static WEBP_INLINE void DoGradientFilter(const uint8_t* in, int width, int height, int stride, int inverse, uint8_t* out) { const uint8_t* preds = (inverse ? out : in); int h; SANITY_CHECK(in, out); // left prediction for top scan-line out[0] = in[0]; PredictLine(in + 1, preds, out + 1, width - 1, inverse); // Filter line-by-line. for (h = 1; h < height; ++h) { int w; preds += stride; in += stride; out += stride; // leftmost pixel: predict from above. PredictLine(in, preds - stride, out, 1, inverse); for (w = 1; w < width; ++w) { const int pred = GradientPredictor(preds[w - 1], preds[w - stride], preds[w - stride - 1]); out[w] = in[w] + (inverse ? pred : -pred); } } }
WEBP_FILTER_TYPE EstimateBestFilter(const uint8_t* data, int width, int height, int stride) { int i, j; int bins[WEBP_FILTER_LAST][SMAX]; memset(bins, 0, sizeof(bins)); // We only sample every other pixels. That's enough. for (j = 2; j < height - 1; j += 2) { const uint8_t* const p = data + j * stride; int mean = p[0]; for (i = 2; i < width - 1; i += 2) { const int diff0 = SDIFF(p[i], mean); const int diff1 = SDIFF(p[i], p[i - 1]); const int diff2 = SDIFF(p[i], p[i - width]); const int grad_pred = GradientPredictor(p[i - 1], p[i - width], p[i - width - 1]); const int diff3 = SDIFF(p[i], grad_pred); bins[WEBP_FILTER_NONE][diff0] = 1; bins[WEBP_FILTER_HORIZONTAL][diff1] = 1; bins[WEBP_FILTER_VERTICAL][diff2] = 1; bins[WEBP_FILTER_GRADIENT][diff3] = 1; mean = (3 * mean + p[i] + 2) >> 2; } } { int filter; WEBP_FILTER_TYPE best_filter = WEBP_FILTER_NONE; int best_score = 0x7fffffff; for (filter = WEBP_FILTER_NONE; filter < WEBP_FILTER_LAST; ++filter) { int score = 0; for (i = 0; i < SMAX; ++i) { if (bins[filter][i] > 0) { score += i; } } if (score < best_score) { best_score = score; best_filter = (WEBP_FILTER_TYPE)filter; } } return best_filter; } }
static WEBP_INLINE void DoGradientFilter(const uint8_t* in, int width, int height, int stride, int row, int num_rows, int inverse, uint8_t* out) { const uint8_t* preds; const size_t start_offset = row * stride; const int last_row = row + num_rows; SANITY_CHECK(in, out); in += start_offset; out += start_offset; preds = inverse ? out : in; // left prediction for top scan-line if (row == 0) { out[0] = in[0]; PredictLine(in + 1, preds, out + 1, width - 1, inverse); row = 1; preds += stride; in += stride; out += stride; } // Filter line-by-line. while (row < last_row) { int w; // leftmost pixel: predict from above. PredictLine(in, preds - stride, out, 1, inverse); for (w = 1; w < width; ++w) { const int pred = GradientPredictor(preds[w - 1], preds[w - stride], preds[w - stride - 1]); out[w] = in[w] + (inverse ? pred : -pred); } ++row; preds += stride; in += stride; out += stride; } }