInstance->ResAllocNode[TypePMem64].Status = ResSubmitted;
            } else {
              RootBridgeInstance->ResAllocNode[TypeMem64].Status = ResSubmitted;
            }
          }
          break;

        case 1:
          AddrLen = (UINTN) Ptr->AddrLen;
          Alignment = (UINTN) Ptr->AddrRangeMax;
          RootBridgeInstance->ResAllocNode[TypeIo].Length  = AddrLen;
          RootBridgeInstance->ResAllocNode[TypeIo].Alignment = Alignment;
          RootBridgeInstance->ResAllocNode[TypeIo].Status  = ResRequested;
          HostBridgeInstance->ResourceSubmited = TRUE;
          break;

        default:
            break;
        };

        Temp += sizeof (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR) ;
      }

      return EFI_SUCCESS;
    }

    List = List->ForwardLink;
  }

  return EFI_INVALID_PARAMETER;
}
예제 #2
0
/**
  This function will be called when MRC is done.

  @param  PeiServices General purpose services available to every PEIM.

  @param  NotifyDescriptor Information about the notify event..

  @param  Ppi The notify context.

  @retval EFI_SUCCESS If the function completed successfully.
**/
EFI_STATUS
EFIAPI
MemoryDiscoveredPpiNotifyCallback (
  IN EFI_PEI_SERVICES           **PeiServices,
  IN EFI_PEI_NOTIFY_DESCRIPTOR  *NotifyDescriptor,
  IN VOID                       *Ppi
  )
{
  EFI_STATUS                            Status;
  EFI_BOOT_MODE                         BootMode;
  UINT64                                MemoryLength;
  UINT64                                MemoryLengthUc;
  UINT64                                MaxMemoryLength;
  UINT64                                MemOverflow;
  EFI_SMRAM_DESCRIPTOR                  *SmramDescriptor;
  UINTN                                 NumSmramRegions;
  UINT64                                EnlargedMemoryLength;
  UINT32                                RmuMainBaseAddress;
  UINTN                                 Index;
  MTRR_SETTINGS                         MtrrSetting;
  UINT32                                RegData32;
  EFI_PHYSICAL_ADDRESS                  NewBuffer;
  UINT8                                 CpuAddressWidth;
  EFI_CPUID_REGISTER                    FeatureInfo;
  
  DEBUG ((EFI_D_INFO, "Platform PEIM Memory Callback\n"));

  NumSmramRegions = 0;
  SmramDescriptor = NULL;
  RmuMainBaseAddress = 0;

  PERF_START (NULL, "SetCache", NULL, 0);

  InfoPostInstallMemory (&RmuMainBaseAddress, &SmramDescriptor, &NumSmramRegions);
  ASSERT (SmramDescriptor != NULL);
  ASSERT (RmuMainBaseAddress != 0);

  MemoryLength = ((UINT64) RmuMainBaseAddress) + 0x10000;
  EnlargedMemoryLength = MemoryLength;

  if (NumSmramRegions > 0) {
	  //
	  // Find the TSEG
	  //
	  for (Index = 0; Index < NumSmramRegions; Index ++) {
	    if ((SmramDescriptor[Index].PhysicalStart) == EnlargedMemoryLength) {
	      if (SmramDescriptor[Index].RegionState & EFI_CACHEABLE) {
	        //
	        // Enlarge memory length to include TSEG size
	        //
	        EnlargedMemoryLength += (SmramDescriptor[Index].PhysicalSize);
	      }
	    }
	  }
	}

  //
  // Check if a UC region is present
  //
  MaxMemoryLength = EnlargedMemoryLength;
  // Round up to nearest 256MB
  MemOverflow = (MemoryLength & 0x0fffffff);
  if (MemOverflow != 0) {
    MaxMemoryLength = MemoryLength + (0x10000000 - MemOverflow);
  }


  Status = PeiServicesGetBootMode (&BootMode);
  ASSERT_EFI_ERROR (Status);

  ZeroMem (&MtrrSetting, sizeof(MTRR_SETTINGS));
  (**PeiServices).CopyMem ((VOID *)&MtrrSetting.Fixed,(VOID *)&mFixedMtrrTable, sizeof(MTRR_FIXED_SETTINGS) );
  //
  // Cache the flash area to improve the boot performance in PEI phase
  //
  MtrrSetting.Variables.Mtrr[0].Base = (QUARK_BOOTROM_BASE_ADDRESS | CacheWriteBack);  
  MtrrSetting.Variables.Mtrr[0].Mask = (((~(QUARK_BOOTROM_SIZE_BYTES - 1)) & MTRR_LIB_CACHE_VALID_ADDRESS) | MTRR_LIB_CACHE_MTRR_ENABLED);
  
  MtrrSetting.Variables.Mtrr[1].Base = CacheWriteBack;  
  MtrrSetting.Variables.Mtrr[1].Mask = ((~(MaxMemoryLength - 1)) & MTRR_LIB_CACHE_VALID_ADDRESS) | MTRR_LIB_CACHE_MTRR_ENABLED;

  Index = 2;
  while (MaxMemoryLength != MemoryLength) {
    MemoryLengthUc = GetPowerOfTwo64 (MaxMemoryLength - MemoryLength);

    //Status = MtrrSetMemoryAttribute (MaxMemoryLength - MemoryLengthUc, MemoryLengthUc, CacheUncacheable);
    //ASSERT_EFI_ERROR (Status);
    
    MtrrSetting.Variables.Mtrr[Index].Base = ((MaxMemoryLength - MemoryLengthUc) & MTRR_LIB_CACHE_VALID_ADDRESS) | CacheUncacheable;
    MtrrSetting.Variables.Mtrr[Index].Mask= ((~(MemoryLengthUc   - 1)) & MTRR_LIB_CACHE_VALID_ADDRESS) | MTRR_LIB_CACHE_MTRR_ENABLED;      
    MaxMemoryLength -= MemoryLengthUc;
    Index++;
  }

  AsmInvd ();
 
  MtrrSetting.MtrrDefType = MTRR_LIB_CACHE_MTRR_ENABLED | MTRR_LIB_CACHE_FIXED_MTRR_ENABLED;
  MtrrSetAllMtrrs(&MtrrSetting);

  PERF_END (NULL, "SetCache", NULL, 0);

  //
  // Install PeiReset for PeiResetSystem service
  //
  Status = PeiServicesInstallPpi (&mPpiList[0]);
  ASSERT_EFI_ERROR (Status);

  //
  // Do QNC initialization after MRC
  //
  PeiQNCPostMemInit ();

  Status = PeiServicesInstallPpi (&mPpiStall[0]);
  ASSERT_EFI_ERROR (Status);

  //
  // Set E000/F000 Routing
  //
  RegData32 = QNCPortRead (QUARK_NC_HOST_BRIDGE_SB_PORT_ID, QNC_MSG_FSBIC_REG_HMISC);
  RegData32 |= (BIT2|BIT1);
  QNCPortWrite (QUARK_NC_HOST_BRIDGE_SB_PORT_ID, QNC_MSG_FSBIC_REG_HMISC, RegData32);

  if (BootMode == BOOT_IN_RECOVERY_MODE) {
  PeiServicesInstallFvInfoPpi (
    NULL,
    (VOID *) (UINTN) PcdGet32 (PcdFlashFvRecovery2Base),
    PcdGet32 (PcdFlashFvRecovery2Size),
    NULL,
    NULL
    );
    Status = PeimInitializeRecovery (PeiServices);
    ASSERT_EFI_ERROR (Status);

  } else if (BootMode == BOOT_ON_S3_RESUME) {
    return EFI_SUCCESS;

  } else {
    //
    // Allocate the memory so that it gets preserved into DXE
    //
    Status = PeiServicesAllocatePages (
              EfiBootServicesData,
              EFI_SIZE_TO_PAGES (PcdGet32 (PcdFvSecurityHeaderSize) + PcdGet32 (PcdFlashFvMainSize)),
              &NewBuffer
              );

    //
    // Copy the compressed main Firmware Volume to memory for faster processing later
    //
    CopyMem ((VOID *) (UINTN) NewBuffer, (VOID *) (UINTN) (PcdGet32 (PcdFlashFvMainBase) - PcdGet32 (PcdFvSecurityHeaderSize)), (PcdGet32 (PcdFvSecurityHeaderSize) +PcdGet32 (PcdFlashFvMainSize)));

    PeiServicesInstallFvInfoPpi (
      NULL,
      (VOID *) (UINTN) (NewBuffer + PcdGet32 (PcdFvSecurityHeaderSize)),
      PcdGet32 (PcdFlashFvMainSize),
      NULL,
      NULL
      );
  }

  //
  // Build flash HOB, it's going to be used by GCD and E820 building
  // Map full SPI flash decode range (regardless of smaller SPI flash parts installed)
  //
  BuildResourceDescriptorHob (
    EFI_RESOURCE_FIRMWARE_DEVICE,
    (EFI_RESOURCE_ATTRIBUTE_PRESENT    |
    EFI_RESOURCE_ATTRIBUTE_INITIALIZED |
    EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE),
    (SIZE_4GB - SIZE_8MB),
    SIZE_8MB
    );

  //
  // Create a CPU hand-off information
  //
  CpuAddressWidth = 32;
  AsmCpuid (EFI_CPUID_EXTENDED_FUNCTION, &FeatureInfo.RegEax, NULL, NULL, NULL);
  if (FeatureInfo.RegEax >= EFI_CPUID_VIR_PHY_ADDRESS_SIZE) {
    AsmCpuid (EFI_CPUID_VIR_PHY_ADDRESS_SIZE, &FeatureInfo.RegEax, NULL, NULL, NULL);
    CpuAddressWidth = (UINT8) (FeatureInfo.RegEax & 0xFF);
  }
  DEBUG ((EFI_D_INFO, "CpuAddressWidth: %d\n", CpuAddressWidth));

  BuildCpuHob (CpuAddressWidth, 16);

  ASSERT_EFI_ERROR (Status);

  return Status;
}
예제 #3
0
EFI_STATUS
EFIAPI
SetPeiCacheMode (
  IN  CONST EFI_PEI_SERVICES    **PeiServices
  )
{
  EFI_STATUS              Status;
  PEI_CACHE_PPI           *CachePpi;

  EFI_BOOT_MODE           BootMode;
  UINT64                  MemoryLength;
  UINT64                  MemOverflow;
  UINT64                  MemoryLengthUc;
  UINT64                  MaxMemoryLength;
  UINT64                  LowMemoryLength;
  UINT64                  HighMemoryLength;
  UINT8                   Index;
  MTRR_SETTINGS           MtrrSetting;
  UINT64                  ValidMtrrAddressMask;

  //
  // Load Cache PPI
  //
  Status = (**PeiServices).LocatePpi (
             PeiServices,
             &gPeiCachePpiGuid,    // GUID
             0,                    // Instance
             NULL,                 // EFI_PEI_PPI_DESCRIPTOR
             (void **)&CachePpi             // PPI
             );
  if (!EFI_ERROR(Status)) {
    //
    // Clear the CAR Settings (Default Cache Type => UC)
    //
    DEBUG ((EFI_D_INFO, "Reset cache attribute and disable CAR. \n"));
    CachePpi->ResetCache(
                (EFI_PEI_SERVICES**)PeiServices,
                CachePpi
                );
 }


  //
  // Variable initialization
  //
  LowMemoryLength = 0;
  HighMemoryLength = 0;
  MemoryLengthUc = 0;

  Status = (*PeiServices)->GetBootMode (
                             PeiServices,
                             &BootMode
                             );

  ValidMtrrAddressMask = InitializeAddressMtrrMask ();

  //
  // Determine memory usage
  //
  GetMemorySize (
    PeiServices,
    &LowMemoryLength,
    &HighMemoryLength
    );

  LowMemoryLength  = (EFI_PHYSICAL_ADDRESS)MmPci32( 0, 0, 2, 0, 0x70);
  LowMemoryLength   &=  0xFFF00000ULL;

  MaxMemoryLength = LowMemoryLength;

  //
  // Round up to nearest 256MB with high memory and 64MB w/o high memory
  //
  if (HighMemoryLength != 0 ) {
    MemOverflow = (LowMemoryLength & 0x0fffffff);
    if (MemOverflow != 0) {
      MaxMemoryLength = LowMemoryLength + (0x10000000 - MemOverflow);
    }
  } else {
    MemOverflow = (LowMemoryLength & 0x03ffffff);
    if (MemOverflow != 0) {
      MaxMemoryLength = LowMemoryLength + (0x4000000 - MemOverflow);
    }
  }

  ZeroMem (&MtrrSetting, sizeof(MTRR_SETTINGS));
  for (Index = 0; Index < 2; Index++) {
    MtrrSetting.Fixed.Mtrr[Index]=0x0606060606060606;
   }
  for (Index = 2; Index < 11; Index++) {
    MtrrSetting.Fixed.Mtrr[Index]=0x0505050505050505;
   }

  //
  // Cache the flash area to improve the boot performance in PEI phase
  //
  Index = 0;
  ((MSR_IA32_MTRR_PHYSBASE_REGISTER *) &MtrrSetting.Variables.Mtrr[0].Base)->Uint64 = FixedPcdGet32 (PcdFlashAreaBaseAddress);
  ((MSR_IA32_MTRR_PHYSBASE_REGISTER *) &MtrrSetting.Variables.Mtrr[0].Base)->Bits.Type = CacheWriteProtected;
  ((MSR_IA32_MTRR_PHYSMASK_REGISTER *) &MtrrSetting.Variables.Mtrr[0].Mask)->Uint64 = (~((UINT64)(FixedPcdGet32 (PcdFlashAreaSize) - 1))) & ValidMtrrAddressMask;
  ((MSR_IA32_MTRR_PHYSMASK_REGISTER *) &MtrrSetting.Variables.Mtrr[0].Mask)->Bits.V = 1;

  Index ++;

  MemOverflow =0;
  while (MaxMemoryLength > MemOverflow){
    MemoryLength = MaxMemoryLength - MemOverflow;
    MemoryLength = GetPowerOfTwo64 (MemoryLength);

    ((MSR_IA32_MTRR_PHYSBASE_REGISTER *) &MtrrSetting.Variables.Mtrr[Index].Base)->Uint64 = MemOverflow & ValidMtrrAddressMask;
    ((MSR_IA32_MTRR_PHYSBASE_REGISTER *) &MtrrSetting.Variables.Mtrr[Index].Base)->Bits.Type = CacheWriteBack;
    ((MSR_IA32_MTRR_PHYSMASK_REGISTER *) &MtrrSetting.Variables.Mtrr[Index].Mask)->Uint64 = (~(MemoryLength - 1)) & ValidMtrrAddressMask;
    ((MSR_IA32_MTRR_PHYSMASK_REGISTER *) &MtrrSetting.Variables.Mtrr[Index].Mask)->Bits.V = 1;

    MemOverflow += MemoryLength;
    Index++;
  }

  MemoryLength = LowMemoryLength;

  while (MaxMemoryLength != MemoryLength) {
    MemoryLengthUc = GetPowerOfTwo64 (MaxMemoryLength - MemoryLength);

    ((MSR_IA32_MTRR_PHYSBASE_REGISTER *) &MtrrSetting.Variables.Mtrr[Index].Base)->Uint64 = (MaxMemoryLength - MemoryLengthUc) & ValidMtrrAddressMask;
    ((MSR_IA32_MTRR_PHYSBASE_REGISTER *) &MtrrSetting.Variables.Mtrr[Index].Base)->Bits.Type = CacheUncacheable;
    ((MSR_IA32_MTRR_PHYSMASK_REGISTER *) &MtrrSetting.Variables.Mtrr[Index].Mask)->Uint64 = (~(MemoryLengthUc   - 1)) & ValidMtrrAddressMask;
    ((MSR_IA32_MTRR_PHYSMASK_REGISTER *) &MtrrSetting.Variables.Mtrr[Index].Mask)->Bits.V = 1;

    MaxMemoryLength -= MemoryLengthUc;
    Index++;
  }

  MemOverflow =0x100000000;
  while (HighMemoryLength > 0) {

    MemoryLength = HighMemoryLength;
    MemoryLength = GetPowerOfTwo64 (MemoryLength);
    if (MemoryLength > MemOverflow){
      MemoryLength = MemOverflow;
    }

    ((MSR_IA32_MTRR_PHYSBASE_REGISTER *) &MtrrSetting.Variables.Mtrr[Index].Base)->Uint64 = MemOverflow & ValidMtrrAddressMask;
    ((MSR_IA32_MTRR_PHYSBASE_REGISTER *) &MtrrSetting.Variables.Mtrr[Index].Base)->Bits.Type = CacheWriteBack;
    ((MSR_IA32_MTRR_PHYSMASK_REGISTER *) &MtrrSetting.Variables.Mtrr[Index].Mask)->Uint64 = (~(MemoryLength - 1)) & ValidMtrrAddressMask;
    ((MSR_IA32_MTRR_PHYSMASK_REGISTER *) &MtrrSetting.Variables.Mtrr[Index].Mask)->Bits.V = 1;

    MemOverflow += MemoryLength;
    HighMemoryLength -= MemoryLength;
    Index++;
  }


  for (Index = 0; Index < MTRR_NUMBER_OF_VARIABLE_MTRR; Index++) {
    if (MtrrSetting.Variables.Mtrr[Index].Base == 0){
      break;
    }
    DEBUG ((EFI_D_INFO, "Base=%lx, Mask=%lx\n",MtrrSetting.Variables.Mtrr[Index].Base ,MtrrSetting.Variables.Mtrr[Index].Mask));
  }

  //
  // set FE/E bits for IA32_MTRR_DEF_TYPE
  //
  MtrrSetting.MtrrDefType |=  3 <<10;

  MtrrSetAllMtrrs(&MtrrSetting);
  //
  // Dump MTRR Setting
  //
  MtrrDebugPrintAllMtrrs ();

  return EFI_SUCCESS;
}