예제 #1
0
/*-------------------------------------------------------------------------
 * Function:	H5S_mpio_hyper_type
 *
 * Purpose:	Translate an HDF5 hyperslab selection into an MPI type.
 *
 * Return:	non-negative on success, negative on failure.
 *
 * Outputs:	*new_type	  the MPI type corresponding to the selection
 *		*count		  how many objects of the new_type in selection
 *				  (useful if this is the buffer type for xfer)
 *		*extra_offset     Number of bytes of offset within dataset
 *		*is_derived_type  0 if MPI primitive type, 1 if derived
 *
 * Programmer:	rky 980813
 *
 * Modifications:  ppw 990401
 *		rky, ppw 2000-09-26 Freed old type after creating struct type.
 *		rky 2000-10-05 Changed displacements to be MPI_Aint.
 *		rky 2000-10-06 Added code for cases of empty hyperslab.
 *		akc, rky 2000-11-16 Replaced hard coded dimension size with
 *		    H5S_MAX_RANK.
 *
 *      	Quincey Koziol, June 18, 2002
 *      	Added 'extra_offset' parameter.  Also accomodate selection
 *      	offset in MPI type built.
 *
 *      	Albert Cheng, August 4, 2004
 *      	Reimplemented the algorithm of forming the outer_type by
 *      	defining it as (start, vector, extent) in one call.
 *
 *-------------------------------------------------------------------------
 */
static herr_t
H5S_mpio_hyper_type( const H5S_t *space, size_t elmt_size,
		     /* out: */
		     MPI_Datatype *new_type,
		     size_t *count,
		     hsize_t *extra_offset,
		     hbool_t *is_derived_type )
{
    H5S_sel_iter_t sel_iter;    /* Selection iteration info */
    hbool_t sel_iter_init=0;    /* Selection iteration info has been initialized */

    struct dim {	/* less hassle than malloc/free & ilk */
        hssize_t start;
        hsize_t strid;
        hsize_t block;
        hsize_t xtent;
        hsize_t count;
    } d[H5S_MAX_RANK];

    int			i;
    int			offset[H5S_MAX_RANK];
    int			max_xtent[H5S_MAX_RANK];
    H5S_hyper_dim_t	*diminfo;		/* [rank] */
    int		rank;
    int			block_length[3];
    MPI_Datatype	inner_type, outer_type, old_types[3];
    MPI_Aint            extent_len, displacement[3];
    int                 mpi_code;               /* MPI return code */
    herr_t		ret_value = SUCCEED;

    FUNC_ENTER_NOAPI_NOINIT(H5S_mpio_hyper_type);

    /* Check args */
    assert (space);
    assert(sizeof(MPI_Aint) >= sizeof(elmt_size));
    if (0==elmt_size)
        goto empty;

    /* Initialize selection iterator */
    if (H5S_select_iter_init(&sel_iter, space, elmt_size)<0)
        HGOTO_ERROR (H5E_DATASPACE, H5E_CANTINIT, FAIL, "unable to initialize selection iterator");
    sel_iter_init=1;	/* Selection iteration info has been initialized */

    /* Abbreviate args */
    diminfo=sel_iter.u.hyp.diminfo;
    assert (diminfo);

    /* make a local copy of the dimension info so we can operate with them */

    /* Check if this is a "flattened" regular hyperslab selection */
    if(sel_iter.u.hyp.iter_rank!=0 && sel_iter.u.hyp.iter_rank<space->extent.rank) {
        /* Flattened selection */
        rank=sel_iter.u.hyp.iter_rank;
        assert (rank >= 0 && rank<=H5S_MAX_RANK);	/* within array bounds */
        if (0==rank)
            goto empty;

#ifdef H5Smpi_DEBUG
            HDfprintf(stderr, "%s: Flattened selection\n",FUNC);
#endif
        for ( i=0; i<rank; ++i) {
            d[i].start = diminfo[i].start+sel_iter.u.hyp.sel_off[i];
            d[i].strid = diminfo[i].stride;
            d[i].block = diminfo[i].block;
            d[i].count = diminfo[i].count;
            d[i].xtent = sel_iter.u.hyp.size[i];
#ifdef H5Smpi_DEBUG
            HDfprintf(stderr, "%s: start=%Hd  stride=%Hu  count=%Hu  block=%Hu  xtent=%Hu",
                FUNC, d[i].start, d[i].strid, d[i].count, d[i].block, d[i].xtent );
            if (i==0)
                HDfprintf(stderr, "  rank=%d\n", rank );
            else
                HDfprintf(stderr, "\n" );
#endif
            if (0==d[i].block)
                goto empty;
            if (0==d[i].count)
                goto empty;
            if (0==d[i].xtent)
                goto empty;
        }
    } /* end if */
    else {
        /* Non-flattened selection */
        rank = space->extent.rank;
        assert (rank >= 0 && rank<=H5S_MAX_RANK);	/* within array bounds */
        if (0==rank)
            goto empty;

#ifdef H5Smpi_DEBUG
            HDfprintf(stderr, "%s: Non-flattened selection\n",FUNC);
#endif
        for ( i=0; i<rank; ++i) {
            d[i].start = diminfo[i].start+space->select.offset[i];
            d[i].strid = diminfo[i].stride;
            d[i].block = diminfo[i].block;
            d[i].count = diminfo[i].count;
            d[i].xtent = space->extent.size[i];
#ifdef H5Smpi_DEBUG
            HDfprintf(stderr, "%s: start=%Hd  stride=%Hu  count=%Hu  block=%Hu  xtent=%Hu",
                FUNC, d[i].start, d[i].strid, d[i].count, d[i].block, d[i].xtent );
            if (i==0)
                HDfprintf(stderr, "  rank=%d\n", rank );
            else
                HDfprintf(stderr, "\n" );
#endif
            if (0==d[i].block)
                goto empty;
            if (0==d[i].count)
                goto empty;
            if (0==d[i].xtent)
                goto empty;
        }
    } /* end else */

/**********************************************************************
    Compute array "offset[rank]" which gives the offsets for a multi-
    dimensional array with dimensions "d[i].xtent" (i=0,1,...,rank-1).
**********************************************************************/
    offset[rank-1] = 1;
    max_xtent[rank-1] = d[rank-1].xtent;
#ifdef H5Smpi_DEBUG
    i=rank-1;
    HDfprintf(stderr, " offset[%2d]=%d; max_xtent[%2d]=%d\n",
                          i, offset[i], i, max_xtent[i]);
#endif
    for (i=rank-2; i>=0; --i) {
        offset[i] = offset[i+1]*d[i+1].xtent;
        max_xtent[i] = max_xtent[i+1]*d[i].xtent;
#ifdef H5Smpi_DEBUG
        HDfprintf(stderr, " offset[%2d]=%d; max_xtent[%2d]=%d\n",
                          i, offset[i], i, max_xtent[i]);
#endif
    }

    /*  Create a type covering the selected hyperslab.
     *  Multidimensional dataspaces are stored in row-major order.
     *  The type is built from the inside out, going from the
     *  fastest-changing (i.e., inner) dimension * to the slowest (outer). */

/*******************************************************
*  Construct contig type for inner contig dims:
*******************************************************/
#ifdef H5Smpi_DEBUG
    HDfprintf(stderr, "%s: Making contig type %d MPI_BYTEs\n", FUNC,elmt_size );
    for (i=rank-1; i>=0; --i)
        HDfprintf(stderr, "d[%d].xtent=%Hu \n", i, d[i].xtent);
#endif
    if (MPI_SUCCESS != (mpi_code= MPI_Type_contiguous( (int)elmt_size, MPI_BYTE, &inner_type )))
        HMPI_GOTO_ERROR(FAIL, "MPI_Type_contiguous failed", mpi_code);

/*******************************************************
*  Construct the type by walking the hyperslab dims
*  from the inside out:
*******************************************************/
    for ( i=rank-1; i>=0; --i) {
#ifdef H5Smpi_DEBUG
        HDfprintf(stderr, "%s: Dimension i=%d \n"
            "start=%Hd count=%Hu block=%Hu stride=%Hu, xtent=%Hu max_xtent=%d\n",
            FUNC, i, d[i].start, d[i].count, d[i].block, d[i].strid, d[i].xtent, max_xtent[i]);
#endif

#ifdef H5Smpi_DEBUG
        HDfprintf(stderr, "%s: i=%d  Making vector-type \n", FUNC,i);
#endif
       /****************************************
       *  Build vector type of the selection.
       ****************************************/
	mpi_code =MPI_Type_vector((int)(d[i].count),        /* count */
				  (int)(d[i].block),        /* blocklength */
				  (int)(d[i].strid),   	    /* stride */
				  inner_type,	            /* old type */
				  &outer_type);            /* new type */

        MPI_Type_free( &inner_type );
        if (mpi_code!=MPI_SUCCESS)
            HMPI_GOTO_ERROR(FAIL, "couldn't create MPI vector type", mpi_code);

       /****************************************
       *  Then build the dimension type as (start, vector type, xtent).
       ****************************************/
       /* calculate start and extent values of this dimension */
	displacement[1] = d[i].start * offset[i] * elmt_size;
        displacement[2] = (MPI_Aint)elmt_size * max_xtent[i];
        if(MPI_SUCCESS != (mpi_code = MPI_Type_extent(outer_type, &extent_len)))
            HMPI_GOTO_ERROR(FAIL, "MPI_Type_extent failed", mpi_code);

       /*************************************************
       *  Restructure this datatype ("outer_type")
       *  so that it still starts at 0, but its extent
       *  is the full extent in this dimension.
       *************************************************/
        if (displacement[1] > 0 || (int)extent_len < displacement[2]) {

            block_length[0] = 1;
            block_length[1] = 1;
            block_length[2] = 1;

            displacement[0] = 0;

            old_types[0] = MPI_LB;
            old_types[1] = outer_type;
            old_types[2] = MPI_UB;
#ifdef H5Smpi_DEBUG
            HDfprintf(stderr, "%s: i=%d Extending struct type\n"
                "***displacements: %d, %d, %d\n",
		FUNC, i, displacement[0], displacement[1], displacement[2]);
#endif

            mpi_code = MPI_Type_struct ( 3,               /* count */
                                    block_length,    /* blocklengths */
                                    displacement,    /* displacements */
                                    old_types,       /* old types */
                                    &inner_type);    /* new type */

            MPI_Type_free (&outer_type);
    	    if (mpi_code!=MPI_SUCCESS)
                HMPI_GOTO_ERROR(FAIL, "couldn't resize MPI vector type", mpi_code);
        }
        else {
            inner_type = outer_type;
        }
    } /* end for */
/***************************
*  End of loop, walking
*  thru dimensions.
***************************/


    /* At this point inner_type is actually the outermost type, even for 0-trip loop */

    *new_type = inner_type;
    if (MPI_SUCCESS != (mpi_code= MPI_Type_commit( new_type )))
        HMPI_GOTO_ERROR(FAIL, "MPI_Type_commit failed", mpi_code);

    /* fill in the remaining return values */
    *count = 1;			/* only have to move one of these suckers! */
    *extra_offset = 0;
    *is_derived_type = 1;
    HGOTO_DONE(SUCCEED);

empty:
    /* special case: empty hyperslab */
    *new_type = MPI_BYTE;
    *count = 0;
    *extra_offset = 0;
    *is_derived_type = 0;

done:
    /* Release selection iterator */
    if(sel_iter_init) {
        if (H5S_SELECT_ITER_RELEASE(&sel_iter)<0)
            HDONE_ERROR (H5E_DATASPACE, H5E_CANTRELEASE, FAIL, "unable to release selection iterator");
    } /* end if */

#ifdef H5Smpi_DEBUG
    HDfprintf(stderr, "Leave %s, count=%ld  is_derived_type=%d\n",
		FUNC, *count, *is_derived_type );
#endif
    FUNC_LEAVE_NOAPI(ret_value);
}
예제 #2
0
/*-------------------------------------------------------------------------
 * Function:	H5S_mpio_span_hyper_type
 *
 * Purpose:	Translate an HDF5 irregular hyperslab selection into an
                MPI type.
 *
 * Return:	non-negative on success, negative on failure.
 *
 * Outputs:	*new_type	  the MPI type corresponding to the selection
 *		*count		  how many objects of the new_type in selection
 *				  (useful if this is the buffer type for xfer)
 *		*extra_offset     Number of bytes of offset within dataset
 *		*is_derived_type  0 if MPI primitive type, 1 if derived
 *
 * Programmer:  kyang
 *
 */
static herr_t
H5S_mpio_span_hyper_type( const           H5S_t *space,
			  size_t          elmt_size,
			  MPI_Datatype    *new_type,/* out: */
			  size_t          *count,
			  hsize_t         *extra_offset,
			  hbool_t         *is_derived_type ){

  MPI_Datatype          span_type;
  H5S_hyper_span_t      *ospan;
  H5S_hyper_span_info_t *odown;
  hsize_t               *size;
  int                   rank;
  int                   mpi_code;
  herr_t                ret_value = SUCCEED;
  MPI_Aint              extent,lb;


  FUNC_ENTER_NOAPI_NOINIT(H5S_mpio_span_hyper_type);

  /* Check args */
    assert (space);

 /* assert(sizeof(MPI_Aint) >= sizeof(elmt_size)); not sure the reason*/


    rank = space->extent.rank;

    /*    size = HDcalloc((size_t)rank,sizeof(hsize_t));  */
    if (0==elmt_size)
        goto empty;
    size = space->extent.size;
    if(size == 0)
        goto empty;

    odown = space->select.sel_info.hslab->span_lst;
    if(odown == NULL)
      goto empty;
    ospan = odown->head;
    if(ospan == NULL)
      goto empty;

    /* obtain derived data type */
    if(FAIL == H5S_obtain_datatype(space->extent.size,ospan,&span_type,elmt_size,rank))
      HGOTO_ERROR(H5E_DATASPACE, H5E_BADTYPE, FAIL,"couldn't obtain  MPI derived data type");

    if (MPI_SUCCESS != (mpi_code = MPI_Type_commit(&span_type)))
        HMPI_GOTO_ERROR(FAIL, "MPI_Type_commit failed", mpi_code);

    *new_type = span_type;
    /* fill in the remaining return values */
    *count = 1;
    *extra_offset = 0;
    *is_derived_type = 1;

    HGOTO_DONE(SUCCEED);

empty:
    /* special case: empty hyperslab */
    *new_type        = MPI_BYTE;
    *count           = 0;
    *extra_offset    = 0;
    *is_derived_type = 0;

done:
    FUNC_LEAVE_NOAPI(ret_value);
  }
예제 #3
0
/* ***if* H5Of/H5Oget_info_by_name_c
 * NAME
 *  H5Oget_info_by_name_c
 * PURPOSE
 *  Calls H5Oget_info_by_name
 * INPUTS
 *  loc_id       - File or group identifier specifying location of group in which object is located.
 *  name         - Name of group, relative to loc_id.
 *  namelen      - Name length.
 *  lapl_id      - Link access property list.
 * OUTPUTS
 *  corder_valid - Indicates whether the the creation order data is valid for this attribute.
 *  corder       - Is a positive integer containing the creation order of the attribute.
 *  cset         - Indicates the character set used for the attribute’s name.
 *  data_size    - indicates the size, in the number of characters, of the attribute.
 *
 * RETURNS
 *  0 on success, -1 on failure
 * AUTHOR
 *  M. Scot Breitenfeld
 *  December 1, 2008
 * SOURCE
*/
int_f
nh5oget_info_by_name_c (hid_t_f *loc_id, _fcd name, size_t_f *namelen, hid_t_f *lapl_id,
			H5O_info_t_f *object_info)
/******/
{
  char *c_name = NULL;          /* Buffer to hold C string */
  int_f ret_value = 0;          /* Return value */
  H5O_info_t Oinfo;
  struct tm *ts;
  
  /*
   * Convert FORTRAN name to C name
   */
  if((c_name = HD5f2cstring(name, (size_t)*namelen)) == NULL)
    HGOTO_DONE(FAIL);

  /*
   * Call H5Oinfo_by_name function.
   */
  if(H5Oget_info_by_name((hid_t)*loc_id, c_name,
			 &Oinfo, (hid_t)*lapl_id) < 0)
    HGOTO_DONE(FAIL);

  object_info->fileno    = Oinfo.fileno;
  object_info->addr      = (haddr_t_f)Oinfo.addr;
 

  object_info->type      = (int_f)Oinfo.type;
  object_info->rc        = (int_f)Oinfo.rc;

  ts = gmtime(&Oinfo.atime);

  object_info->atime[0]     = (int_f)ts->tm_year+1900; /* year starts at 1900 */
  object_info->atime[1]     = (int_f)ts->tm_mon+1; /* month starts at 0 in C */
  object_info->atime[2]     = (int_f)ts->tm_mday;
/*   object_info->atime[3]     = (int_f)ts->tm_gmtoff; /\* convert from seconds to minutes *\/ */
  object_info->atime[4]     = (int_f)ts->tm_hour;
  object_info->atime[5]     = (int_f)ts->tm_min;
  object_info->atime[6]     = (int_f)ts->tm_sec;
  object_info->atime[7]     = -32767; /* millisecond is not available, assign it -HUGE(0) */

  ts = gmtime(&Oinfo.btime);

  object_info->btime[0]     = (int_f)ts->tm_year+1900; /* year starts at 1900 */
  object_info->btime[1]     = (int_f)ts->tm_mon+1; /* month starts at 0 in C */
  object_info->btime[2]     = (int_f)ts->tm_mday;
/*   object_info->btime[3]     = (int_f)ts->tm_gmtoff/60; /\* convert from seconds to minutes *\/ */
  object_info->btime[4]     = (int_f)ts->tm_hour;
  object_info->btime[5]     = (int_f)ts->tm_min;
  object_info->btime[6]     = (int_f)ts->tm_sec;
  object_info->btime[7]     = -32767; /* millisecond is not available, assign it -HUGE(0) */

  ts = gmtime(&Oinfo.ctime);

  object_info->ctime[0]     = (int_f)ts->tm_year+1900; /* year starts at 1900 */
  object_info->ctime[1]     = (int_f)ts->tm_mon+1; /* month starts at 0 in C */
  object_info->ctime[2]     = (int_f)ts->tm_mday;
/*   object_info->ctime[3]     = (int_f)ts->tm_gmtoff/60; /\* convert from seconds to minutes *\/ */
  object_info->ctime[4]     = (int_f)ts->tm_hour;
  object_info->ctime[5]     = (int_f)ts->tm_min;
  object_info->ctime[6]     = (int_f)ts->tm_sec;
  object_info->ctime[7]     = -32767; /* millisecond is not available, assign it -HUGE(0) */

  ts = gmtime(&Oinfo.mtime);

  object_info->mtime[0]     = (int_f)ts->tm_year+1900; /* year starts at 1900 */
  object_info->mtime[1]     = (int_f)ts->tm_mon+1; /* month starts at 0 in C */
  object_info->mtime[2]     = (int_f)ts->tm_mday;
/*   object_info->mtime[3]     = (int_f)ts->tm_gmtoff/60; /\* convert from seconds to minutes *\/ */
  object_info->mtime[4]     = (int_f)ts->tm_hour;
  object_info->mtime[5]     = (int_f)ts->tm_min;
  object_info->mtime[6]     = (int_f)ts->tm_sec;
  object_info->mtime[7]     = -32767; /* millisecond is not available, assign it -HUGE(0) */

  object_info->num_attrs = (hsize_t_f)Oinfo.num_attrs;

  object_info->hdr.version = (int_f)Oinfo.hdr.version;
  object_info->hdr.nmesgs  = (int_f)Oinfo.hdr.nmesgs;
  object_info->hdr.nchunks = (int_f)Oinfo.hdr.nchunks;
  object_info->hdr.flags   = (int_f)Oinfo.hdr.flags;

  object_info->hdr.space.total = (hsize_t_f)Oinfo.hdr.space.total;
  object_info->hdr.space.meta  = (hsize_t_f)Oinfo.hdr.space.meta;
  object_info->hdr.space.mesg  = (hsize_t_f)Oinfo.hdr.space.mesg;
  object_info->hdr.space.free  = (hsize_t_f)Oinfo.hdr.space.free;

  object_info->hdr.mesg.present = Oinfo.hdr.mesg.present;
  object_info->hdr.mesg.shared  = Oinfo.hdr.mesg.shared;

  object_info->meta_size.obj.index_size = (hsize_t_f)Oinfo.meta_size.obj.index_size;
  object_info->meta_size.obj.heap_size  = (hsize_t_f)Oinfo.meta_size.obj.heap_size;

 done:
  return ret_value;
}