예제 #1
0
void Segment_Channel(Array *input, Segmentation *seg)
{ double  mean, sdev;
  int     threshc, threshe, sizemin;
  Array  *labels;

  Histogram *hist = Histogram_Array(input,0x100,VALU(1),VALU(0));
  mean = Histogram_Mean(hist);
  sdev = Histogram_Sigma(hist);

  threshc = mean + Get_Double_Arg("-c")*sdev;
  threshe = mean + Get_Double_Arg("-e")*sdev;
  sizemin = Get_Int_Arg("-s");

#ifdef PROGRESS
  printf("\nChannel Segmentation:\n");
  printf("  Mean = %.2f  Std.Dev = %.2f\n",mean,sdev);
  printf("  Thresh-c = %d   Thresh-e = %d  Size-s = %d\n",threshc,threshe,sizemin);
#ifdef DEBUG
  Print_Histogram(hist,stdout,4,BIN_COUNT|CUMULATIVE_COUNT|CLIP_HGRAM,0);
#endif
  fflush(stdout);
#endif

  Free_Histogram(hist);

  labels = Make_Array(PLAIN_KIND,UINT8_TYPE,3,input->dims);
  Array_Op_Scalar(labels,SET_OP,UVAL,VALU(0));

  SEG_threshc = threshc;
  SEG_threshe = threshe;
  SEG_sizemin = sizemin;

  SEG_values    = AUINT16(input);
  SEG_labels    = AUINT8(labels);
  SEG_count     = 0;
  SEG_coretouch = 0;
  SEG_id        = 0;

  // Mark connected-components of pixels >= threshc that have not less than sizemin pixels

  Flood_All(input,0,ISCON2N,NULL,InCore,NULL,CountCore,NULL,GoodCore,NULL,MarkAsIn);

  // Mark all connected components of pixels >= threshe that contain a good core as above

  Flood_All(input,0,ISCON2N,NULL,InExtend,NULL,TouchCore,NULL,GoodExtend,NULL,SetLabel);

  // Capture each labeled region in "labels" with a Region

  { int       i, nsegs;
    Indx_Type p;
    uint8    *val;
    Region  **segs;

    seg->label   = labels;
    seg->nsegs   = nsegs = SEG_id;
    seg->segs    = segs = (Region **) Guarded_Malloc(sizeof(Region *)*nsegs,Program_Name());
    seg->mean    = mean;
    seg->ethresh = threshe;
    seg->cthresh = threshc;

    for (i = 0; i < nsegs; i++)
      segs[i] = NULL;

    val = AUINT8(labels);
    for (p = 0; p < labels->size; p++)
      { i = val[p];
        if (i > 0 && segs[i-1] == NULL)
          segs[i-1] = Record_Basic(labels,0,ISCON2N,p,1,EQ_COMP,VALU(i));
      }
  }
}
예제 #2
0
double ZArgumentProcessor::getDoubleArg(const char *arg, int index)
{
  return Get_Double_Arg(const_cast<char*>(arg), index);
}
예제 #3
0
int main(int argc, char *argv[])
{ FILE *output;

  Process_Arguments(argc,argv,Spec,0);

#ifdef PROGRESS
  printf("\nParameters: c=%g e=%g s=%d\n",
         Get_Double_Arg("-c"),Get_Double_Arg("-e"),Get_Int_Arg("-s"));
  printf("SubFolder:  %s\n",Get_String_Arg("folder"));
  printf("CoreName:   %s\n",Get_String_Arg("core"));
  fflush(stdout);
#endif

  RezFolder = strdup(Get_String_Arg("folder"));
  if (RezFolder[strlen(RezFolder)-1] == '/')
    RezFolder[strlen(RezFolder)-1] = '\0';

  if (mkdir(RezFolder,S_IRWXU|S_IRWXG|S_IRWXO))
    { if (errno != EEXIST)
        { fprintf(stderr,"Error trying to create directory %s: %s\n",RezFolder,strerror(errno)); 
          exit (1);
        }
    }

  CoreName = strdup(Get_String_Arg("core"));

  sprintf(NameBuf,"%s.neu",CoreName);
  output = fopen(NameBuf,"w");
  fprintf(output,"NEUSEP: Version 0.9\n");

  { Histogram *hist;
    int        curchan;
    int        maxchans;
    int        i, n;

    n = Get_Repeat_Count("inputs");
    fwrite(&n,sizeof(int),1,output);

    hist = Make_Histogram(UVAL,0x10000,VALU(1),VALU(0));

    maxchans = 0;
    for (i = 0; i < n; i++)
      { 
	curchan  = NumChans;
        maxchans = Read_All_Channels(Get_String_Arg("inputs",i),maxchans);
	int channelsInCurrentFile=NumChans-curchan;


        { Size_Type sum, max;
          Indx_Type p;
          int       j, wch;
          uint16   *val;

          max = -1;
          for (j = curchan; j < NumChans; j++)
            { val = AUINT16(Images[j]);
              sum = 0;
              for (p = 0; p < Images[j]->size; p++)
                sum += val[p];
              if (sum > max)
                { max = sum;
                  wch = j;
                }
            }

          fprintf(output,"%s\n",Get_String_Arg("inputs",i));
          j = wch-curchan;
          fwrite(&j,sizeof(int),1,output);

#ifdef PROGRESS
          printf("\n  Eliminating channel %d from %s\n",j+1,Get_String_Arg("inputs",i));
          fflush(stdout);
#endif

	  {
	    // Section to write out the reference channel
	    printf("\n Considering reference channel output, channelsInCurrentFile=%d\n", channelsInCurrentFile);
	    fflush(stdout);
	    if (channelsInCurrentFile>2) { // should work with both lsm pair with channels=3, or raw file with channels=4
	      sprintf(NameBuf,"%s/Reference.tif",RezFolder,CoreName,i);
	      Write_Image(NameBuf,Images[wch],LZW_PRESS);
	    }

	  }

          Free_Array(Images[wch]);
          NumChans -= 1;
          for (j = wch; j < NumChans; j++)
            Images[j] = Images[j+1];
        }

        { int        j, ceil;
          Indx_Type  p;
          uint16    *val;

          for (j = curchan; j < NumChans; j++)
            {
              Histagain_Array(hist,Images[j],0);

              ceil = Percentile2Bin(hist,1e-5);

	      if (ceil==0) {
		fprintf(stderr, "Channel must have non-zero values for this program to function\n");
		exit(1);
	      } 

#ifdef PROGRESS
              printf("  Clipping channel %d at ceil = %d\n",j,ceil); fflush(stdout);
              fflush(stdout);
#endif
    
              val  = AUINT16(Images[j]);
              for (p = 0; p < Images[j]->size; p++)
                { 
		  if (val[p] > ceil)
		    val[p] = ceil;
		  val[p] = (val[p]*4095)/ceil;
		  }
	      //              Convert_Array_Inplace(Images[j],PLAIN_KIND,UINT8_TYPE,8,0);
            }
    
        }
      }

    Free_Histogram(hist);

    printf("Starting ConsolidatedSignal.tif section\n");
    fflush(stdout);

    // NA addition: write tif with re-scaled intensities to serve as basis for mask file
    {
      Array *signalStack;
      signalStack = Make_Array(RGB_KIND,UINT8_TYPE,3,Images[0]->dims);
      uint8 *sp=AUINT8(signalStack);
      int m;
      Indx_Type signalIndex;
      signalIndex=0;
      for (m=0;m<NumChans;m++) {
	sprintf(NameBuf, "%s/Signal_%d.tif", RezFolder, m);
	printf("Writing 16-bit channel file %s...", NameBuf);
	Write_Image(NameBuf, Images[m], LZW_PRESS);
	printf("done\n");
	uint16 *ip=AUINT16(Images[m]);
	Indx_Type  channelIndex;
	for (channelIndex=0;channelIndex<Images[m]->size;channelIndex++) {
	  int value=ip[channelIndex]/16;
	  if (value>255) {
	    value=255;
	  }
	  sp[signalIndex++]=value; // convert 12-bit to 8-bit
	}
      }
      sprintf(NameBuf,"%s/ConsolidatedSignal.tif", RezFolder);
      printf("Writing 8-bit consolidated signal file %s...", NameBuf);
      Write_Image(NameBuf,signalStack,LZW_PRESS);
      printf("done");
      //Free_Array(signalStack); - this is causing a bug
    }

    printf("Finished ConsolidatedSignal.tif section\n");
    fflush(stdout);

  }

  { int           i;
    Segmentation *segs;
    Overlaps     *ovl;
    Clusters     *clust;
    int           numneur;
    Region      **neurons;

    segs = (Segmentation *) Guarded_Malloc(sizeof(Segmentation)*NumChans,Program_Name());

    for (i = 0; i < NumChans; i++)
      { Segment_Channel(Images[i],segs+i);
        if (i == 0)
          segs[i].base = 0;
        else
          segs[i].base = segs[i-1].base + segs[i-1].nsegs;
	printf("channel=%d segmentBase=%d\n", i, segs[i].base);
      }

    ovl     = Find_Overlaps(segs);
    clust   = Merge_Segments(segs,ovl);
    neurons = Segment_Clusters(segs,ovl,clust,&numneur);

    if (Is_Arg_Matched("-gp"))
      Output_Clusters(segs,ovl,clust);
    if (Is_Arg_Matched("-nr"))
      Output_Neurons(numneur,neurons,1);

    // Added for NA
    Output_Consolidated_Mask(numneur,neurons,1);

    fwrite(&numneur,sizeof(int),1,output);
    for (i = 0; i < numneur; i++)
      Write_Region(neurons[i],output);

#ifdef PROGRESS
    printf("\nProduced %d neurons/fragments in %s.neu\n",numneur,CoreName);
    fflush(stdout);
#endif

    printf("DEBUG: starting cleanup\n");
    fflush(stdout);

    for (i = 0; i < numneur; i++) {
      printf("DEBUG: calling Kill_Region on neuron=%d\n", i);
      fflush(stdout);
      Kill_Region(neurons[i]);
    }
    printf("DEBUG: calling Kill_Clusters\n");
    fflush(stdout);
    Kill_Clusters(clust);
    printf("DEBUG: calling Kill_Overlaps\n");
    fflush(stdout);
    //Kill_Overlaps(ovl); - causing a bug
    printf("DEBUG: starting Kill_Segmentation loop\n");
    fflush(stdout);
    for (i = 0; i < NumChans; i++) {
      printf("DEBUG: Kill_Segmentation on index=%d\n", i);
      fflush(stdout);
      Kill_Segmentation(segs+i);
    }
    printf("DEBUG: calling free() on segs\n");
    fflush(stdout);
    free(segs);
  }

  printf("DEBUG: starting filestream cleanup\n");
  fflush(stdout);

  { int i;

    fclose(output);
    free(CoreName);
    free(RezFolder);
    for (i = 0; i < NumChans; i++)
      Kill_Array(Images[i]);
    free(Images);
  }

#ifdef VERBOSE
  printf("\nDid I free all arrays?:\n"); 
  Print_Inuse_List(stdout,4);
#endif

  exit (0);
}
예제 #4
0
int main(int argc, char *argv[])
{
  if (Show_Version(argc, argv, "1.0") == 1) {
    return 0;
  }

  static char *Spec[] = {
    "[-R<string> -T<string> -M<string>] -D<string> [-minlen <double>]",
    "[-root <double> <double> <double>] [-trans <double> <double> <double>]",
    "[-rtlist <string>] [-sup_root] [-dist <double>]",
    "[-C<string>] [-I<string>] [-z <double>] -o <string> [-b] [-res <string>]",
    "[-screen] [-sp] [-intp] [-sl] [-rb] [-rz] [-rs] [-ct] [-al <double>]",
    "[-screenz <double>] [-force_merge <double>] [-ct_break <double>]",
    "[-jumpz <double>] [-single_break]",
    NULL};

  Print_Arguments(argc, argv);

  Process_Arguments(argc, argv, Spec, 1);
  
  char *dir = Get_String_Arg("-D");

  Stack_Document *stack_doc = NULL;
  if (Is_Arg_Matched("-I")) {
    if (!fexist(Get_String_Arg("-I"))) {
      PRINT_EXCEPTION("File does not exist", "");
      fprintf(stderr, "%s cannot be found.\n", Get_String_Arg("-I"));
      return 1;
    }
    if (fhasext(Get_String_Arg("-I"), "xml")) {
      stack_doc = Xml_Read_Stack_Document(Get_String_Arg("-I"));
    }
  }

  /* Get number of chains */
  int chain_number2 = dir_fnum_p(dir, "^chain.*\\.tb");

  if (chain_number2 == 0) {
    printf("No tube found.\n");
    printf("Quit reconstruction.\n");
    return 1;
  }

  int i;
  int *chain_map = iarray_malloc(chain_number2);
  int chain_number;
  Locseg_Chain **chain_array =
    Dir_Locseg_Chain_Nd(dir, "chain.*\\.tb", &chain_number, chain_map);

  if (Is_Arg_Matched("-screenz")) {
    Locseg_Chain_Array_Screen_Z(chain_array, chain_number,
	Get_Double_Arg("-screenz"));
  }

  if (Is_Arg_Matched("-single_break")) {
    int i;
    for (i = 0; i < chain_number; i++) {
      if (Locseg_Chain_Length(chain_array[i]) == 1) {
	/* break the segment into two parts */
	Locseg_Chain_Break_Node(chain_array[i], 0, 0.5);
      }
    }
  }

  if (Is_Arg_Matched("-ct_break")) {
    int tmp_chain_number;
    Locseg_Chain **tmp_chain_array = 
      Locseg_Chain_Array_Break_Jump(chain_array, chain_number,
	  Get_Double_Arg("-ct_break"), &tmp_chain_number);
    kill_locseg_chain_array(chain_array, chain_number);
    chain_array = tmp_chain_array;
    chain_number = tmp_chain_number;
  }

  Connection_Test_Workspace *ctw = New_Connection_Test_Workspace();
  if (Is_Arg_Matched("-res")) {
    FILE *fp = fopen(Get_String_Arg("-res"), "r");
    if (fp != NULL) {
      if (darray_fscanf(fp, ctw->resolution, 3) != 3) {
	fprintf(stderr, "Failed to load %s\n", Get_String_Arg("-res"));
	ctw->resolution[0] = 1.0;
	ctw->resolution[1] = 1.0;
	ctw->resolution[2] = 1.0;
      } else {
	ctw->unit = 'u';
      }
      fclose(fp);
    } else {
      fprintf(stderr, "Failed to load %s. The file may not exist.\n", 
	      Get_String_Arg("-res"));
    }
  } else if (stack_doc != NULL) {
    ctw->resolution[0] = stack_doc->resolution[0];
    ctw->resolution[1] = stack_doc->resolution[1];
    ctw->resolution[2] = stack_doc->resolution[2];
  }

  if (Is_Arg_Matched("-force_merge")) {
    Connection_Test_Workspace *ws = New_Connection_Test_Workspace();
    ws->dist_thre = Get_Double_Arg("-force_merge");
    ws->interpolate = FALSE;
    ws->resolution[2] = ctw->resolution[2] / ctw->resolution[0];
    for (i = 0; i < chain_number; i++) {
      //Locseg_Chain_Correct_Ends(chain_array[i]); 
    }
    Locseg_Chain_Array_Force_Merge(chain_array, chain_number, ws); 
    Kill_Connection_Test_Workspace(ws);
  }

  chain_number2 = 0;
  Neuron_Component *chain_array2;
  GUARDED_MALLOC_ARRAY(chain_array2, chain_number, Neuron_Component); 
  for (i = 0; i < chain_number; i++) {
    if (Locseg_Chain_Is_Empty(chain_array[i]) == FALSE) {
      chain_map[chain_number2] = chain_map[i];
      Set_Neuron_Component(chain_array2+(chain_number2++), 
	  NEUROCOMP_TYPE_LOCSEG_CHAIN, chain_array[i]);
    } else {
      printf("chain_%d is empty.\n", chain_map[i]);
    }
  }
    /*
    Dir_Locseg_Chain_Nc(dir, "^chain.*\\.tb", &chain_number2, chain_map);
*/
  Stack *signal = NULL;
  //Stack *canvas = NULL;
  if (Is_Arg_Matched("-I")) {
    signal = Read_Stack_U(Get_String_Arg("-I"));
    //canvas = Translate_Stack(signal, COLOR, 0);
  } else {
    if (Is_Arg_Matched("-screen")) {
      perror("The -screen option requires -I option to be supplied.\n");
      return 1;
    }
  }

  /* Minimal tube length. */
  double minlen = 25.0;
  if (Is_Arg_Matched("-minlen")) {
    minlen = Get_Double_Arg("-minlen");
  }

  chain_number = 0;
  //int i;


  if (signal != NULL) {
    ctw->mask = Make_Stack(GREY, signal->width, signal->height, signal->depth);
    One_Stack(ctw->mask);
  }

  FILE *result_file = fopen(full_path(dir, Get_String_Arg("-o")), "w");


  double z_scale = 1.0;
  if (Is_Arg_Matched("-z")) {
    z_scale = Get_Double_Arg("-z");
  }


  /* Array to store corrected chains */
  Neuron_Component *chain_array_c = Make_Neuron_Component_Array(chain_number2);

  int screen = 0;

  double average_intensity = 0.0;

  if (Is_Arg_Matched("-screen")) {
    int good_chain_number = 0;
    int bad_chain_number = 0;
    for (i = 0; i < chain_number2; i++) {
      Locseg_Chain *chain = NEUROCOMP_LOCSEG_CHAIN(chain_array2 + i);

      average_intensity += Locseg_Chain_Average_Score(chain, signal, z_scale, 
						      STACK_FIT_MEAN_SIGNAL);

      if ((Locseg_Chain_Geolen(chain) > 55) || 
	  (Locseg_Chain_Average_Score(chain, signal, z_scale, 
				      STACK_FIT_CORRCOEF) > 0.6)) {
	good_chain_number++;
      } else {
	bad_chain_number++;
      }
    }
    
    printf("good %d bad %d\n", good_chain_number, bad_chain_number);

    if (good_chain_number + bad_chain_number > 50) {
      if (bad_chain_number > good_chain_number) {
	screen = 1;
      }
    } else {
      screen = 3;
      /*
      if (bad_chain_number > good_chain_number * 2) {
	screen = 2;
      }
      */
    }
  }

  average_intensity /= chain_number2;

  /* build chain map */
  for (i = 0; i < chain_number2; i++) {
    Locseg_Chain *chain = NEUROCOMP_LOCSEG_CHAIN(chain_array2 + i);
    BOOL good = FALSE;
    
    switch (screen) {
    case 1:
    case 2:
      if ((Locseg_Chain_Geolen(chain) > 100) || 
	  (Locseg_Chain_Average_Score(chain, signal, z_scale, 
				      STACK_FIT_CORRCOEF)
	   > 0.6)) {
	good = TRUE;
      } else {
	if (Locseg_Chain_Geolen(chain) < 100) {
	  if ((Locseg_Chain_Average_Score(chain, signal, z_scale, 
					 STACK_FIT_CORRCOEF) > 0.5) ||
	      (Locseg_Chain_Average_Score(chain, signal, z_scale, 
					  STACK_FIT_MEAN_SIGNAL) > 
	       average_intensity)) {
	    good = TRUE;
	  }
	}
      }
      break;
    case 3:
      if ((Locseg_Chain_Average_Score(chain, signal, z_scale, 
				      STACK_FIT_CORRCOEF) > 0.50) ||
	  (Locseg_Chain_Average_Score(chain, signal, z_scale, 
				      STACK_FIT_MEAN_SIGNAL) > 
	   average_intensity)) {
	good = TRUE;
      }
      break;
    default:
      good = TRUE;
    }

    if (good == TRUE) {
      if (Locseg_Chain_Geolen(chain) < minlen) {
	good = FALSE;
      }
    }

    if (good == TRUE) {
      Locseg_Chain *tmpchain = chain;
      if (signal != NULL) {
	//Locseg_Chain_Trace_Np(signal, 1.0, tmpchain, tw);
	Locseg_Chain_Erase(chain, ctw->mask, 1.0);
      }
      fprintf(result_file, "%d %d\n", chain_number, chain_map[i]);
      chain_map[chain_number] = chain_map[i];
      if (z_scale != 1.0) {
	Locseg_Chain_Scale_Z(chain, z_scale);
      }
      Set_Neuron_Component(chain_array_c + chain_number, 
			   NEUROCOMP_TYPE_LOCSEG_CHAIN, tmpchain);
      chain_number++;
    } else {
#ifdef _DEBUG_
      printf("chain%d is excluded.\n", i);
      /*
      char tmpfile[500];
      sprintf(tmpfile, "../data/diadem_c1/bad_chain/chain%d.tb", i);
      Write_Locseg_Chain(tmpfile, chain);
      */
#endif
    }
  }

  z_scale = 1.0;

  fprintf(result_file, "#\n");

  //Int_Arraylist *hit_spots = Int_Arraylist_New(0, chain_number);
  /* reconstruct neuron */

  if (Is_Arg_Matched("-res")) {
    FILE *fp = fopen(Get_String_Arg("-res"), "r");
    if (fp != NULL) {
      if (darray_fscanf(fp, ctw->resolution, 3) != 3) {
	fprintf(stderr, "Failed to load %s\n", Get_String_Arg("-res"));
	ctw->resolution[0] = 1.0;
	ctw->resolution[1] = 1.0;
	ctw->resolution[2] = 1.0;
      } else {
	ctw->unit = 'u';
      }
      fclose(fp);
    } else {
      fprintf(stderr, "Failed to load %s. The file may not exist.\n", 
	      Get_String_Arg("-res"));
    }
  } else if (stack_doc != NULL) {
    ctw->resolution[0] = stack_doc->resolution[0];
    ctw->resolution[1] = stack_doc->resolution[1];
    ctw->resolution[2] = stack_doc->resolution[2];
  }

  if (!Is_Arg_Matched("-sp")) {
    ctw->sp_test = FALSE;
    if (ctw->sp_test == FALSE) {
      ctw->dist_thre = NEUROSEG_DEFAULT_H / 2.0;
    }
  } else {
    ctw->dist_thre = NEUROSEG_DEFAULT_H * 1.5;
  }
  
  if (Is_Arg_Matched("-dist")) {
    ctw->dist_thre = Get_Double_Arg("-dist");
  }

  if (!Is_Arg_Matched("-intp")) {
    ctw->interpolate = FALSE;
  }
  //ctw->dist_thre = 100.0;

  double *tube_offset = NULL;
  if (Is_Arg_Matched("-trans")) {
    tube_offset = darray_malloc(3);
    tube_offset[0] = Get_Double_Arg("-trans", 1);
    tube_offset[1] = Get_Double_Arg("-trans", 2);
    tube_offset[2] = Get_Double_Arg("-trans", 3);
  } else {
    if (stack_doc != NULL) {
      tube_offset = darray_malloc(3);
      tube_offset[0] = stack_doc->offset[0];
      tube_offset[1] = stack_doc->offset[1];
      tube_offset[2] = stack_doc->offset[2];
    }
  }

  Neuron_Structure *ns = New_Neuron_Structure();
  ns->comp = chain_array_c;
  ns->graph = New_Graph();
  ns->graph->nvertex = chain_number;
  
  if (Is_Arg_Matched("-rtlist")) {
    int m, n;
    double *d = darray_load_matrix(Get_String_Arg("-rtlist"), NULL, &m, &n);

    if (n > 0) {
      coordinate_3d_t *roots = GUARDED_MALLOC_ARRAY(roots, n, coordinate_3d_t);
      int i;
      for (i = 0; i < n; i++) {
	if (Is_Arg_Matched("-trans")) {
	  roots[i][0] = d[i*3] - tube_offset[0];
	  roots[i][1] = d[i*3 + 1] - tube_offset[1];
	  roots[i][2] = d[i*3 + 2] - tube_offset[2];
	} else {
	  roots[i][0] = d[i*3];
	  roots[i][1] = d[i*3 + 1];
	  roots[i][2] = d[i*3 + 2];
	}
      }

      Neuron_Structure_Break_Root(ns, roots, n);
      Neuron_Structure_Load_Root(ns, roots, n);
    }
  }
  
  Locseg_Chain_Comp_Neurostruct_W(ns, signal, z_scale, ctw);

  if (tube_offset != NULL) {
    for (i = 0; i < chain_number; i++) {
      Locseg_Chain_Translate(NEUROCOMP_LOCSEG_CHAIN(chain_array_c + i), 
			     tube_offset);
    }
  }

  /*  
  Neuron_Structure *ns = Locseg_Chain_Comp_Neurostruct(chain_array, 
						       chain_number,
						       signal, z_scale, ctw);
  */

  FILE *tube_fp = fopen(full_path(dir, "tube.swc"), "w");
  int start_id = 1;

  for (i = 0; i < chain_number; i++) {
    int node_type = i % 10;
    int n = Locseg_Chain_Swc_Fprint_T(tube_fp, 
				      NEUROCOMP_LOCSEG_CHAIN(chain_array_c + i), 
				      node_type, start_id, 
				      -1, DL_FORWARD, 1.0, NULL);
    start_id += n;
  }
  fclose(tube_fp);

  //Neuron_Structure_To_Swc_File(ns, full_path(dir, "tube.swc"));
  /*
  Graph *testgraph = New_Graph(0, 0, FALSE);
  Int_Arraylist *cidx = Make_Int_Arraylist(0, 2);
  Int_Arraylist *sidx = Make_Int_Arraylist(0, 2);
  
  Locseg_Chain_Network_Simlify(&net, testgraph, cidx, sidx);
  */

  /* Find branch points */
  //Locseg_Chain *branches = Locseg_Chain_Network_Find_Branch(ns);

  //Graph *graph = Locseg_Chain_Graph(chain_array, chain_number, hit_spots);
  //Graph *graph = ns->graph;

  if (Is_Arg_Matched("-sup_root")) {
    if (Is_Arg_Matched("-rtlist")) {
      int m, n;
      double *d = darray_load_matrix(Get_String_Arg("-rtlist"), NULL, &m, &n);
      
      if (n > 0) {
	coordinate_3d_t *roots = 
	  GUARDED_MALLOC_ARRAY(roots, n, coordinate_3d_t);
	int i;
	for (i = 0; i < n; i++) {
	  roots[i][0] = d[i*3];
	  roots[i][1] = d[i*3 + 1];
	  roots[i][2] = d[i*3 + 2];
	  /*
	  if (tube_offset != NULL) {
	    roots[i][0] += tube_offset[0];
	    roots[i][1] += tube_offset[1];
	    roots[i][2] += tube_offset[2];
	  }
	  */
	}
	neuron_structure_suppress(ns, roots, n);
	free(roots);
      }
    }
  }

  Process_Neuron_Structure(ns);

  Print_Neuron_Structure(ns);

#ifdef _DEBUG_
  for (i = 0; i < NEURON_STRUCTURE_LINK_NUMBER(ns); i++) {
    printf("chain_%d (%d) -- chain_%d (%d) ", 
	chain_map[ns->graph->edges[i][0]], 
	ns->graph->edges[i][0], 
	chain_map[ns->graph->edges[i][1]],
	ns->graph->edges[i][1]);
    Print_Neurocomp_Conn(ns->conn + i);
  }
#endif

  if (Is_Arg_Matched("-ct")) {
    Neuron_Structure_Crossover_Test(ns, 
				    ctw->resolution[0] / ctw->resolution[2]);
  }

  if (Is_Arg_Matched("-al")) {
    Neuron_Structure_Adjust_Link(ns, Get_Double_Arg("-al"));
  }

  Neuron_Structure_To_Tree(ns);
  Neuron_Structure_Remove_Negative_Conn(ns);

#ifdef _DEBUG_
  printf("\nTree:\n");
  for (i = 0; i < NEURON_STRUCTURE_LINK_NUMBER(ns); i++) {
    printf("chain_%d (%d) -- chain_%d (%d) ", 
	chain_map[ns->graph->edges[i][0]], 
	ns->graph->edges[i][0], 
	chain_map[ns->graph->edges[i][1]],
	ns->graph->edges[i][1]);
    Print_Neurocomp_Conn(ns->conn + i);
  }
#endif
  /*
  printf("\ncross over changed: \n");
  Print_Neuron_Structure(ns);
  */

#ifdef _DEBUG_2
  ns->graph->nedge = 0;
  Neuron_Structure_To_Swc_File(ns, "../data/test.swc"); 
  return 1;
#endif
  
  //Print_Neuron_Structure(ns);

  
  Neuron_Structure* ns2= NULL;
  
  if (Is_Arg_Matched("-intp")) {
    ns2 = Neuron_Structure_Locseg_Chain_To_Circle_S(ns, 1.0, 1.0);
  } else {
    ns2 = Neuron_Structure_Locseg_Chain_To_Circle(ns);
  }
    
  /*
  Neuron_Structure* ns2=
    Neuron_Structure_Locseg_Chain_To_Circle_S(ns, 1.0, 1.0);
  */
  Graph_To_Dot_File(ns2->graph, full_path(dir, "graph_d.dot"));

  //Neuron_Structure_Main_Graph(ns2);
  Neuron_Structure_To_Tree(ns2);
  
  double root[3];

  if (Is_Arg_Matched("-root")) {
    root[0] = Get_Double_Arg("-root", 1);
    root[1] = Get_Double_Arg("-root", 2);
    root[2] = Get_Double_Arg("-root", 3);
  }

  Swc_Tree *tree = NULL;

  if (Is_Arg_Matched("-root")) {
    /*
    int root_index = Neuron_Structure_Find_Root_Circle(ns2, root);
    Graph_Workspace *gw2 = New_Graph_Workspace();
    Graph_Clean_Root(ns2->graph, root_index, gw2);

    Neuron_Structure_To_Swc_File_Circle_Z(ns2, full_path(dir, "graph_d.swc"),
					  z_scale, root);
    */
    tree = Neuron_Structure_To_Swc_Tree_Circle_Z(ns2, z_scale, root);
    if (Swc_Tree_Node_Is_Virtual(tree->root) == TRUE) {
      tree->root->first_child->next_sibling = NULL;
    }
    Swc_Tree_Clean_Root(tree);
  } else {
    /*
    Neuron_Structure_To_Swc_File_Circle_Z(ns2, full_path(dir, "graph_d.swc"),
					  z_scale, NULL);
    */
    tree = Neuron_Structure_To_Swc_Tree_Circle_Z(ns2, z_scale, NULL);
  }

  ns->graph->nedge = 0;
  //Neuron_Structure_To_Swc_File(ns, full_path(dir, "tube.swc"));


  if (Is_Arg_Matched("-rb")) {
    //Swc_Tree_Tune_Branch(tree);
    Swc_Tree_Tune_Fork(tree);
  }

  if (Is_Arg_Matched("-sl")) {
    Swc_Tree_Leaf_Shrink(tree);
  }

  if (Is_Arg_Matched("-rz")) {
    Swc_Tree_Remove_Zigzag(tree);
  }

  if (Is_Arg_Matched("-rs")) {
    Swc_Tree_Remove_Spur(tree);
  }
  
  Swc_Tree_Resort_Id(tree);

  Write_Swc_Tree(full_path(dir, "graph_d.swc"), tree);

  if (Is_Arg_Matched("-rtlist")) {
    int m, n;
    double *d = darray_load_matrix(Get_String_Arg("-rtlist"), NULL, &m, &n);

    if (n > 0) {
      coordinate_3d_t *roots = GUARDED_MALLOC_ARRAY(roots, n, coordinate_3d_t);
      int i;
      for (i = 0; i < n; i++) {
	roots[i][0] = d[i*3];
	roots[i][1] = d[i*3 + 1];
	roots[i][2] = d[i*3 + 2];

	/*
	if (tube_offset != NULL) {
	  roots[i][0] += tube_offset[0];
	  roots[i][1] += tube_offset[1];
	  roots[i][2] += tube_offset[2];
	}
	*/

	Swc_Tree *subtree = Swc_Tree_Pull_R(tree, roots[i]);
	char filename[MAX_PATH_LENGTH];
	if (subtree->root != NULL) {
	  //Swc_Tree_Clean_Root(subtree);
	  Swc_Tree_Clean_Root(subtree);
	  Swc_Tree_Node_Set_Pos(subtree->root, roots[i]);
	  if (Is_Arg_Matched("-jumpz")) {
	    //swc_tree_remove_zjump(subtree, Get_Double_Arg("-jumpz"));
	  }
	  Swc_Tree_Resort_Id(subtree);
	  sprintf(filename, "graph%d.swc", i + 1);
	  Write_Swc_Tree(full_path(dir, filename), subtree);
	}
      }
    }
  }

  printf("%d chains\n", chain_number);

  return 0;
}
예제 #5
0
파일: ct017.c 프로젝트: Vaa3D/vaa3d_tools
int main(int argc, char *argv[])
{
  static char *Spec[] = {"[-z <double>]", NULL};
  Process_Arguments(argc, argv, Spec, 1);

#if 0
  Locseg_Chain *chain1 = Read_Locseg_Chain("../data/ct017/test5/chain2.bn");
  Locseg_Chain *chain2 = Read_Locseg_Chain("../data/ct017/test5/chain1.bn");

  if (Is_Arg_Matched("-z")) {
    double z_scale = Get_Double_Arg("-z");
    Locseg_Chain_Scale_Z(chain1, z_scale);
    Locseg_Chain_Scale_Z(chain2, z_scale);
  }

  Neurocomp_Conn conn;
  Locseg_Chain_Connection_Test_P(chain1, chain2, &conn);
  Print_Neurocomp_Conn(&conn);

  double scale = 2.0;
  double offset = 5.0;

  Local_Neuroseg *locseg1;
  if (conn.info[0] == 0) {
    locseg1 = Locseg_Chain_Head_Seg(chain1);
    Local_Neuroseg_Stretch(locseg1, scale, offset, -1);
  } else {
    locseg1 = Locseg_Chain_Tail_Seg(chain1);
    Local_Neuroseg_Stretch(locseg1, scale, offset, 1);
  }

  Local_Neuroseg *locseg2 = Locseg_Chain_Peek_Seg_At(chain2, conn.info[1]);

  Local_Neuroseg_Stretch(locseg2, scale, offset, 0);

  printf("%g\n", Local_Neuroseg_Planar_Dist_L(locseg1, locseg2));

  FILE *fp = fopen("../data/ct017/test5/test.swc", "w");
  
  /* to avoid v3d bug */
  Local_Neuroseg *tmp_locseg = Copy_Local_Neuroseg(locseg1);
  tmp_locseg->seg.r1 = 0.1;
  Local_Neuroseg_Swc_Fprint(fp, tmp_locseg, 0, -1);

  Local_Neuroseg_Swc_Fprint(fp, locseg1, 2, -1);
  Local_Neuroseg_Swc_Fprint(fp, locseg2, 4, -1);
  
  fclose(fp);

  Locseg_Chain_Connection_Test(chain1, chain2, NULL, 1.0, &conn, NULL);
  Print_Neurocomp_Conn(&conn);
#endif

#if 0
  double z_scale = 0.5375;

  Locseg_Chain *chain[11];
  char file_path[100];
  
  int i, j;
  for (i = 0; i < 11; i++) {
    sprintf(file_path, "../data/mouse_single_org/chain%d.bn", i);
    chain[i] = Read_Locseg_Chain(file_path);
    Locseg_Chain_Scale_Z(chain[i], z_scale);
  }

  Neurocomp_Conn conn;
  for (i = 0; i < 11; i++) {
    for (j = 0; j < 11; j++) {
      if (i != j) {
	if (Locseg_Chain_Connection_Test_P(chain[i], chain[j], &conn) < 5.0) {
	  printf("%d -> %d \n", i, j);
	  Print_Neurocomp_Conn(&conn);
	}
      }
    }
  }
#endif

#if 0
  double z_scale = 0.5375;

  int n = 278;
  Locseg_Chain *chain[n];
  char file_path[100];
  
  int i, j;
  for (i = 0; i < n; i++) {
    sprintf(file_path, "../data/mouse_single_org/chain%d.bn", i);
    chain[i] = Read_Locseg_Chain(file_path);
    Locseg_Chain_Scale_Z(chain[i], z_scale);
  }

  Locseg_Chain *hook = chain[19];

  Neurocomp_Conn conn;
  for (i = 0; i < n; i++) {
    if (i != 19) {
      if (Locseg_Chain_Connection_Test_P(hook, chain[i], &conn) < 5.0) {
	printf("19 -> %d \n", i);
	Print_Neurocomp_Conn(&conn);
      }
    }
  }
#endif
  
#if 0
  double z_scale = 0.32;
  Locseg_Chain *chain[17];
  char file_path[100];
  
  int i, j;
  for (i = 0; i < 17; i++) {
    sprintf(file_path, "../data/fly_neuron_n1/chain%d.bn", i);
    chain[i] = Read_Locseg_Chain(file_path);
    Locseg_Chain_Scale_Z(chain[i], z_scale);
  }

  Neurocomp_Conn conn;
  for (i = 0; i < 17; i++) {
    for (j = 0; j < 17; j++) {
      if (i != j) {
	if (Locseg_Chain_Connection_Test_P(chain[i], chain[j], &conn) < 5.0) {
	  printf("%d -> %d \n", i, j);
	  Print_Neurocomp_Conn(&conn);
	}
      }
    }
  }
#endif

#if 0
  double z_scale = 0.1400;
  //double z_scale = 1.0;

  int n = 12;
  Locseg_Chain *chain[n];
  char file_path[100];
  
  int i, j;
  for (i = 0; i < n; i++) {
    sprintf(file_path, "../data/ct017/test6/chain%d.bn", i);
    chain[i] = Read_Locseg_Chain(file_path);
    Locseg_Chain_Scale_Z(chain[i], z_scale);
  }

  Neurocomp_Conn conn;
  for (i = 0; i < n; i++) {
    for (j = 0; j < n; j++) {
      if (i != j) {
	if (Locseg_Chain_Connection_Test_P(chain[i], chain[j], &conn) < 10.0) {
	  printf("%d -> %d \n", i, j);
	  Print_Neurocomp_Conn(&conn);
	}
      }
    }
  }
#endif

#if 0
  //double z_scale = 0.1400;
  double z_scale = 1.20;

  int n = 5;
  Locseg_Chain *chain[n];
  char file_path[100];
  
  int i, j;
  for (i = 0; i < n; i++) {
    sprintf(file_path, "../data/ct017/test7/chain%d.bn", i);
    chain[i] = Read_Locseg_Chain(file_path);
    Locseg_Chain_Scale_Z(chain[i], z_scale);
  }

  Neurocomp_Conn conn;
  for (i = 0; i < n; i++) {
    for (j = 0; j < n; j++) {
      if (i != j) {
	if (Locseg_Chain_Connection_Test_P(chain[i], chain[j], &conn) < 10.0) {
	  printf("%d -> %d \n", i, j);
	  Print_Neurocomp_Conn(&conn);
	}
      }
    }
  }
#endif

#if 0
  double z_scale = 1.20;
  //double z_scale = 1.0;
  Stack *stack = Read_Stack("../data/lobster_neuron_org.tif");

  int n = 5;
  Locseg_Chain *chain[n];
  char file_path[100];
  
  int i, j;
  
  for (i = 0; i < n; i++) {
    sprintf(file_path, "../data/ct017/test7/chain%d.bn", i);
    chain[i] = Read_Locseg_Chain(file_path);
    //Locseg_Chain_Scale_Z(chain[i], z_scale);
  }
  
  Connection_Test_Workspace *ctw = New_Connection_Test_Workspace();
  ctw->z_scale = z_scale;

  Neurocomp_Conn conn;
  for (i = 0; i < n; i++) {
    for (j = 0; j < n; j++) {
      if (i != j) {
	if (Locseg_Chain_Connection_Test(chain[i], chain[j], stack, 1.0,
					 &conn, ctw)) {
	  printf("%d -> %d \n", i, j);
	  Print_Neurocomp_Conn(&conn);
	}
      }
    }
  }
#endif

#if 0
  Locseg_Chain *chain = Read_Locseg_Chain("../data/ct017/test6/chain7.bn");
  Local_Neuroseg *locseg = Locseg_Chain_Tail_Seg(chain);
  Print_Local_Neuroseg(locseg);

  Stack *stack = Read_Stack("../data/mouse_neuron_sp2.tif");
  double *profile = Local_Neuroseg_Height_Profile(locseg, stack, 1.0, 
						  11, STACK_FIT_CORRCOEF,
						  NULL);
  darray_write("../data/profile1.bn", profile, 11);
#endif

#if 0
  Locseg_Chain *chain = Read_Locseg_Chain("../data/ct017/test6/chain7.bn");
  Local_Neuroseg *locseg = Locseg_Chain_Tail_Seg(chain);
  Print_Local_Neuroseg(locseg);

  Stack *stack = Read_Stack("../data/mouse_neuron_sp2.tif");

  int n;
  double record[11];
  Locseg_Chain *chain2 = Local_Neuroseg_Push(locseg, stack, 
					     1.0, STACK_FIT_OUTER_SIGNAL, 
					     record, &n);

  Print_Locseg_Chain(chain2);

  Write_Locseg_Chain("../data/test.tb", chain2);

  return 1;

  Locseg_Chain *chain3 = Read_Locseg_Chain("../data/ct017/test6/chain6.bn");
  
  Locseg_Chain_Scale_Z(chain2, 0.14);
  Locseg_Chain_Scale_Z(chain3, 0.14);
  Neurocomp_Conn conn;
  Locseg_Chain_Connection_Test(chain2, chain3, NULL, 1.0, &conn, NULL);
  Print_Neurocomp_Conn(&conn);
#endif

#if 0
  Locseg_Chain *chain = Read_Locseg_Chain("../data/ct017/test6/chain9.bn");
  Local_Neuroseg *locseg = Locseg_Chain_Tail_Seg(chain);
  //Local_Neuroseg *locseg = Locseg_Chain_Head_Seg(chain);
  //Flip_Local_Neuroseg(locseg);

  Print_Local_Neuroseg(locseg);

  Stack *stack = Read_Stack("../data/mouse_neuron_sp2.tif");

  int n;
  double record[11];
  Locseg_Chain *chain2 = Local_Neuroseg_Push(locseg, stack, 
					     1.0, STACK_FIT_OUTER_SIGNAL, 
					     record, &n);

  Print_Locseg_Chain(chain2);

  Write_Locseg_Chain("../data/test.bn", chain2);

  return 1;

  Locseg_Chain *chain3 = Read_Locseg_Chain("../data/ct017/test6/chain9.bn");
  
  Locseg_Chain_Scale_Z(chain2, 0.14);
  Locseg_Chain_Scale_Z(chain3, 0.14);
  Neurocomp_Conn conn;
  Locseg_Chain_Connection_Test(chain3, chain2, stack, 1.0, &conn, NULL);
  Print_Neurocomp_Conn(&conn);
#endif

#if 0
  double z_scale = 0.1400;
  //double z_scale = 1.0;
  Stack *stack = Read_Stack("../data/mouse_neuron_sp2.tif");

  int n = 12;
  Locseg_Chain *chain[n];
  char file_path[100];
  
  int i, j;
  
  for (i = 0; i < n; i++) {
    sprintf(file_path, "../data/ct017/test6/chain%d.bn", i);
    chain[i] = Read_Locseg_Chain(file_path);
    //Locseg_Chain_Scale_Z(chain[i], z_scale);
  }
  
  Connection_Test_Workspace *ctw = New_Connection_Test_Workspace();
  ctw->z_scale = 0.14;

  Neurocomp_Conn conn;
  for (i = 0; i < n; i++) {
    for (j = 0; j < n; j++) {
      if (i != j) {
	if (Locseg_Chain_Connection_Test(chain[i], chain[j], stack, 1.0,
					 &conn, ctw)) {
	  printf("%d -> %d \n", i, j);
	  Print_Neurocomp_Conn(&conn);
	}
      }
    }
  }
#endif

#if 0
  //double z_scale = 0.32;
  //double z_scale = 1.0;
  Stack *stack = Read_Stack("../data/fly_neuron_n1.tif");

  int n = 17;
  Locseg_Chain *chain[n];
  char file_path[100];
  
  int i, j;
  
  for (i = 0; i < n; i++) {
    sprintf(file_path, "../data/fly_neuron_n1/chain%d.tb", i);
    chain[i] = Read_Locseg_Chain(file_path);
    //Locseg_Chain_Scale_Z(chain[i], z_scale);
  }
  
  Connection_Test_Workspace *ctw = New_Connection_Test_Workspace();
  ctw->resolution[0] = 0.32;
  ctw->resolution[1] = 0.32;
  ctw->resolution[2] = 1.0;

  Neurocomp_Conn conn;
  for (i = 0; i < n; i++) {
    for (j = 0; j < n; j++) {
      if (i != j) {
	if (Locseg_Chain_Connection_Test(chain[i], chain[j], stack, 1.0,
					 &conn, ctw)) {
	  printf("%d -> %d \n", i, j);
	  Print_Neurocomp_Conn(&conn);
	}
      }
    }
  }
#endif

#if 0
  Locseg_Chain *chain = Read_Locseg_Chain("../data/fly_neuron_n1/chain3.bn");
  Local_Neuroseg *locseg = Locseg_Chain_Tail_Seg(chain);
  //Flip_Local_Neuroseg(locseg);
  Print_Local_Neuroseg(locseg);

  Stack *stack = Read_Stack("../data/fly_neuron_n1.tif");

  int n;
  double record[11];
  Locseg_Chain *chain2 = Local_Neuroseg_Push(locseg, stack, 
					     1.0, STACK_FIT_CORRCOEF, 
					     record, &n);

  Print_Locseg_Chain(chain2);

  Write_Locseg_Chain("../data/test.bn", chain2);

  return 1;

  Locseg_Chain *chain3 = Read_Locseg_Chain("../data/fly_neuron_n1/chain0.bn");
  
  Locseg_Chain_Scale_Z(chain2, 0.32);
  Locseg_Chain_Scale_Z(chain3, 0.32);
  Neurocomp_Conn conn;
  Locseg_Chain_Connection_Test(chain2, chain3, stack, 1.0, &conn, NULL);
  Print_Neurocomp_Conn(&conn);
#endif

  return 0;
}
예제 #6
0
int main(int argc, char* argv[])
{
  if (Show_Version(argc, argv, "1.00") == 1) {
    return 0;
  }

  static char *Spec[] = {
    " <image:string> -s <string> -o <string> [-e <string>] [-fo <int>] "
    "[-z <double> | -res <string>] [-field <int>] [-min_score <double>]",
    NULL};
  
  Process_Arguments(argc, argv, Spec, 1);
  
  Geo3d_Scalar_Field *seed = Read_Geo3d_Scalar_Field(Get_String_Arg("-s"));

  size_t idx;
  double max_r = darray_max(seed->values, seed->size, &idx);

  max_r *= 1.5;

  //Set_Neuroseg_Max_Radius(max_r);

  Stack *signal = Read_Stack_U(Get_String_Arg("image"));

  dim_type dim[3];
  dim[0] = signal->width;
  dim[1] = signal->height;
  dim[2] = signal->depth;

  Rgb_Color color;
  Set_Color(&color, 255, 0, 0);

  int seed_offset = -1;

  double z_scale = 1.0;

  if (Is_Arg_Matched("-res")) {
    if (fexist(Get_String_Arg("-res"))) {
      double res[3];
      int length;
      darray_read2(Get_String_Arg("-res"), res, &length);
      if (res[0] != res[1]) {
	perror("Different X-Y resolutions.");
	TZ_ERROR(ERROR_DATA_VALUE);
      }
      z_scale = res[0] / res[2] * 2.0;
    }
  }
  
  if (Is_Arg_Matched("-z")) {
    z_scale = Get_Double_Arg("-z");
  }

  printf("z scale: %g\n", z_scale);

  tic();


  double *values = darray_malloc(seed->size);

  int i;
  Local_Neuroseg *locseg = (Local_Neuroseg *) 
    malloc(seed->size * sizeof(Local_Neuroseg));


  int index = 0;

  //int ncol = LOCAL_NEUROSEG_NPARAM + 1 + 23;
  //double *features = darray_malloc(seed->size * ncol);
  //double *tmpfeats = features;

  Stack *seed_mask = Make_Stack(GREY, signal->width, signal->height, 
				signal->depth);
  Zero_Stack(seed_mask);

  Locseg_Fit_Workspace *fws = New_Locseg_Fit_Workspace();
  
  if (Is_Arg_Matched("-field")) {
    fws->sws->field_func = Neuroseg_Slice_Field_Func(Get_Int_Arg("-field"));
  }

  fws->sws->fs.n = 2;
  fws->sws->fs.options[0] = STACK_FIT_DOT;
  fws->sws->fs.options[1] = STACK_FIT_CORRCOEF;

  if (Is_Arg_Matched("-fo")) {
    fws->sws->fs.options[1] = Get_Int_Arg("-fo");
  }

  for (i = 0; i < seed->size; i++) {
    printf("-----------------------------> seed: %d / %d\n", i, seed->size);

    index = i;
    int x = (int) seed->points[index][0];
    int y = (int) seed->points[index][1];
    int z = (int) seed->points[index][2];

    double width = seed->values[index];

    seed_offset = Stack_Util_Offset(x, y, z, signal->width, signal->height,
				    signal->depth);

    if (width < 3.0) {
      width += 0.5;
    }
    Set_Neuroseg(&(locseg[i].seg), width, 0.0, NEUROSEG_DEFAULT_H, 
		 0.0, 0.0, 0.0, 0.0, 1.0);

    double cpos[3];
    cpos[0] = x;
    cpos[1] = y;
    cpos[2] = z;
    cpos[2] /= z_scale;
    
    Set_Neuroseg_Position(&(locseg[i]), cpos, NEUROSEG_CENTER);

    if (seed_mask->array[seed_offset] > 0) {
      printf("labeled\n");
      values[i] = 0.0;
      continue;
    }

    //Local_Neuroseg_Optimize(locseg + i, signal, z_scale, 0);
    Local_Neuroseg_Optimize_W(locseg + i, signal, z_scale, 0, fws);

    values[i] = fws->sws->fs.scores[1];
    /*
    Stack_Fit_Score fs;
    fs.n = 1;
    fs.options[0] = 1;
    values[i] = Local_Neuroseg_Score(locseg + i, signal, z_scale, &fs);
    */

    //values[i] = Local_Neuroseg_Score_W(locseg + i, signal, z_scale, sws);

    printf("%g\n", values[i]);

    double min_score = LOCAL_NEUROSEG_MIN_CORRCOEF;
    if (Is_Arg_Matched("-min_score")) {
      min_score = Get_Double_Arg("-min_score");
    }

    if (values[i] > min_score) {
      Local_Neuroseg_Label_G(locseg + i, seed_mask, -1, 2, z_scale);
    } else {
      Local_Neuroseg_Label_G(locseg + i, seed_mask, -1, 1, z_scale);
    }

    /*
    tmpfeats += Local_Neuroseg_Param_Array(locseg + i, z_scale, tmpfeats);
    
    tmpfeats += Local_Neuroseg_Stack_Feature(locseg + i, signal, z_scale, 
					     tmpfeats); 
    */
  }

  if (Is_Arg_Matched("-e")) {
    Write_Stack(Get_String_Arg("-e"), seed_mask);
  }
  Write_Local_Neuroseg_Array(Get_String_Arg("-o"), locseg, seed->size);

  char file_path[MAX_PATH_LENGTH];
  sprintf(file_path, "%s_score", Get_String_Arg("-o"));
  darray_write(file_path, values, seed->size);

  //sprintf(file_path, "%s_feat", Get_String_Arg("-o"));
  //darray_write(file_path, features, seed->size * ncol); 

  Kill_Geo3d_Scalar_Field(seed);

  printf("Time passed: %lld\n", toc());

  
  return 0;
}
예제 #7
0
파일: classify.c 프로젝트: chexenia/whisk
int main(int argc, char* argv[])
{ int n_rows, count;
  Measurements *table,*cursor;
  double thresh,
         px2mm,
         low_px,
         high_px;
  int face_x, face_y;
  int follicle_thresh = 0,
      follicle_col = 4,
      follicle_high;
  int n_cursor;

  Process_Arguments( argc, argv, Spec, 0);

  if( Is_Arg_Matched("-h") | Is_Arg_Matched("--help") )
  { Print_Argument_Usage(stdout,0);
    printf("--------------------------                                                   \n"
          " Classify 4 (radius filter)                                                   \n"
          "---------------------------                                                   \n"
          "                                                                              \n"
          "  Uses a length threshold to seperate hair/microvibrissae from main whiskers. \n"
          "  Then, for frames where the expected number of whiskers are found,           \n"
          "  label the whiskers according to their order on the face.                    \n"
          "\n"
          "  This version of classify filters out curves where the follicle side falls \n"
          "  outside of a circle centered at the face position with the radius specified \n"
          "  by the --follicle option."
          "\n"
          "  <source> Filename with Measurements table.\n"
          "  <dest>   Filename to which labelled Measurements will be saved.\n"
          "           This can be the same as <source>.\n"
          "  <faceX> <faceY> <faceAxis>\n"
          "           These are used for determining the order of whisker segments along \n"
          "           the face.  This requires an approximate position for the center of \n"
          "           the face and can be specified in pixel coordinates with <x> and <y>.\n"
          "           <axis> indicates the orientaiton of the face.  Values for <axis> may\n"
          "           be 'x' or 'h' for horizontal. 'y' or 'v' indicate a vertical face. \n"
          "           If the face is located along the edge of the frame then specify    \n"
          "           that edge with 'left', 'right', 'top' or 'bottom'.                 \n"
          "  --px2mm <double>\n"
          "           The length of a pixel in millimeters.  This is used to determine   \n"
          "           appropriate thresholds for discriminating hairs from whiskers.     \n"
          "  -n <int> (Optional) Optimize the threshold to find this number of whiskers. \n"
          "           If this isn't specified, or if this is set to a number less than 1 \n"
          "           then the number of whiskers is automatically determined.           \n"
          "  --follicle <int>\n"
          "           Only count follicles that lie inside a circle with this radius in  \n"
          "           (in pixels) and centered at the face position as whiskers.         \n"
          "--                                                                            \n");
    return 0;
  }

  px2mm   = Get_Double_Arg("--px2mm");
  low_px  = Get_Double_Arg("--limit",1) / px2mm;
  high_px = Get_Double_Arg("--limit",2) / px2mm;
#ifdef DEBUG_CLASSIFY_4
  debug("mm/px %f\n"
        "  low %f\n"
        " high %f\n", px2mm, low_px, high_px );
#endif

  table  = Measurements_Table_From_Filename ( Get_String_Arg("source"), NULL, &n_rows );
  if(!table) error("Couldn't read %s\n",Get_String_Arg("source"));
  Sort_Measurements_Table_Time(table,n_rows);

  { int maxx,maxy;
    const char *axis = Get_String_Arg("faceAxis");
    static const int x = 4,
                     y = 5;
    Measurements_Table_Pixel_Support( table, n_rows, &maxx, &maxy );
    face_x = Get_Int_Arg("faceX");
    face_y = Get_Int_Arg("faceY");
    follicle_thresh = 0;       // set defaults
    if( Is_Arg_Matched("--follicle") && Get_Int_Arg("--follicle")>0 )
    { follicle_thresh = Get_Int_Arg("--follicle");
      switch( axis[0] )        // respond to <follicle> option
      { case 'x':              // follicle must be between threshold and face
        case 'h':
        case 'y':
        case 'v':
          break;
        default:
          error("Could not recognize <axis>.  Must be 'x','h','y', or 'v'.  Got %s\n",axis);
      }
    }
  }
  // Follicle location threshold
  if( Is_Arg_Matched("--follicle") && Get_Int_Arg("--follicle")>0 )
    follicle_thresh = Get_Int_Arg("--follicle");
    //inline void Measurements_Table_Label_By_RadialThreshold( Measurements *table, int n_rows, double thresh, int ox, int oy, int colx, int coly)
  Measurements_Table_Label_By_RadialThreshold( table,
                                               n_rows,
                                               follicle_thresh,
                                               face_x,
                                               face_y,
                                               follicle_col,
                                               follicle_col+1);

#ifdef DEBUG_CLASSIFY_4
  debug("   Face Position: ( %3d, %3d )\n", face_x, face_y);
#endif
  // Shuffle to select subset with good follicles
  Sort_Measurements_Table_State_Time( table, n_rows );
  { cursor = table;
    while( (cursor->state == 0) && (cursor < table+n_rows ) )
      cursor++;
    n_cursor = n_rows - (cursor-table);
  }
  Sort_Measurements_Table_Time(cursor,n_cursor); //resort selected by time

#ifdef DEBUG_CLASSIFY_1
  { Measurements *row = cursor + n_cursor; //Assert all state==1
    while(row-- > cursor)
      assert(row->state == 1);
 }
#endif
  //
  // Estimate best length threshold and apply
  //
  if( Is_Arg_Matched("-n") && ( (count = Get_Int_Arg("-n"))>=1 ) )
  { thresh = Measurements_Table_Estimate_Best_Threshold_For_Known_Count( cursor, //table, 
                                                                         n_cursor, //n_rows, 
                                                                         0 /*length column*/, 
                                                                         low_px, 
                                                                         high_px, 
                                                                         1, /*use > */
                                                                         count );
  } else 
  { thresh = Measurements_Table_Estimate_Best_Threshold( cursor, //table, 
                                                         n_cursor, //n_rows, 
                                                         0 /*length column*/, 
                                                         low_px, 
                                                         high_px,
                                                         1, /* use > */
                                                         &count );
  }
  /*
  Measurements_Table_Label_By_Threshold    ( cursor,
                                             n_cursor,
                                             follicle_col,
                                             follicle_thresh,
                                             is_gt);
  */
  Measurements_Table_Label_By_RadialThreshold( table,
                                               n_rows,
                                               follicle_thresh,
                                               face_x,
                                               face_y,
                                               follicle_col,
                                               follicle_col+1);
#ifdef DEBUG_CLASSIFY_4
  { Measurements *row = cursor + n_cursor; //Assert all state==1
    while(row-- > cursor)
      assert(row->state == 1);
  }
#endif
  Measurements_Table_Label_By_Threshold_And ( cursor,
                                              n_cursor,
                                              0 /*length column*/, 
                                              thresh,
                                              1 /*use gt*/);
  
#ifdef DEBUG_CLASSIFY_4
  debug("   Length threshold: %f\n"
        "       Target count: %d\n",
        thresh,count); 
#endif

  Measurements_Table_Set_Constant_Face_Position     ( table, n_rows, face_x, face_y);
  Measurements_Table_Set_Follicle_Position_Indices  ( table, n_rows, 4, 5 );

  Measurements_Table_Label_By_Order(table, n_rows, count ); //re-sorts

  Measurements_Table_To_Filename( Get_String_Arg("dest"), NULL, table, n_rows );
  Free_Measurements_Table(table);
  return 0;
}
예제 #8
0
/*
 * trace_neuron - trace neuron from given seeds
 *
 * trace_neuron [!wtr] seed_file -Dsave_dir
 *   -r: write intermediate results
 *
 */
int main(int argc, char* argv[])
{
  static char *Spec[] = {
    "[!wtr] [-canvas <string>] [-mask <string>] [-res <string>] [-minr <int>]",
    "-minlen <double>",
    " <image:string> -S<string> -D<string>",
    NULL};
  
  Process_Arguments(argc, argv, Spec, 1);
  
  char *dir = Get_String_Arg("-D");
  
  char file_path[100];
  sprintf(file_path, "%s/%s", dir, Get_String_Arg("-S"));
  printf("%s\n", file_path);

  Geo3d_Scalar_Field *seed = Read_Geo3d_Scalar_Field(file_path);

  int idx;

  sprintf(file_path, "%s/%s.bn", dir, "max_r");
  double max_r;
  int tmp;
  if (fexist(file_path)) {
    darray_read2(file_path, &max_r, &tmp);
  } else {
    max_r = darray_max(seed->values, seed->size, &idx);
  }

  printf("%g\n", max_r);

  max_r *= 1.5;

  /*
  sprintf(file_path, "%s/%s", dir, "soma0.bn");
  if (!fexist(file_path)) {
    max_r *= 2.0;
  }
  */
   
  Set_Neuroseg_Max_Radius(max_r);

  Stack *signal = Read_Stack(Get_String_Arg("image"));

  dim_type dim[3];
  dim[0] = signal->width;
  dim[1] = signal->height;
  dim[2] = signal->depth;
  /* 
  IMatrix *chord = Make_IMatrix(dim, 3);
  
  Stack *code = Make_Stack(GREY16, 
			   signal->width, signal->height, signal->depth);
  */
  Rgb_Color color;
  Set_Color(&color, 255, 0, 0);

  Stack *canvas = NULL;

  char trace_file_path[100];
  sprintf(trace_file_path, "%s/%s", dir, Get_String_Arg("-canvas"));
  
  if (fexist(trace_file_path) == 1) {
    canvas = Read_Stack((char *) trace_file_path);
  } else {
    canvas = Copy_Stack(signal);
    Stretch_Stack_Value_Q(canvas, 0.999);
    Translate_Stack(canvas, COLOR, 1);
  }

  Stack *traced = NULL;
  
  char trace_mask_path[100];
  sprintf(trace_mask_path, "%s/%s", dir, Get_String_Arg("-mask"));

  if (fexist(trace_mask_path) == 1) {
    traced = Read_Stack((char *) trace_mask_path);
  } else {
    traced = Make_Stack(GREY, signal->width, signal->height, signal->depth);
    One_Stack(traced);
  }
  

  //Object_3d *obj = NULL;
  int seed_offset = -1;

  Neurochain *chain = NULL;

  double z_scale = 1.0;

  if (Is_Arg_Matched("-res")) {
    sprintf(file_path, "%s", Get_String_Arg("-res"));

    if (fexist(file_path)) {
      double res[3];
      int length;
      darray_read2(file_path, res, &length);
      if (res[0] != res[1]) {
	perror("Different X-Y resolutions.");
	TZ_ERROR(ERROR_DATA_VALUE);
      }
      z_scale = res[0] / res[2];
    }
  }

  //sprintf(file_path, "%s/%s", dir, Get_String_Arg("-M"));
  //Stack *stack = Read_Stack(file_path);

  tic();

  FILE *fp = NULL;
  char chain_file_path[100];
  char vrml_file_path[100];

  double min_chain_length = 25.0;

  if (Is_Arg_Matched("-minlen")) {
    min_chain_length = Get_Double_Arg("-minlen");
  }

  int *indices = iarray_malloc(seed->size);
  double *values = darray_malloc(seed->size);
  int i;

  Local_Neuroseg *locseg = (Local_Neuroseg *) 
    malloc(seed->size * sizeof(Local_Neuroseg));

  int index = 0;
  for (i = 0; i < seed->size; i++) {
    printf("-----------------------------> seed: %d / %d\n", i, seed->size);
    indices[i] = i;
    index = i;
    int x = (int) seed->points[index][0];
    int y = (int) seed->points[index][1];
    int z = (int) seed->points[index][2];

    double width = seed->values[index];

    chain = New_Neurochain();

    seed_offset = Stack_Util_Offset(x, y, z, signal->width, signal->height,
				    signal->depth);

    if (width < 3.0) {
      width += 0.5;
    }
    Set_Neuroseg(&(locseg[i].seg), width, width, 12.0, 
		 0.0, 0.0, 0.0);

    double cpos[3];
    cpos[0] = x;
    cpos[1] = y;
    cpos[2] = z;
    cpos[2] *= z_scale;
    
    Set_Neuroseg_Position(&(locseg[i]), cpos, NEUROSEG_CENTER);
    Stack_Fit_Score fs;
    fs.n = 1;
    fs.options[0] = 1;
    values[i] = Local_Neuroseg_Orientation_Search_C(&(locseg[i]), signal, z_scale, &fs);
  }

  darray_qsort(values, indices, seed->size);

  /*
  for (i = 0; i < seed->size; i++) {
    indices[i] = i;
  }
  darraycpy(values, seed->values, 0, seed->size);
  darray_qsort(values, indices, seed->size);
  */

  int counter = 0;

  //  for (i = seed->size - 1; i >= seed->size - 231; i--) {
  for (i = seed->size - 1; i >= 0; i--) {
    index = indices[i];

    printf("-----------------------------> seed: %d / %d\n", i, seed->size);
    
    sprintf(chain_file_path, "%s/chain%d.bn", dir, index);
    sprintf(vrml_file_path, "%s/chain%d.wrl", dir, index);

    if (fexist(chain_file_path) == 1) {
      chain = Read_Neurochain(chain_file_path);
      if (Neurochain_Geolen(chain) >= min_chain_length) {
	Write_Neurochain_Vrml(vrml_file_path, chain);
	Neurochain_Label(canvas, chain, z_scale);
	Neurochain_Erase_E(traced, chain, z_scale, 0,
			   Neurochain_Length(chain, FORWARD),
			   1.5, 0.0);
      }

      Free_Neurochain(chain);
      printf("chain exists\n");
      continue;
    }
    
    
    int x = (int) seed->points[index][0];
    int y = (int) seed->points[index][1];
    int z = (int) seed->points[index][2];

    if (*STACK_PIXEL_8(traced, x, y, z, 0) == 0) {
      printf("traced \n");
      continue;
    }

    double width = seed->values[index];

    if (width > max_r) {
      printf("too thick\n");
      continue;
    }
    
    if (Is_Arg_Matched("-minr")) {
      int max_level = (int) (width + 0.5);
      if (max_level <= Get_Int_Arg("-minr")) {
	printf("too thin\n");
	continue;
      }
    }
    /*
    seed_offset = Stack_Util_Offset(x, y, z, signal->width, signal->height,
				    signal->depth);
    */

    chain = New_Neurochain();
    /*
    Stack_Level_Code_Constraint(stack, code, chord->array, &seed_offset, 1, 
				max_level + 1);

    Voxel_t v;
    v[0] = x;
    v[1] = y;
    v[2] = z;

    Stack *tmp_stack = Copy_Stack(stack);
    obj = Stack_Grow_Object_Constraint(tmp_stack, 1, v, chord, code, 
				       max_level);
    Free_Stack(tmp_stack);

    Print_Object_3d_Info(obj);
    
    double vec[3];
    Object_3d_Orientation_Zscale(obj, vec, MAJOR_AXIS, z_scale);

    double theta, psi;
    Geo3d_Vector obj_vec;
    Set_Geo3d_Vector(&obj_vec, vec[0], vec[1], vec[2]);

    Geo3d_Vector_Orientation(&obj_vec, &theta, &psi);
    */

    /*
    if (width < 3.0) {
      width += 0.5;
    }
    Set_Neuroseg(&(chain->locseg.seg), width, width, 12.0, 
		 0.0, 0.0, 0.0);

    double cpos[3];
    cpos[0] = x;
    cpos[1] = y;
    cpos[2] = z;
    cpos[2] *= z_scale;
    
    //Set_Neuroseg_Position(&(chain->locseg), cpos, NEUROSEG_BOTTOM);
    Set_Neuroseg_Position(&(chain->locseg), cpos, NEUROSEG_CENTER);
    Stack_Fit_Score fs;
    fs.n = 1;
    fs.options[0] = 1;
    Local_Neuroseg_Orientation_Search_C(&(chain->locseg), signal, z_scale,
					&fs); 
    //fs.options[0] = 1;
    */

    Copy_Local_Neuroseg(&(chain->locseg), &(locseg[index]));
    Neurochain *chain_head = chain;
    
    
    if (Initialize_Tracing(signal, chain, NULL, z_scale) >= MIN_SCORE) {
      if ((Neuroseg_Hit_Traced(&(chain->locseg), traced, z_scale) == FALSE) &&
	  (chain->locseg.seg.r1 < max_r) && 
	  (chain->locseg.seg.r2 < max_r)) {
	//Initialize_Tracing(signal, chain, NULL, z_scale);
	chain = Trace_Neuron2(signal, chain, BOTH, traced, z_scale, 500);

	//Neurochain *chain_head = Neurochain_Head(chain);
	chain_head = Neurochain_Remove_Overlap_Segs(chain);
	chain_head = Neurochain_Remove_Turn_Ends(chain_head, 0.5);
	/*
	if (i == seed->size - 231) {
	  Print_Neurochain(chain_head);
	}
	*/

	fp = fopen(chain_file_path, "w");
	Neurochain_Fwrite(chain_head, fp);
	fclose(fp);
	if (Neurochain_Geolen(chain_head) >= min_chain_length) {
	  Write_Neurochain_Vrml(vrml_file_path, chain_head);

	  Neurochain_Erase_E(traced, chain_head, z_scale, 0,
			     Neurochain_Length(chain_head, FORWARD),
			     1.5, 0.0);
	  Neurochain_Label(canvas, chain_head, z_scale);

	  counter += Neurochain_Length(chain_head, FORWARD);
	  if (counter > 500) {
	    if (Is_Arg_Matched("-r")) {
	      Write_Stack((char *) trace_mask_path, traced);
	    }
	    
	    if (Is_Arg_Matched("-r")) {
	    Write_Stack((char *) trace_file_path, canvas);
	    }

	    counter = 0;
	  }
	}
      }
    }

    Free_Neurochain(chain_head);

    //Kill_Object_3d(obj);
  }

  Write_Stack((char *) trace_file_path, canvas);
  if (Is_Arg_Matched("-r")) {
    Write_Stack((char *) trace_mask_path, traced);
  }

  Kill_Geo3d_Scalar_Field(seed);

  printf("Time passed: %lld\n", toc());

  
  return 0;
}