void cSystem_onMessage(HvBase *_c, void *o, int letIn, const HvMessage *const m, void (*sendMessage)(HvBase *, int, const HvMessage *const)) { HvMessage *n = HV_MESSAGE_ON_STACK(1); if (msg_compareSymbol(m, 0, "samplerate")) { msg_initWithFloat(n, msg_getTimestamp(m), (float) ctx_getSampleRate(_c)); } else if (msg_compareSymbol(m, 0, "numInputChannels")) { msg_initWithFloat(n, msg_getTimestamp(m), (float) ctx_getNumInputChannels(_c)); } else if (msg_compareSymbol(m, 0, "numOutputChannels")) { msg_initWithFloat(n, msg_getTimestamp(m), (float) ctx_getNumOutputChannels(_c)); } else if (msg_compareSymbol(m, 0, "currentTime")) { msg_initWithFloat(n, msg_getTimestamp(m), (float) msg_getTimestamp(m)); } else if (msg_compareSymbol(m, 0, "table")) { // NOTE(mhroth): no need to check message format for symbols as table lookup will fail otherwise HvTable *table = ctx_getTableForHash(_c, msg_getHash(m,1)); if (table != NULL) { if (msg_compareSymbol(m, 2, "length")) { msg_initWithFloat(n, msg_getTimestamp(m), (float) hTable_getLength(table)); } else if (msg_compareSymbol(m, 2, "size")) { msg_initWithFloat(n, msg_getTimestamp(m), (float) hTable_getSize(table)); } else if (msg_compareSymbol(m, 2, "head")) { msg_initWithFloat(n, msg_getTimestamp(m), (float) hTable_getHead(table)); } else return; } else return; } else return; sendMessage(_c, 0, n); }
void cSlice_onMessage(HvBase *_c, ControlSlice *o, int letIn, const HvMessage *const m, void (*sendMessage)(HvBase *, int, const HvMessage *const)) { switch (letIn) { case 0: { // if the start point is greater than the number of elements in the source message, do nothing if (o->i < msg_getNumElements(m)) { int x = msg_getNumElements(m) - o->i; // number of elements in the new message if (o->n > 0) x = hv_min_i(x, o->n); HvMessage *n = HV_MESSAGE_ON_STACK(x); msg_init(n, x, msg_getTimestamp(m)); hv_memcpy(&n->elem, &m->elem+o->i, x*sizeof(Element)); sendMessage(_c, 0, n); } else { // if nothing can be sliced, send a bang out of the right outlet HvMessage *n = HV_MESSAGE_ON_STACK(1); msg_initWithBang(n, msg_getTimestamp(m)); sendMessage(_c, 1, n); } break; } case 1: { if (msg_isFloat(m,0)) { o->i = (int) msg_getFloat(m,0); if (msg_isFloat(m,1)) { o->n = (int) msg_getFloat(m,1); } } break; } case 2: { if (msg_isFloat(m,0)) { o->n = (int) msg_getFloat(m,0); } break; } default: break; } }
void cVar_onMessage(HvBase *_c, ControlVar *o, int letIn, const HvMessage *const m, void (*sendMessage)(HvBase *, int, const HvMessage *const)) { switch (letIn) { case 0: { switch (msg_getType(m,0)) { case HV_MSG_BANG: { HvMessage *n = HV_MESSAGE_ON_STACK(1); if (o->e.type == HV_MSG_FLOAT) msg_initWithFloat(n, msg_getTimestamp(m), o->e.data.f); else if (o->e.type == HV_MSG_HASH) msg_initWithHash(n, msg_getTimestamp(m), o->e.data.h); else return; sendMessage(_c, 0, n); break; } case HV_MSG_FLOAT: { o->e.type = HV_MSG_FLOAT; o->e.data.f = msg_getFloat(m,0); sendMessage(_c, 0, m); break; } case HV_MSG_SYMBOL: case HV_MSG_HASH: { o->e.type = HV_MSG_HASH; o->e.data.h = msg_getHash(m,0); sendMessage(_c, 0, m); break; } default: return; } break; } case 1: { switch (msg_getType(m,0)) { case HV_MSG_FLOAT: { o->e.type = HV_MSG_FLOAT; o->e.data.f = msg_getFloat(m,0); break; } case HV_MSG_SYMBOL: case HV_MSG_HASH: { o->e.type = HV_MSG_HASH; o->e.data.h = msg_getHash(m,0); break; } default: break; } } default: return; } }
static void sEnv_sendMessage(HvBase *_c, SignalEnvelope *o, float rms, void (*sendMessage)(HvBase *, int, const HvMessage *)) { // finish RMS calculation. sqrt is removed as it can be combined with the log operation. // result is normalised such that 1 RMS == 100 dB rms = 10.0f * log10f(rms) + 100.0f; // prepare the outgoing message. Schedule it at the beginning of the next block. HvMessage *const m = HV_MESSAGE_ON_STACK(1); msg_initWithFloat(m, ctx_getBlockStartTimestamp(_c) + HV_N_SIMD, (rms < 0.0f) ? 0.0f : rms); ctx_scheduleMessage(Base(_c), m, sendMessage, 0); hv_memcpy(o->buffer, o->buffer+o->period, sizeof(float)*(o->numSamplesInBuffer - o->period)); o->numSamplesInBuffer -= o->period; }
void hv_vscheduleMessageForReceiver(HvBase *c, const char *receiverName, const double delayMs, const char *format, ...) { va_list ap; va_start(ap, format); const int numElem = (int) hv_strlen(format); HvMessage *m = HV_MESSAGE_ON_STACK(numElem); msg_init(m, numElem, c->blockStartTimestamp + (hv_uint32_t) (hv_max_d(0.0, delayMs)*ctx_getSampleRate(c)/1000.0)); for (int i = 0; i < numElem; i++) { switch (format[i]) { case 'b': msg_setBang(m,i); break; case 'f': msg_setFloat(m, i, (float) va_arg(ap, double)); break; case 's': msg_setSymbol(m, i, (char *) va_arg(ap, char *)); break; default: break; } } ctx_scheduleMessageForReceiver(c, receiverName, m); va_end(ap); }
void __hv_sample_f(HvBase *_c, SignalSample *o, hv_bInf_t bIn, void (*sendMessage)(HvBase *, int, const HvMessage *)) { if (o->i != __HV_SAMPLE_NULL) { #if HV_SIMD_AVX || HV_SIMD_SSE float out = bIn[o->i & HV_N_SIMD_MASK]; #elif HV_SIMD_NEON float out = bIn[o->i & HV_N_SIMD_MASK]; #else // HV_SIMD_NONE float out = bIn; #endif HvMessage *n = HV_MESSAGE_ON_STACK(1); hv_uint32_t ts = (o->i + HV_N_SIMD) & ~HV_N_SIMD_MASK; // start of next block msg_initWithFloat(n, ts, out); ctx_scheduleMessage(_c, n, sendMessage, 0); o->i = __HV_SAMPLE_NULL; // reset the index } }
void ctx_scheduleMessageForReceiverV(HvBase *const _c, const char *name, const hv_uint32_t timestamp, const char *format, ...) { va_list ap; va_start(ap, format); const int numElem = (int) hv_strlen(format); HvMessage *m = HV_MESSAGE_ON_STACK(numElem); msg_init(m, numElem, timestamp); for (int i = 0; i < numElem; i++) { switch (format[i]) { case 'b': msg_setBang(m,i); break; case 'f': msg_setFloat(m, i, (float) va_arg(ap, double)); break; case 's': msg_setSymbol(m, i, (char *) va_arg(ap, char *)); break; default: break; } } _c->f_scheduleMessageForReceiver(_c, name, m); va_end(ap); }
void cTabread_onMessage(HvBase *_c, ControlTabread *o, int letIn, const HvMessage *const m, void (*sendMessage)(HvBase *, int, const HvMessage *const)) { switch (letIn) { case 0: { if (msg_isFloat(m,0) && msg_getFloat(m,0) >= 0.0f && o->table != NULL) { const hv_uint32_t x = (hv_uint32_t) msg_getFloat(m,0); if (x < hTable_getSize(o->table)) { HvMessage *n = HV_MESSAGE_ON_STACK(1); msg_initWithFloat(n, msg_getTimestamp(m), hTable_getBuffer(o->table)[x]); sendMessage(_c, 0, n); } } break; } case 1: { if (msg_isHashLike(m,0)) { o->table = ctx_getTableForHash(_c, msg_getHash(m,0)); } break; } default: return; } }