/* * lazy_scan_heap() -- scan an open heap relation * * This routine sets commit status bits, builds lists of dead tuples * and pages with free space, and calculates statistics on the number * of live tuples in the heap. When done, or when we run low on space * for dead-tuple TIDs, invoke vacuuming of indexes and heap. * * If there are no indexes then we just vacuum each dirty page as we * process it, since there's no point in gathering many tuples. */ static void lazy_scan_heap(Relation onerel, LVRelStats *vacrelstats, Relation *Irel, int nindexes, List *updated_stats) { MIRROREDLOCK_BUFMGR_DECLARE; BlockNumber nblocks, blkno; HeapTupleData tuple; char *relname; BlockNumber empty_pages, vacuumed_pages; double num_tuples, tups_vacuumed, nkeep, nunused; IndexBulkDeleteResult **indstats; int i; int reindex_count = 1; PGRUsage ru0; /* Fetch gp_persistent_relation_node information that will be added to XLOG record. */ RelationFetchGpRelationNodeForXLog(onerel); pg_rusage_init(&ru0); relname = RelationGetRelationName(onerel); ereport(elevel, (errmsg("vacuuming \"%s.%s\"", get_namespace_name(RelationGetNamespace(onerel)), relname))); empty_pages = vacuumed_pages = 0; num_tuples = tups_vacuumed = nkeep = nunused = 0; indstats = (IndexBulkDeleteResult **) palloc0(nindexes * sizeof(IndexBulkDeleteResult *)); nblocks = RelationGetNumberOfBlocks(onerel); vacrelstats->rel_pages = nblocks; vacrelstats->nonempty_pages = 0; lazy_space_alloc(vacrelstats, nblocks); for (blkno = 0; blkno < nblocks; blkno++) { Buffer buf; Page page; OffsetNumber offnum, maxoff; bool tupgone, hastup; int prev_dead_count; OffsetNumber frozen[MaxOffsetNumber]; int nfrozen; vacuum_delay_point(); /* * If we are close to overrunning the available space for dead-tuple * TIDs, pause and do a cycle of vacuuming before we tackle this page. */ if ((vacrelstats->max_dead_tuples - vacrelstats->num_dead_tuples) < MaxHeapTuplesPerPage && vacrelstats->num_dead_tuples > 0) { /* Remove index entries */ for (i = 0; i < nindexes; i++) lazy_vacuum_index(Irel[i], &indstats[i], vacrelstats); reindex_count++; /* Remove tuples from heap */ lazy_vacuum_heap(onerel, vacrelstats); /* Forget the now-vacuumed tuples, and press on */ vacrelstats->num_dead_tuples = 0; vacrelstats->num_index_scans++; } /* -------- MirroredLock ---------- */ MIRROREDLOCK_BUFMGR_LOCK; buf = ReadBufferWithStrategy(onerel, blkno, vac_strategy); /* We need buffer cleanup lock so that we can prune HOT chains. */ LockBufferForCleanup(buf); page = BufferGetPage(buf); if (PageIsNew(page)) { /* * An all-zeroes page could be left over if a backend extends the * relation but crashes before initializing the page. Reclaim such * pages for use. * * We have to be careful here because we could be looking at a * page that someone has just added to the relation and not yet * been able to initialize (see RelationGetBufferForTuple). To * protect against that, release the buffer lock, grab the * relation extension lock momentarily, and re-lock the buffer. If * the page is still uninitialized by then, it must be left over * from a crashed backend, and we can initialize it. * * We don't really need the relation lock when this is a new or * temp relation, but it's probably not worth the code space to * check that, since this surely isn't a critical path. * * Note: the comparable code in vacuum.c need not worry because * it's got exclusive lock on the whole relation. */ LockBuffer(buf, BUFFER_LOCK_UNLOCK); MIRROREDLOCK_BUFMGR_UNLOCK; /* -------- MirroredLock ---------- */ LockRelationForExtension(onerel, ExclusiveLock); UnlockRelationForExtension(onerel, ExclusiveLock); /* -------- MirroredLock ---------- */ MIRROREDLOCK_BUFMGR_LOCK; LockBufferForCleanup(buf); if (PageIsNew(page)) { ereport(WARNING, (errmsg("relation \"%s\" page %u is uninitialized --- fixing", relname, blkno))); PageInit(page, BufferGetPageSize(buf), 0); /* must record in xlog so that changetracking will know about this change */ log_heap_newpage(onerel, page, blkno); empty_pages++; lazy_record_free_space(vacrelstats, blkno, PageGetHeapFreeSpace(page)); } MarkBufferDirty(buf); UnlockReleaseBuffer(buf); MIRROREDLOCK_BUFMGR_UNLOCK; /* -------- MirroredLock ---------- */ continue; } if (PageIsEmpty(page)) { empty_pages++; lazy_record_free_space(vacrelstats, blkno, PageGetHeapFreeSpace(page)); UnlockReleaseBuffer(buf); MIRROREDLOCK_BUFMGR_UNLOCK; /* -------- MirroredLock ---------- */ continue; } /* * Prune all HOT-update chains in this page. * * We count tuples removed by the pruning step as removed by VACUUM. */ tups_vacuumed += heap_page_prune(onerel, buf, OldestXmin, false, false); /* * Now scan the page to collect vacuumable items and check for tuples * requiring freezing. */ nfrozen = 0; hastup = false; prev_dead_count = vacrelstats->num_dead_tuples; maxoff = PageGetMaxOffsetNumber(page); for (offnum = FirstOffsetNumber; offnum <= maxoff; offnum = OffsetNumberNext(offnum)) { ItemId itemid; itemid = PageGetItemId(page, offnum); /* Unused items require no processing, but we count 'em */ if (!ItemIdIsUsed(itemid)) { nunused += 1; continue; } /* Redirect items mustn't be touched */ if (ItemIdIsRedirected(itemid)) { hastup = true; /* this page won't be truncatable */ continue; } ItemPointerSet(&(tuple.t_self), blkno, offnum); /* * DEAD item pointers are to be vacuumed normally; but we don't * count them in tups_vacuumed, else we'd be double-counting (at * least in the common case where heap_page_prune() just freed up * a non-HOT tuple). */ if (ItemIdIsDead(itemid)) { lazy_record_dead_tuple(vacrelstats, &(tuple.t_self)); continue; } Assert(ItemIdIsNormal(itemid)); tuple.t_data = (HeapTupleHeader) PageGetItem(page, itemid); tuple.t_len = ItemIdGetLength(itemid); tupgone = false; switch (HeapTupleSatisfiesVacuum(onerel, tuple.t_data, OldestXmin, buf)) { case HEAPTUPLE_DEAD: /* * Ordinarily, DEAD tuples would have been removed by * heap_page_prune(), but it's possible that the tuple * state changed since heap_page_prune() looked. In * particular an INSERT_IN_PROGRESS tuple could have * changed to DEAD if the inserter aborted. So this * cannot be considered an error condition. * * If the tuple is HOT-updated then it must only be * removed by a prune operation; so we keep it just as if * it were RECENTLY_DEAD. Also, if it's a heap-only * tuple, we choose to keep it, because it'll be a lot * cheaper to get rid of it in the next pruning pass than * to treat it like an indexed tuple. */ if (HeapTupleIsHotUpdated(&tuple) || HeapTupleIsHeapOnly(&tuple)) nkeep += 1; else tupgone = true; /* we can delete the tuple */ break; case HEAPTUPLE_LIVE: /* Tuple is good --- but let's do some validity checks */ if (onerel->rd_rel->relhasoids && !OidIsValid(HeapTupleGetOid(&tuple))) elog(WARNING, "relation \"%s\" TID %u/%u: OID is invalid", relname, blkno, offnum); break; case HEAPTUPLE_RECENTLY_DEAD: /* * If tuple is recently deleted then we must not remove it * from relation. */ nkeep += 1; break; case HEAPTUPLE_INSERT_IN_PROGRESS: /* This is an expected case during concurrent vacuum */ break; case HEAPTUPLE_DELETE_IN_PROGRESS: /* This is an expected case during concurrent vacuum */ break; default: elog(ERROR, "unexpected HeapTupleSatisfiesVacuum result"); break; } if (tupgone) { lazy_record_dead_tuple(vacrelstats, &(tuple.t_self)); tups_vacuumed += 1; } else { num_tuples += 1; hastup = true; /* * Each non-removable tuple must be checked to see if it needs * freezing. Note we already have exclusive buffer lock. */ if (heap_freeze_tuple(tuple.t_data, &FreezeLimit, InvalidBuffer, false)) frozen[nfrozen++] = offnum; } } /* scan along page */ /* * If we froze any tuples, mark the buffer dirty, and write a WAL * record recording the changes. We must log the changes to be * crash-safe against future truncation of CLOG. */ if (nfrozen > 0) { MarkBufferDirty(buf); /* no XLOG for temp tables, though */ if (!onerel->rd_istemp) { XLogRecPtr recptr; recptr = log_heap_freeze(onerel, buf, FreezeLimit, frozen, nfrozen); PageSetLSN(page, recptr); } } /* * If there are no indexes then we can vacuum the page right now * instead of doing a second scan. */ if (nindexes == 0 && vacrelstats->num_dead_tuples > 0) { /* Remove tuples from heap */ lazy_vacuum_page(onerel, blkno, buf, 0, vacrelstats); /* Forget the now-vacuumed tuples, and press on */ vacrelstats->num_dead_tuples = 0; vacuumed_pages++; } /* * If we remembered any tuples for deletion, then the page will be * visited again by lazy_vacuum_heap, which will compute and record * its post-compaction free space. If not, then we're done with this * page, so remember its free space as-is. (This path will always be * taken if there are no indexes.) */ if (vacrelstats->num_dead_tuples == prev_dead_count) { lazy_record_free_space(vacrelstats, blkno, PageGetHeapFreeSpace(page)); } /* Remember the location of the last page with nonremovable tuples */ if (hastup) vacrelstats->nonempty_pages = blkno + 1; UnlockReleaseBuffer(buf); MIRROREDLOCK_BUFMGR_UNLOCK; /* -------- MirroredLock ---------- */ } /* save stats for use later */ vacrelstats->rel_tuples = num_tuples; vacrelstats->tuples_deleted = tups_vacuumed; /* If any tuples need to be deleted, perform final vacuum cycle */ /* XXX put a threshold on min number of tuples here? */ if (vacrelstats->num_dead_tuples > 0) { /* Remove index entries */ for (i = 0; i < nindexes; i++) lazy_vacuum_index(Irel[i], &indstats[i], vacrelstats); reindex_count++; /* Remove tuples from heap */ lazy_vacuum_heap(onerel, vacrelstats); vacrelstats->num_index_scans++; } /* Do post-vacuum cleanup and statistics update for each index */ for (i = 0; i < nindexes; i++) lazy_cleanup_index(Irel[i], indstats[i], vacrelstats, updated_stats); /* If no indexes, make log report that lazy_vacuum_heap would've made */ if (vacuumed_pages) ereport(elevel, (errmsg("\"%s\": removed %.0f row versions in %u pages", RelationGetRelationName(onerel), tups_vacuumed, vacuumed_pages))); ereport(elevel, (errmsg("\"%s\": found %.0f removable, %.0f nonremovable row versions in %u pages", RelationGetRelationName(onerel), tups_vacuumed, num_tuples, nblocks), errdetail("%.0f dead row versions cannot be removed yet.\n" "There were %.0f unused item pointers.\n" "%u pages contain useful free space.\n" "%u pages are entirely empty.\n" "%s.", nkeep, nunused, vacrelstats->tot_free_pages, empty_pages, pg_rusage_show(&ru0)))); }
/* * lazy_scan_heap() -- scan an open heap relation * * This routine sets commit status bits, builds lists of dead tuples * and pages with free space, and calculates statistics on the number * of live tuples in the heap. When done, or when we run low on space * for dead-tuple TIDs, invoke vacuuming of indexes and heap. * * If there are no indexes then we just vacuum each dirty page as we * process it, since there's no point in gathering many tuples. */ static void lazy_scan_heap(Relation onerel, LVRelStats *vacrelstats, Relation *Irel, int nindexes, bool scan_all) { BlockNumber nblocks, blkno; HeapTupleData tuple; char *relname; BlockNumber empty_pages, vacuumed_pages; double num_tuples, tups_vacuumed, nkeep, nunused; IndexBulkDeleteResult **indstats; int i; PGRUsage ru0; Buffer vmbuffer = InvalidBuffer; BlockNumber next_not_all_visible_block; bool skipping_all_visible_blocks; pg_rusage_init(&ru0); relname = RelationGetRelationName(onerel); ereport(elevel, (errmsg("vacuuming \"%s.%s\"", get_namespace_name(RelationGetNamespace(onerel)), relname))); empty_pages = vacuumed_pages = 0; num_tuples = tups_vacuumed = nkeep = nunused = 0; indstats = (IndexBulkDeleteResult **) palloc0(nindexes * sizeof(IndexBulkDeleteResult *)); nblocks = RelationGetNumberOfBlocks(onerel); vacrelstats->rel_pages = nblocks; vacrelstats->scanned_pages = 0; vacrelstats->nonempty_pages = 0; vacrelstats->latestRemovedXid = InvalidTransactionId; lazy_space_alloc(vacrelstats, nblocks); /* * We want to skip pages that don't require vacuuming according to the * visibility map, but only when we can skip at least SKIP_PAGES_THRESHOLD * consecutive pages. Since we're reading sequentially, the OS should be * doing readahead for us, so there's no gain in skipping a page now and * then; that's likely to disable readahead and so be counterproductive. * Also, skipping even a single page means that we can't update * relfrozenxid, so we only want to do it if we can skip a goodly number * of pages. * * Before entering the main loop, establish the invariant that * next_not_all_visible_block is the next block number >= blkno that's not * all-visible according to the visibility map, or nblocks if there's no * such block. Also, we set up the skipping_all_visible_blocks flag, * which is needed because we need hysteresis in the decision: once we've * started skipping blocks, we may as well skip everything up to the next * not-all-visible block. * * Note: if scan_all is true, we won't actually skip any pages; but we * maintain next_not_all_visible_block anyway, so as to set up the * all_visible_according_to_vm flag correctly for each page. */ for (next_not_all_visible_block = 0; next_not_all_visible_block < nblocks; next_not_all_visible_block++) { if (!visibilitymap_test(onerel, next_not_all_visible_block, &vmbuffer)) break; vacuum_delay_point(); } if (next_not_all_visible_block >= SKIP_PAGES_THRESHOLD) skipping_all_visible_blocks = true; else skipping_all_visible_blocks = false; for (blkno = 0; blkno < nblocks; blkno++) { Buffer buf; Page page; OffsetNumber offnum, maxoff; bool tupgone, hastup; int prev_dead_count; OffsetNumber frozen[MaxOffsetNumber]; int nfrozen; Size freespace; bool all_visible_according_to_vm; bool all_visible; bool has_dead_tuples; if (blkno == next_not_all_visible_block) { /* Time to advance next_not_all_visible_block */ for (next_not_all_visible_block++; next_not_all_visible_block < nblocks; next_not_all_visible_block++) { if (!visibilitymap_test(onerel, next_not_all_visible_block, &vmbuffer)) break; vacuum_delay_point(); } /* * We know we can't skip the current block. But set up * skipping_all_visible_blocks to do the right thing at the * following blocks. */ if (next_not_all_visible_block - blkno > SKIP_PAGES_THRESHOLD) skipping_all_visible_blocks = true; else skipping_all_visible_blocks = false; all_visible_according_to_vm = false; } else { /* Current block is all-visible */ if (skipping_all_visible_blocks && !scan_all) continue; all_visible_according_to_vm = true; } vacuum_delay_point(); vacrelstats->scanned_pages++; /* * If we are close to overrunning the available space for dead-tuple * TIDs, pause and do a cycle of vacuuming before we tackle this page. */ if ((vacrelstats->max_dead_tuples - vacrelstats->num_dead_tuples) < MaxHeapTuplesPerPage && vacrelstats->num_dead_tuples > 0) { /* Log cleanup info before we touch indexes */ vacuum_log_cleanup_info(onerel, vacrelstats); /* Remove index entries */ for (i = 0; i < nindexes; i++) lazy_vacuum_index(Irel[i], &indstats[i], vacrelstats); /* Remove tuples from heap */ lazy_vacuum_heap(onerel, vacrelstats); /* * Forget the now-vacuumed tuples, and press on, but be careful * not to reset latestRemovedXid since we want that value to be * valid. */ vacrelstats->num_dead_tuples = 0; vacrelstats->num_index_scans++; } buf = ReadBufferExtended(onerel, MAIN_FORKNUM, blkno, RBM_NORMAL, vac_strategy); /* We need buffer cleanup lock so that we can prune HOT chains. */ LockBufferForCleanup(buf); page = BufferGetPage(buf); if (PageIsNew(page)) { /* * An all-zeroes page could be left over if a backend extends the * relation but crashes before initializing the page. Reclaim such * pages for use. * * We have to be careful here because we could be looking at a * page that someone has just added to the relation and not yet * been able to initialize (see RelationGetBufferForTuple). To * protect against that, release the buffer lock, grab the * relation extension lock momentarily, and re-lock the buffer. If * the page is still uninitialized by then, it must be left over * from a crashed backend, and we can initialize it. * * We don't really need the relation lock when this is a new or * temp relation, but it's probably not worth the code space to * check that, since this surely isn't a critical path. * * Note: the comparable code in vacuum.c need not worry because * it's got exclusive lock on the whole relation. */ LockBuffer(buf, BUFFER_LOCK_UNLOCK); LockRelationForExtension(onerel, ExclusiveLock); UnlockRelationForExtension(onerel, ExclusiveLock); LockBufferForCleanup(buf); if (PageIsNew(page)) { ereport(WARNING, (errmsg("relation \"%s\" page %u is uninitialized --- fixing", relname, blkno))); PageInit(page, BufferGetPageSize(buf), 0); empty_pages++; } freespace = PageGetHeapFreeSpace(page); MarkBufferDirty(buf); UnlockReleaseBuffer(buf); RecordPageWithFreeSpace(onerel, blkno, freespace); continue; } if (PageIsEmpty(page)) { empty_pages++; freespace = PageGetHeapFreeSpace(page); if (!PageIsAllVisible(page)) { PageSetAllVisible(page); SetBufferCommitInfoNeedsSave(buf); } LockBuffer(buf, BUFFER_LOCK_UNLOCK); /* Update the visibility map */ if (!all_visible_according_to_vm) { visibilitymap_pin(onerel, blkno, &vmbuffer); LockBuffer(buf, BUFFER_LOCK_SHARE); if (PageIsAllVisible(page)) visibilitymap_set(onerel, blkno, PageGetLSN(page), &vmbuffer); LockBuffer(buf, BUFFER_LOCK_UNLOCK); } ReleaseBuffer(buf); RecordPageWithFreeSpace(onerel, blkno, freespace); continue; } /* * Prune all HOT-update chains in this page. * * We count tuples removed by the pruning step as removed by VACUUM. */ tups_vacuumed += heap_page_prune(onerel, buf, OldestXmin, false, &vacrelstats->latestRemovedXid); /* * Now scan the page to collect vacuumable items and check for tuples * requiring freezing. */ all_visible = true; has_dead_tuples = false; nfrozen = 0; hastup = false; prev_dead_count = vacrelstats->num_dead_tuples; maxoff = PageGetMaxOffsetNumber(page); for (offnum = FirstOffsetNumber; offnum <= maxoff; offnum = OffsetNumberNext(offnum)) { ItemId itemid; itemid = PageGetItemId(page, offnum); /* Unused items require no processing, but we count 'em */ if (!ItemIdIsUsed(itemid)) { nunused += 1; continue; } /* Redirect items mustn't be touched */ if (ItemIdIsRedirected(itemid)) { hastup = true; /* this page won't be truncatable */ continue; } ItemPointerSet(&(tuple.t_self), blkno, offnum); /* * DEAD item pointers are to be vacuumed normally; but we don't * count them in tups_vacuumed, else we'd be double-counting (at * least in the common case where heap_page_prune() just freed up * a non-HOT tuple). */ if (ItemIdIsDead(itemid)) { lazy_record_dead_tuple(vacrelstats, &(tuple.t_self)); all_visible = false; continue; } Assert(ItemIdIsNormal(itemid)); tuple.t_data = (HeapTupleHeader) PageGetItem(page, itemid); tuple.t_len = ItemIdGetLength(itemid); tupgone = false; switch (HeapTupleSatisfiesVacuum(tuple.t_data, OldestXmin, buf)) { case HEAPTUPLE_DEAD: /* * Ordinarily, DEAD tuples would have been removed by * heap_page_prune(), but it's possible that the tuple * state changed since heap_page_prune() looked. In * particular an INSERT_IN_PROGRESS tuple could have * changed to DEAD if the inserter aborted. So this * cannot be considered an error condition. * * If the tuple is HOT-updated then it must only be * removed by a prune operation; so we keep it just as if * it were RECENTLY_DEAD. Also, if it's a heap-only * tuple, we choose to keep it, because it'll be a lot * cheaper to get rid of it in the next pruning pass than * to treat it like an indexed tuple. */ if (HeapTupleIsHotUpdated(&tuple) || HeapTupleIsHeapOnly(&tuple)) nkeep += 1; else tupgone = true; /* we can delete the tuple */ all_visible = false; break; case HEAPTUPLE_LIVE: /* Tuple is good --- but let's do some validity checks */ if (onerel->rd_rel->relhasoids && !OidIsValid(HeapTupleGetOid(&tuple))) elog(WARNING, "relation \"%s\" TID %u/%u: OID is invalid", relname, blkno, offnum); /* * Is the tuple definitely visible to all transactions? * * NB: Like with per-tuple hint bits, we can't set the * PD_ALL_VISIBLE flag if the inserter committed * asynchronously. See SetHintBits for more info. Check * that the HEAP_XMIN_COMMITTED hint bit is set because of * that. */ if (all_visible) { TransactionId xmin; if (!(tuple.t_data->t_infomask & HEAP_XMIN_COMMITTED)) { all_visible = false; break; } /* * The inserter definitely committed. But is it old * enough that everyone sees it as committed? */ xmin = HeapTupleHeaderGetXmin(tuple.t_data); if (!TransactionIdPrecedes(xmin, OldestXmin)) { all_visible = false; break; } } break; case HEAPTUPLE_RECENTLY_DEAD: /* * If tuple is recently deleted then we must not remove it * from relation. */ nkeep += 1; all_visible = false; break; case HEAPTUPLE_INSERT_IN_PROGRESS: /* This is an expected case during concurrent vacuum */ all_visible = false; break; case HEAPTUPLE_DELETE_IN_PROGRESS: /* This is an expected case during concurrent vacuum */ all_visible = false; break; default: elog(ERROR, "unexpected HeapTupleSatisfiesVacuum result"); break; } if (tupgone) { lazy_record_dead_tuple(vacrelstats, &(tuple.t_self)); HeapTupleHeaderAdvanceLatestRemovedXid(tuple.t_data, &vacrelstats->latestRemovedXid); tups_vacuumed += 1; has_dead_tuples = true; } else { num_tuples += 1; hastup = true; /* * Each non-removable tuple must be checked to see if it needs * freezing. Note we already have exclusive buffer lock. */ if (heap_freeze_tuple(tuple.t_data, FreezeLimit, InvalidBuffer)) frozen[nfrozen++] = offnum; } } /* scan along page */ /* * If we froze any tuples, mark the buffer dirty, and write a WAL * record recording the changes. We must log the changes to be * crash-safe against future truncation of CLOG. */ if (nfrozen > 0) { MarkBufferDirty(buf); if (RelationNeedsWAL(onerel)) { XLogRecPtr recptr; recptr = log_heap_freeze(onerel, buf, FreezeLimit, frozen, nfrozen); PageSetLSN(page, recptr); PageSetTLI(page, ThisTimeLineID); } } /* * If there are no indexes then we can vacuum the page right now * instead of doing a second scan. */ if (nindexes == 0 && vacrelstats->num_dead_tuples > 0) { /* Remove tuples from heap */ lazy_vacuum_page(onerel, blkno, buf, 0, vacrelstats); /* * Forget the now-vacuumed tuples, and press on, but be careful * not to reset latestRemovedXid since we want that value to be * valid. */ vacrelstats->num_dead_tuples = 0; vacuumed_pages++; } freespace = PageGetHeapFreeSpace(page); /* Update the all-visible flag on the page */ if (!PageIsAllVisible(page) && all_visible) { PageSetAllVisible(page); SetBufferCommitInfoNeedsSave(buf); } /* * It's possible for the value returned by GetOldestXmin() to move * backwards, so it's not wrong for us to see tuples that appear to * not be visible to everyone yet, while PD_ALL_VISIBLE is already * set. The real safe xmin value never moves backwards, but * GetOldestXmin() is conservative and sometimes returns a value * that's unnecessarily small, so if we see that contradiction it just * means that the tuples that we think are not visible to everyone yet * actually are, and the PD_ALL_VISIBLE flag is correct. * * There should never be dead tuples on a page with PD_ALL_VISIBLE * set, however. */ else if (PageIsAllVisible(page) && has_dead_tuples) { elog(WARNING, "page containing dead tuples is marked as all-visible in relation \"%s\" page %u", relname, blkno); PageClearAllVisible(page); SetBufferCommitInfoNeedsSave(buf); /* * Normally, we would drop the lock on the heap page before * updating the visibility map, but since this case shouldn't * happen anyway, don't worry about that. */ visibilitymap_clear(onerel, blkno); } LockBuffer(buf, BUFFER_LOCK_UNLOCK); /* Update the visibility map */ if (!all_visible_according_to_vm && all_visible) { visibilitymap_pin(onerel, blkno, &vmbuffer); LockBuffer(buf, BUFFER_LOCK_SHARE); if (PageIsAllVisible(page)) visibilitymap_set(onerel, blkno, PageGetLSN(page), &vmbuffer); LockBuffer(buf, BUFFER_LOCK_UNLOCK); } ReleaseBuffer(buf); /* Remember the location of the last page with nonremovable tuples */ if (hastup) vacrelstats->nonempty_pages = blkno + 1; /* * If we remembered any tuples for deletion, then the page will be * visited again by lazy_vacuum_heap, which will compute and record * its post-compaction free space. If not, then we're done with this * page, so remember its free space as-is. (This path will always be * taken if there are no indexes.) */ if (vacrelstats->num_dead_tuples == prev_dead_count) RecordPageWithFreeSpace(onerel, blkno, freespace); } /* save stats for use later */ vacrelstats->scanned_tuples = num_tuples; vacrelstats->tuples_deleted = tups_vacuumed; /* now we can compute the new value for pg_class.reltuples */ vacrelstats->new_rel_tuples = vac_estimate_reltuples(onerel, false, nblocks, vacrelstats->scanned_pages, num_tuples); /* If any tuples need to be deleted, perform final vacuum cycle */ /* XXX put a threshold on min number of tuples here? */ if (vacrelstats->num_dead_tuples > 0) { /* Log cleanup info before we touch indexes */ vacuum_log_cleanup_info(onerel, vacrelstats); /* Remove index entries */ for (i = 0; i < nindexes; i++) lazy_vacuum_index(Irel[i], &indstats[i], vacrelstats); /* Remove tuples from heap */ lazy_vacuum_heap(onerel, vacrelstats); vacrelstats->num_index_scans++; } /* Release the pin on the visibility map page */ if (BufferIsValid(vmbuffer)) { ReleaseBuffer(vmbuffer); vmbuffer = InvalidBuffer; } /* Do post-vacuum cleanup and statistics update for each index */ for (i = 0; i < nindexes; i++) lazy_cleanup_index(Irel[i], indstats[i], vacrelstats); /* If no indexes, make log report that lazy_vacuum_heap would've made */ if (vacuumed_pages) ereport(elevel, (errmsg("\"%s\": removed %.0f row versions in %u pages", RelationGetRelationName(onerel), tups_vacuumed, vacuumed_pages))); ereport(elevel, (errmsg("\"%s\": found %.0f removable, %.0f nonremovable row versions in %u out of %u pages", RelationGetRelationName(onerel), tups_vacuumed, num_tuples, vacrelstats->scanned_pages, nblocks), errdetail("%.0f dead row versions cannot be removed yet.\n" "There were %.0f unused item pointers.\n" "%u pages are entirely empty.\n" "%s.", nkeep, nunused, empty_pages, pg_rusage_show(&ru0)))); }
/* ---------------- * index_getnext - get the next heap tuple from a scan * * The result is the next heap tuple satisfying the scan keys and the * snapshot, or NULL if no more matching tuples exist. On success, * the buffer containing the heap tuple is pinned (the pin will be dropped * at the next index_getnext or index_endscan). * * Note: caller must check scan->xs_recheck, and perform rechecking of the * scan keys if required. We do not do that here because we don't have * enough information to do it efficiently in the general case. * ---------------- */ HeapTuple index_getnext(IndexScanDesc scan, ScanDirection direction) { HeapTuple heapTuple = &scan->xs_ctup; ItemPointer tid = &heapTuple->t_self; FmgrInfo *procedure; SCAN_CHECKS; GET_SCAN_PROCEDURE(amgettuple); Assert(TransactionIdIsValid(RecentGlobalXmin)); /* * We always reset xs_hot_dead; if we are here then either we are just * starting the scan, or we previously returned a visible tuple, and in * either case it's inappropriate to kill the prior index entry. */ scan->xs_hot_dead = false; for (;;) { OffsetNumber offnum; bool at_chain_start; Page dp; if (scan->xs_next_hot != InvalidOffsetNumber) { /* * We are resuming scan of a HOT chain after having returned an * earlier member. Must still hold pin on current heap page. */ Assert(BufferIsValid(scan->xs_cbuf)); Assert(ItemPointerGetBlockNumber(tid) == BufferGetBlockNumber(scan->xs_cbuf)); Assert(TransactionIdIsValid(scan->xs_prev_xmax)); offnum = scan->xs_next_hot; at_chain_start = false; scan->xs_next_hot = InvalidOffsetNumber; } else { bool found; Buffer prev_buf; /* * If we scanned a whole HOT chain and found only dead tuples, * tell index AM to kill its entry for that TID. We do not do this * when in recovery because it may violate MVCC to do so. see * comments in RelationGetIndexScan(). */ if (!scan->xactStartedInRecovery) scan->kill_prior_tuple = scan->xs_hot_dead; /* * The AM's gettuple proc finds the next index entry matching the * scan keys, and puts the TID in xs_ctup.t_self (ie, *tid). It * should also set scan->xs_recheck, though we pay no attention to * that here. */ found = DatumGetBool(FunctionCall2(procedure, PointerGetDatum(scan), Int32GetDatum(direction))); /* Reset kill flag immediately for safety */ scan->kill_prior_tuple = false; /* If we're out of index entries, break out of outer loop */ if (!found) break; pgstat_count_index_tuples(scan->indexRelation, 1); /* Switch to correct buffer if we don't have it already */ prev_buf = scan->xs_cbuf; scan->xs_cbuf = ReleaseAndReadBuffer(scan->xs_cbuf, scan->heapRelation, ItemPointerGetBlockNumber(tid)); /* * Prune page, but only if we weren't already on this page */ if (prev_buf != scan->xs_cbuf) heap_page_prune_opt(scan->heapRelation, scan->xs_cbuf, RecentGlobalXmin); /* Prepare to scan HOT chain starting at index-referenced offnum */ offnum = ItemPointerGetOffsetNumber(tid); at_chain_start = true; /* We don't know what the first tuple's xmin should be */ scan->xs_prev_xmax = InvalidTransactionId; /* Initialize flag to detect if all entries are dead */ scan->xs_hot_dead = true; } /* Obtain share-lock on the buffer so we can examine visibility */ LockBuffer(scan->xs_cbuf, BUFFER_LOCK_SHARE); dp = (Page) BufferGetPage(scan->xs_cbuf); /* Scan through possible multiple members of HOT-chain */ for (;;) { ItemId lp; ItemPointer ctid; bool valid; /* check for bogus TID */ if (offnum < FirstOffsetNumber || offnum > PageGetMaxOffsetNumber(dp)) break; lp = PageGetItemId(dp, offnum); /* check for unused, dead, or redirected items */ if (!ItemIdIsNormal(lp)) { /* We should only see a redirect at start of chain */ if (ItemIdIsRedirected(lp) && at_chain_start) { /* Follow the redirect */ offnum = ItemIdGetRedirect(lp); at_chain_start = false; continue; } /* else must be end of chain */ break; } /* * We must initialize all of *heapTuple (ie, scan->xs_ctup) since * it is returned to the executor on success. */ heapTuple->t_data = (HeapTupleHeader) PageGetItem(dp, lp); heapTuple->t_len = ItemIdGetLength(lp); ItemPointerSetOffsetNumber(tid, offnum); heapTuple->t_tableOid = RelationGetRelid(scan->heapRelation); ctid = &heapTuple->t_data->t_ctid; /* * Shouldn't see a HEAP_ONLY tuple at chain start. (This test * should be unnecessary, since the chain root can't be removed * while we have pin on the index entry, but let's make it * anyway.) */ if (at_chain_start && HeapTupleIsHeapOnly(heapTuple)) break; /* * The xmin should match the previous xmax value, else chain is * broken. (Note: this test is not optional because it protects * us against the case where the prior chain member's xmax aborted * since we looked at it.) */ if (TransactionIdIsValid(scan->xs_prev_xmax) && !TransactionIdEquals(scan->xs_prev_xmax, HeapTupleHeaderGetXmin(heapTuple->t_data))) break; /* If it's visible per the snapshot, we must return it */ valid = HeapTupleSatisfiesVisibility(heapTuple, scan->xs_snapshot, scan->xs_cbuf); CheckForSerializableConflictOut(valid, scan->heapRelation, heapTuple, scan->xs_cbuf); if (valid) { /* * If the snapshot is MVCC, we know that it could accept at * most one member of the HOT chain, so we can skip examining * any more members. Otherwise, check for continuation of the * HOT-chain, and set state for next time. */ if (IsMVCCSnapshot(scan->xs_snapshot) && !IsolationIsSerializable()) scan->xs_next_hot = InvalidOffsetNumber; else if (HeapTupleIsHotUpdated(heapTuple)) { Assert(ItemPointerGetBlockNumber(ctid) == ItemPointerGetBlockNumber(tid)); scan->xs_next_hot = ItemPointerGetOffsetNumber(ctid); scan->xs_prev_xmax = HeapTupleHeaderGetXmax(heapTuple->t_data); } else scan->xs_next_hot = InvalidOffsetNumber; PredicateLockTuple(scan->heapRelation, heapTuple); LockBuffer(scan->xs_cbuf, BUFFER_LOCK_UNLOCK); pgstat_count_heap_fetch(scan->indexRelation); return heapTuple; } /* * If we can't see it, maybe no one else can either. Check to see * if the tuple is dead to all transactions. If we find that all * the tuples in the HOT chain are dead, we'll signal the index AM * to not return that TID on future indexscans. */ if (scan->xs_hot_dead && HeapTupleSatisfiesVacuum(heapTuple->t_data, RecentGlobalXmin, scan->xs_cbuf) != HEAPTUPLE_DEAD) scan->xs_hot_dead = false; /* * Check to see if HOT chain continues past this tuple; if so * fetch the next offnum (we don't bother storing it into * xs_next_hot, but must store xs_prev_xmax), and loop around. */ if (HeapTupleIsHotUpdated(heapTuple)) { Assert(ItemPointerGetBlockNumber(ctid) == ItemPointerGetBlockNumber(tid)); offnum = ItemPointerGetOffsetNumber(ctid); at_chain_start = false; scan->xs_prev_xmax = HeapTupleHeaderGetXmax(heapTuple->t_data); } else break; /* end of chain */ } /* loop over a single HOT chain */ LockBuffer(scan->xs_cbuf, BUFFER_LOCK_UNLOCK); /* Loop around to ask index AM for another TID */ scan->xs_next_hot = InvalidOffsetNumber; } /* Release any held pin on a heap page */ if (BufferIsValid(scan->xs_cbuf)) { ReleaseBuffer(scan->xs_cbuf); scan->xs_cbuf = InvalidBuffer; } return NULL; /* failure exit */ }