예제 #1
0
void gfxMutexEnter(gfxMutex *pmutex) {
	INTERRUPTS_OFF();
	while (pmutex[0]) {
		INTERRUPTS_ON();
		gfxYield();
		INTERRUPTS_OFF();
	}
	pmutex[0] = 1;
	INTERRUPTS_ON();
}
예제 #2
0
/* ------------------------------------------------------------------
 * Initialise the UART
 * ------------------------------------------------------------------ */
void uart_init() {
	INTERRUPTS_OFF();

	// setup ring buffers
	ring_init(&rx, rxbuffer, RX_BUFFER_LENGTH);
	ring_init(&tx, txbuffer, TX_BUFFER_LENGTH);

	// baud rate
	UART_BAUD_RATE_LOW 	= UBRRL_VALUE;
	UART_BAUD_RATE_HIGH = UBRRH_VALUE;

	// double speed?
#ifdef UART_DOUBLE_SPEED
	UART_CONTROL_STATUS_REG_A |= MASK(U2X0);
#else
	UART_CONTROL_STATUS_REG_A &= ~(MASK(U2X0));
#endif

	// mode: async 8N1
	UART_CONTROL_STATUS_REG_C = MASK(UART_CHARACTER_SIZE_0) | MASK(UART_CHARACTER_SIZE_1);

	// enable TX/RX
	UART_CONTROL_STATUS_REG_B = MASK(UART_ENABLE_TRANSMITTER) | MASK(UART_ENABLE_RECEIVER);

	// enable data register empty interrupt
	UART_CONTROL_STATUS_REG_B |= MASK(UART_DATA_REGISTER_EMPTY_INTERRUPT_ENABLE);

	// enable RX complete interrupt
	UART_CONTROL_STATUS_REG_B |= MASK(UART_RECEIVE_COMPLETE);

	INTERRUPTS_ON();
}
예제 #3
0
파일: user.c 프로젝트: CNCBASHER/XuDL
void UserInit( void )
{
    BYTE i;

    // Enable high slew-rate for the I/O pins.
    SLRCON = 0;

	// Turn off analog input mode on I/O pins.
    ANSEL = 0;
    ANSELH = 0;

    // Initialize the I/O pins.
    INIT_GPIO0();
    INIT_GPIO1();
    INIT_GPIO2();
    INIT_GPIO3();

    #if defined( USE_USB_BUS_SENSE_IO )
    tris_usb_bus_sense = INPUT_PIN;
    #endif

    InitBlinker();  // Initialize LED status blinker.
    InitSd(); // Initialize SD card.
#if 0
	INIT_TX();
	INIT_RX();
	while(1)
		TX = !TX;
#endif

    // Initialize interrupts.
    RCONbits.IPEN     = 1;      // Enable prioritized interrupts.
    INTERRUPTS_ON();            // Enable high and low-priority interrupts.
}
예제 #4
0
bool_t gfxSemWait(gfxSem *psem, delaytime_t ms) {
	systemticks_t	starttm, delay;

	// Convert our delay to ticks
	starttm = 0;
	switch (ms) {
	case TIME_IMMEDIATE:
		delay = TIME_IMMEDIATE;
		break;
	case TIME_INFINITE:
		delay = TIME_INFINITE;
		break;
	default:
		delay = gfxMillisecondsToTicks(ms);
		if (!delay) delay = 1;
		starttm = gfxSystemTicks();
	}

	INTERRUPTS_OFF();
	while (psem->cnt <= 0) {
		INTERRUPTS_ON();
		// Check if we have exceeded the defined delay
		switch (delay) {
		case TIME_IMMEDIATE:
			return FALSE;
		case TIME_INFINITE:
			break;
		default:
			if (gfxSystemTicks() - starttm >= delay)
				return FALSE;
			break;
		}
		gfxYield();
		INTERRUPTS_OFF();
	}
	psem->cnt--;
	INTERRUPTS_ON();
	return TRUE;
}
예제 #5
0
/*******************************************************************************
* Function Name  : main.
* Description    : talk main routine.
* Input          : None
* Output         : None
* Return         : None
*******************************************************************************/
void main(void)
{
  u8 i;
  u32 seed;
  StStatus status = ST_SUCCESS;
  
  /* Initialization */
  halInit();
  ST_RadioGetRandomNumbers((u16 *)&seed, 2);
  halCommonSeedRandom(seed);
  uartInit(115200, 8, PARITY_NONE, 1);
  INTERRUPTS_ON();
 
  /* init leds */
  halInitLed(); 
  
  /* Initialize radio (analog section, digital baseband and MAC).
  Leave radio powered up in non-promiscuous rx mode */
  status = ST_RadioInit(ST_RADIO_POWER_MODE_RX_ON);
  assert(status==ST_SUCCESS); 

  /* Setup some node and pan ids.  The packet above is also sent to a device
     with the same node and pan id so that two nodes running this same image
     will talk to each other, even though its not right to have two nodes
     with the same node id */
  ST_RadioSetNodeId(0x1604);
  ST_RadioSetPanId(0x1604);

  printf("\r\nSimpleMAC (%s) Talk Application\r\n",SIMPLEMAC_VERSION_STRING);

  while(1) {

    processSerialInput();

    /* print out any packets that were received */
    if(packetReceived == TRUE) {
      for (i = 8; i <= rxPacket[0]; i++)
        putchar(rxPacket[i]);
      /* The packet has been processed, so free the single entry queue up */
      packetReceived = FALSE;
    }
    ledTime++;
    if (ledTime > 20000) 
    {
      halToggleLed(LED_D1);
      ledTime = 0;
    }
  }
}/* end main ()*/
예제 #6
0
void initializeEmberStack(void)
{
  EmberStatus status;
  //Initialize the hal
  halInit();
  INTERRUPTS_ON();
  emberDebugInit(0);
  emberSerialInit(serialPort, serialBaudRate, PARITY_NONE, 1);
  status = emberInit();
  if (status != EMBER_SUCCESS) {
    emberSerialGuaranteedPrintf(serialPort,
                                "emberInit status %x\r\n", status);
    assert(false);
  }
}
예제 #7
0
int main (void)
{
  u8 returnValue;
  u32 seed;

  interactive = 1;

  halInit();
  ST_RadioGetRandomNumbers((u16 *)&seed, 2);
  halCommonSeedRandom(seed);
  uartInit(115200, 8, PARITY_NONE, 1);
  INTERRUPTS_ON();  

  /* Initialize radio (analog section, digital baseband and MAC).
  Leave radio powered up in non-promiscuous rx mode */
  returnValue = ST_RadioInit(ST_RADIO_POWER_MODE_RX_ON);

  assert(returnValue==ST_SUCCESS); 

  TIMER_Init();

  printf("Bootloader demo application\r\n");
  
  responsePrintf("{&N API call... &t2x}\r\n", "halGetResetInfo", "resetInfo", 0);

  txBufferInit(FALSE);
  rxBufferInit();
  blInit(NULL, transmitByte, receiveByte);

  ST_RadioSetPanId(IAP_BOOTLOADER_PAN_ID);
  ST_RadioSetChannel(IAP_BOOTLOADER_DEFAULT_CHANNEL);

  commandReaderInit();

  while(1) {
    // Process input and print prompt if it returns TRUE.
    if (processCmdInput(interactive)) {
      if (interactive) {
	printf(">");
      }
      TIMER_Tick();
    }
  }
}
예제 #8
0
파일: main.c 프로젝트: acvilla/Sundial
int MAIN(MAIN_FUNCTION_PARAMETERS) 
{
  // Initialize the HAL and enable interrupts.
  halInit();

  INTERRUPTS_ON();

  SERIAL_INIT();

  PRINT_RESET_INFORMATION();

#ifdef EMBER_AF_PLUGIN_FREE_RTOS
  emberPluginRtosInitAndRunConnectTask();
#else
  initAndRunMainLoop();
#endif

  return 0;
}
예제 #9
0
int MAIN(MAIN_FUNCTION_PARAMETERS)
{
  // Let the application and plugins do early initialization.  This function is
  // generated.
  emberAfMain(MAIN_FUNCTION_ARGUMENTS);

  // Initialize the HAL and enable interrupts.
  halInit();
  INTERRUPTS_ON();

  // Initialize the serial ports.
  SERIAL_INIT();

  // Display diagnostic information about the most recent reset.
  PRINT_RESET_INFORMATION();

  // Initialize a task for the application and plugin events and enable idling.
  emAppTask = emberTaskInit(emAppEvents);
  emberTaskEnableIdling(true);

  // Initialize the stack and wait until it finishes.  We do this so that the
  // application doesn't get ahead of the stack.
  emberInit();
  while (!init) {
    halResetWatchdog();
    PROCESS_MANAGEMENT_COMMAND();
  }
  init = false;

  // Initialize the application and plugins.  This function is generated.
  emberAfInit();

  // Run the application loop, which usually never terminates.
  loop();

  return 0;
}
예제 #10
0
/*---------------------------------------------------------------------------*/
int
main(void)
{
  
  /*
   * Initalize hardware.
   */
  halInit();
  clock_init();
  
  uart1_init(115200);
  
  /* Led initialization */
  leds_init();
    
  INTERRUPTS_ON(); 

  PRINTF("\r\nStarting ");
  PRINTF(CONTIKI_VERSION_STRING);
  PRINTF(" on %s\r\n", boardDescription->name); 
  boardPrintStringDescription();
  PRINTF("\r\n"); 


  /*
   * Initialize Contiki and our processes.
   */
  
  process_init();
  
#if WITH_SERIAL_LINE_INPUT
  uart1_set_input(serial_line_input_byte);
  serial_line_init();
#endif
  /* rtimer and ctimer should be initialized before radio duty cycling
     layers */
  rtimer_init();
  /* etimer_process should be initialized before ctimer */
  process_start(&etimer_process, NULL);  
  ctimer_init();

  netstack_init();

  set_rime_addr();

  printf("%s %s, channel check rate %lu Hz\n",
         NETSTACK_MAC.name, NETSTACK_RDC.name,
         CLOCK_SECOND / (NETSTACK_RDC.channel_check_interval() == 0 ? 1:
                                  NETSTACK_RDC.channel_check_interval()));
  printf("802.15.4 PAN ID 0x%x, EUI-%d:",
      IEEE802154_CONF_PANID, UIP_CONF_LL_802154?64:16);
  uip_debug_lladdr_print(&linkaddr_node_addr);
  printf(", radio channel %u\n", RF_CHANNEL);

  procinit_init();

  energest_init();
  ENERGEST_ON(ENERGEST_TYPE_CPU);

  /* Set the Clear Channel Assessment (CCA) threshold of the
     radio. The CCA threshold is used both for sending packets and for
     waking up ContikiMAC nodes. If the CCA threshold is too high,
     ContikiMAC will not wake up from neighbor transmissions. If the
     CCA threshold is too low, transmissions will be too restrictive
     and no packets will be sent. DEFAULT_RADIO_CCA_THRESHOLD is
     defined in this file. */
  ST_RadioSetEdCcaThreshold(DEFAULT_RADIO_CCA_THRESHOLD);
  
  autostart_start(autostart_processes);
#if UIP_CONF_IPV6
  printf("Tentative link-local IPv6 address ");
  {
    uip_ds6_addr_t *lladdr;
    int i;
    lladdr = uip_ds6_get_link_local(-1);
    for(i = 0; i < 7; ++i) {
      printf("%02x%02x:", lladdr->ipaddr.u8[i * 2],
             lladdr->ipaddr.u8[i * 2 + 1]);
    }
    printf("%02x%02x\n", lladdr->ipaddr.u8[14], lladdr->ipaddr.u8[15]);
  }


  if(!UIP_CONF_IPV6_RPL) {
    uip_ipaddr_t ipaddr;
    int i;
    uip_ip6addr(&ipaddr, 0xaaaa, 0, 0, 0, 0, 0, 0, 0);
    uip_ds6_set_addr_iid(&ipaddr, &uip_lladdr);
    uip_ds6_addr_add(&ipaddr, 0, ADDR_TENTATIVE);
    printf("Tentative global IPv6 address ");
    for(i = 0; i < 7; ++i) {
      printf("%02x%02x:",
             ipaddr.u8[i * 2], ipaddr.u8[i * 2 + 1]);
    }
    printf("%02x%02x\n",
           ipaddr.u8[7 * 2], ipaddr.u8[7 * 2 + 1]);
  }
#endif /* UIP_CONF_IPV6 */
  
  watchdog_start();
  
  while(1) {
    
    int r;    
    
    do {
      /* Reset watchdog. */
      watchdog_periodic();
      r = process_run();
    } while(r > 0);
    
    
    
    ENERGEST_OFF(ENERGEST_TYPE_CPU);
    /* watchdog_stop(); */
    ENERGEST_ON(ENERGEST_TYPE_LPM);
    /* Go to idle mode. */
    halSleepWithOptions(SLEEPMODE_IDLE,0);
    /* We are awake. */
    /* watchdog_start(); */
    ENERGEST_OFF(ENERGEST_TYPE_LPM);
    ENERGEST_ON(ENERGEST_TYPE_CPU);  
    
  }
  
}
예제 #11
0
/*---------------------------------------------------------------------------*/
int
main(void)
{
  
  /*
   * Initialize hardware.
   */
  halInit();
  clock_init();
  
  uart1_init(115200);
  
  // Led initialization
  leds_init();
    
  INTERRUPTS_ON(); 

  PRINTF("\r\nStarting ");
  PRINTF(CONTIKI_VERSION_STRING);
  PRINTF(" on %s\r\n",boardDescription->name);

  /*
   * Initialize Contiki and our processes.
   */
  
  process_init();
  
#if WITH_SERIAL_LINE_INPUT
  uart1_set_input(serial_line_input_byte);
  serial_line_init();
#endif
  /* rtimer and ctimer should be initialized before radio duty cycling layers*/
  rtimer_init();
  /* etimer_process should be initialized before ctimer */
  process_start(&etimer_process, NULL);   
  ctimer_init();
  
  rtimer_init();
  netstack_init();
  set_rime_addr();

  printf("%s %s, channel check rate %lu Hz\n",
         NETSTACK_MAC.name, NETSTACK_RDC.name,
         CLOCK_SECOND / (NETSTACK_RDC.channel_check_interval() == 0 ? 1:
                                  NETSTACK_RDC.channel_check_interval()));
  printf("802.15.4 PAN ID 0x%x, EUI-%d:",
      IEEE802154_CONF_PANID, UIP_CONF_LL_802154?64:16);
  uip_debug_lladdr_print(&rimeaddr_node_addr);
  printf(", radio channel %u\n", RF_CHANNEL);

  procinit_init();    

  energest_init();
  ENERGEST_ON(ENERGEST_TYPE_CPU);
  
  autostart_start(autostart_processes);
   
  watchdog_start();
  
  while(1){
    
    int r;    
    
    do {
      /* Reset watchdog. */
      watchdog_periodic();
      r = process_run();
    } while(r > 0);
    
    
    
    ENERGEST_OFF(ENERGEST_TYPE_CPU);
    //watchdog_stop();    
    ENERGEST_ON(ENERGEST_TYPE_LPM);
    /* Go to idle mode. */
    halSleepWithOptions(SLEEPMODE_IDLE,0);
    /* We are awake. */
    //watchdog_start();
    ENERGEST_OFF(ENERGEST_TYPE_LPM);
    ENERGEST_ON(ENERGEST_TYPE_CPU);  
    
  }
  
}
예제 #12
0
/*---------------------------------------------------------------------------*/
int
main(void)
{
  
  /*
   * Initialize hardware.
   */
  halInit();
  clock_init();
  
  uart1_init(115200);
  
  // Led initialization
  leds_init();
    
  INTERRUPTS_ON(); 

  PRINTF("\r\nStarting ");
  PRINTF(CONTIKI_VERSION_STRING);
  PRINTF(" on %s\r\n",boardDescription->name);

  /*
   * Initialize Contiki and our processes.
   */
  
  process_init();
  
#if WITH_SERIAL_LINE_INPUT
  uart1_set_input(serial_line_input_byte);
  serial_line_init();
#endif
  //etimer_process should be started before ctimer init
  process_start(&etimer_process, NULL);
  //ctimer and rtimer should be initialized before netstack to enable RDC (cxmac, contikimac, lpp)   
  ctimer_init();
  rtimer_init();
  netstack_init();
#if !UIP_CONF_IPV6
  ST_RadioEnableAutoAck(FALSE); // Because frames are not 802.15.4 compatible. 
  ST_RadioEnableAddressFiltering(FALSE);
#endif

  set_rime_addr();
  
  procinit_init();    

  energest_init();
  ENERGEST_ON(ENERGEST_TYPE_CPU);
  
  autostart_start(autostart_processes);
  
  
  watchdog_start();
  
  while(1){
    
    int r;    
    
    do {
      /* Reset watchdog. */
      watchdog_periodic();
      r = process_run();
    } while(r > 0);
    
    
    
    ENERGEST_OFF(ENERGEST_TYPE_CPU);
    //watchdog_stop();    
    ENERGEST_ON(ENERGEST_TYPE_LPM);
    /* Go to idle mode. */
    halSleepWithOptions(SLEEPMODE_IDLE,0);
    /* We are awake. */
    //watchdog_start();
    ENERGEST_OFF(ENERGEST_TYPE_LPM);
    ENERGEST_ON(ENERGEST_TYPE_CPU);  
    
  }
  
}
예제 #13
0
void gfxSemSignal(gfxSem *psem) {
	INTERRUPTS_OFF();
	gfxSemSignalI(psem);
	INTERRUPTS_ON();
}
예제 #14
0
void gfxSystemUnlock(void) {
	INTERRUPTS_ON();
}
예제 #15
0
/*---------------------------------------------------------------------------*/
int
main(void)
{
  
  /*
   * Initialize hardware.
   */
  halInit();
  clock_init();
  
  uart1_init(115200);
  
  // Led initialization
  leds_init();
    
  INTERRUPTS_ON(); 

  PRINTF("\r\nStarting ");
  PRINTF(CONTIKI_VERSION_STRING);
  PRINTF(" on %s\r\n",boardDescription->name);

  /*
   * Initialize Contiki and our processes.
   */
  
  process_init();
  
#if WITH_SERIAL_LINE_INPUT
  uart1_set_input(serial_line_input_byte);
  serial_line_init();
#endif
  
  
  process_start(&etimer_process, NULL);   
  ctimer_init();
  rtimer_init();
  
  netstack_init();
  set_rime_addr();
  
  
PRINTF("ACK enable=%u %s %s, channel check rate=%luHz, check interval %ums, clock second=%u, radio channel %u\r\n",
         ST_RadioAutoAckEnabled(), NETSTACK_MAC.name, NETSTACK_RDC.name,  
         CLOCK_SECOND / (NETSTACK_RDC.channel_check_interval() == 0? 1:
                         NETSTACK_RDC.channel_check_interval()), NETSTACK_RDC.channel_check_interval(), CLOCK_SECOND,
         RF_CHANNEL);
  
#if !UIP_CONF_IPV6
  ST_RadioEnableAutoAck(FALSE); // Because frames are not 802.15.4 compatible. 
  ST_RadioEnableAddressFiltering(FALSE);
#endif
  ST_RadioEnableAutoAck(TRUE);

  
  procinit_init(); 
    


  energest_init();
  ENERGEST_ON(ENERGEST_TYPE_CPU);
  
  autostart_start(autostart_processes);
  
  
  watchdog_start();
  
  while(1){
    
    int r;    
    
    do {
      /* Reset watchdog. */
      watchdog_periodic();
      r = process_run();
    } while(r > 0);
    
    
    
    ENERGEST_OFF(ENERGEST_TYPE_CPU);
    //watchdog_stop();    
    ENERGEST_ON(ENERGEST_TYPE_LPM);
    /* Go to idle mode. */
    halSleepWithOptions(SLEEPMODE_IDLE,0);
    /* We are awake. */
    //watchdog_start();
    ENERGEST_OFF(ENERGEST_TYPE_LPM);
    ENERGEST_ON(ENERGEST_TYPE_CPU);  
    
  }
  
}
예제 #16
0
파일: sleep.c 프로젝트: aiss83/nucbit
void halInternalSleep(SleepModes sleepMode)
{
    //Timer restoring always takes place during the wakeup sequence.  We save
    //the state here in case SLEEPMODE_NOTIMER is invoked, which would disable
    //the clocks.
    int32u SLEEPTMR_CLKEN_SAVED = SLEEPTMR_CLKEN;

    //This code assumes all wake source registers are properly configured.
    //As such, it should be called from halSleepWithOptions() or from
    // halSleepForQsWithOptions() which configues the wake sources.

    //The parameter gpioWakeSel is a bitfield composite of the GPIO wake
    //sources derived from the 3 ports, indicating which of the 24 GPIO
    //are configured as a wake source.
    int32u gpioWakeSel  = (GPIO_PAWAKE<<0);
    gpioWakeSel |= (GPIO_PBWAKE<<8);
    gpioWakeSel |= (GPIO_PCWAKE<<16);

    //PB2 is also WAKE_SC1.  Set this wake source if PB2's GPIO wake is set.
    if(GPIO_PBWAKE & PB2)
    {
        WAKE_SEL |= WAKE_SC1;
    }

    //PA2 is also WAKE_SC2.  Set this wake source if PA2's GPIO wake is set.
    if(GPIO_PAWAKE & PA2)
    {
        WAKE_SEL |= WAKE_SC2;
    }

    //The WAKE_IRQD source can come from any pin based on IRQD's sel register.
    if(gpioWakeSel & BIT(GPIO_IRQDSEL))
    {
        WAKE_SEL |= WAKE_IRQD;
    }

    halInternalWakeEvent = 0; //clear old wake events

    switch(sleepMode)
    {
    case SLEEPMODE_NOTIMER:
        //The sleep timer clock sources (both RC and XTAL) are turned off.
        //Wakeup is possible from only GPIO.  System time is lost.
        //NOTE: Timer restoring always takes place during the wakeup sequence.
        SLEEPTMR_CLKEN = 0;
        goto deepSleepCore;

    case SLEEPMODE_WAKETIMER:
        //The sleep timer clock sources remain running.  The RC is always
        //running and the 32kHz XTAL depends on the board header.  Wakeup
        //is possible from both GPIO and the sleep timer.  System time
        //is maintained.  The sleep timer is assumed to be configured
        //properly for wake events.
        //NOTE: This mode assumes the caller has configured the *entire*
        //      sleep timer properly.

        if(INT_SLEEPTMRCFG&INT_SLEEPTMRWRAP)
        {
            WAKE_SEL |= WAKE_SLEEPTMRWRAP;
        }
        if(INT_SLEEPTMRCFG&INT_SLEEPTMRCMPB)
        {
            WAKE_SEL |= WAKE_SLEEPTMRCMPB;
        }
        if(INT_SLEEPTMRCFG&INT_SLEEPTMRCMPA)
        {
            WAKE_SEL |= WAKE_SLEEPTMRCMPA;
        }
        //fall into SLEEPMODE_MAINTAINTIMER's sleep code:

    case SLEEPMODE_MAINTAINTIMER:
        //The sleep timer clock sources remain running.  The RC is always
        //running and the 32kHz XTAL depends on the board header.  Wakeup
        //is possible from only GPIO.  System time is maintained.
        //NOTE: System time is maintained without any sleep timer interrupts
        //      because the hardware sleep timer counter is large enough
        //      to hold the entire count value and not need a RAM counter.

        ////////////////////////////////////////////////////////////////////////////
        // Core deep sleep code
        ////////////////////////////////////////////////////////////////////////////
deepSleepCore:
        // Interrupts *must* be/stay disabled for DEEP SLEEP operation
        // INTERRUPTS_OFF will use BASEPRI to disable all interrupts except
        // fault handlers and PendSV.
        INTERRUPTS_OFF();
        // This is the point of no return.  From here on out, only the interrupt
        // sources available in WAKE_SEL will be captured and propagated across
        // deep sleep.
        //stick all our saved info onto stack since it's only temporary
        {
            boolean restoreWatchdog = halInternalWatchDogEnabled();
            boolean skipSleep = FALSE;

            // Only three register blocks keep power across deep sleep:
            //  CM_HV, GPIO, SLOW_TIMERS
            //
            // All other register blocks lose their state across deep sleep:
            //  BASEBAND, MAC, SECURITY, SERIAL, TMR1, TMR2, EVENT, CM_LV, RAM_CTRL,
            //  AUX_ADC, CAL_ADC, FLASH_CONTROL, ITM, DWT, FPB, NVIC, TPIU
            //
            // The sleep code will only save and restore registers where it is
            // meaningful and necessary to do so.  In most cases, there must still
            // be a powerup function to restore proper state.
            //
            // NOTE: halPowerUp() and halPowerDown() will always be called before
            // and after this function.  halPowerDown and halPowerUp should leave
            // the modules in a safe state and then restart the modules.
            // (For example, shutting down and restarting Timer1)
            //
            //----BASEBAND
            //        reinitialized by stStackPowerUp()
            //----MAC
            //        reinitialized by stStackPowerUp()
            //----SECURITY
            //        reinitialized by stStackPowerUp()
            //----SERIAL
            //        reinitialized by halPowerUp() or similar
            //----TMR1
            //        reinitialized by halPowerUp() or similar
            //----TMR2
            //        reinitialized by halPowerUp() or similar
            //----EVENT
            //SRC or FLAG interrupts are not saved or restored
            //MISS interrupts are not saved or restored
            //MAC_RX_INT_MASK - reinitialized by stStackPowerUp()
            //MAC_TX_INT_MASK - reinitialized by stStackPowerUp()
            //MAC_TIMER_INT_MASK - reinitialized by stStackPowerUp()
            //BB_INT_MASK - reinitialized by stStackPowerUp()
            //SEC_INT_MASK - reinitialized by stStackPowerUp()
            int32u INT_SLEEPTMRCFG_SAVED = INT_SLEEPTMRCFG_REG;
            int32u INT_MGMTCFG_SAVED = INT_MGMTCFG_REG;
            //INT_TIM1CFG - reinitialized by halPowerUp() or similar
            //INT_TIM2CFG - reinitialized by halPowerUp() or similar
            //INT_SC1CFG - reinitialized by halPowerUp() or similar
            //INT_SC2CFG - reinitialized by halPowerUp() or similar
            //INT_ADCCFG - reinitialized by halPowerUp() or similar
            int32u GPIO_INTCFGA_SAVED = GPIO_INTCFGA_REG;
            int32u GPIO_INTCFGB_SAVED = GPIO_INTCFGB_REG;
            int32u GPIO_INTCFGC_SAVED = GPIO_INTCFGC_REG;
            int32u GPIO_INTCFGD_SAVED = GPIO_INTCFGD_REG;
            //SC1_INTMODE - reinitialized by halPowerUp() or similar
            //SC2_INTMODE - reinitialized by halPowerUp() or similar
            //----CM_LV
            int32u OSC24M_BIASTRIM_SAVED = OSC24M_BIASTRIM_REG;
            int32u OSCHF_TUNE_SAVED = OSCHF_TUNE_REG;
            int32u DITHER_DIS_SAVED = DITHER_DIS_REG;
            //OSC24M_CTRL - reinitialized by halPowerUp() or similar
            //CPU_CLKSEL  - reinitialized by halPowerUp() or similar
            //TMR1_CLK_SEL - reinitialized by halPowerUp() or similar
            //TMR2_CLK_SEL - reinitialized by halPowerUp() or similar
            int32u PCTRACE_SEL_SAVED = PCTRACE_SEL_REG;
            //----RAM_CTRL
            int32u MEM_PROT_0_SAVED = MEM_PROT_0_REG;
            int32u MEM_PROT_1_SAVED = MEM_PROT_1_REG;
            int32u MEM_PROT_2_SAVED = MEM_PROT_2_REG;
            int32u MEM_PROT_3_SAVED = MEM_PROT_3_REG;
            int32u MEM_PROT_4_SAVED = MEM_PROT_4_REG;
            int32u MEM_PROT_5_SAVED = MEM_PROT_5_REG;
            int32u MEM_PROT_6_SAVED = MEM_PROT_6_REG;
            int32u MEM_PROT_7_SAVED = MEM_PROT_7_REG;
            int32u MEM_PROT_EN_SAVED = MEM_PROT_EN_REG;
            //----AUX_ADC
            //        reinitialized by halPowerUp() or similar
            //----CAL_ADC
            //        reinitialized by stStackPowerUp()
            //----FLASH_CONTROL
            //        configured on the fly by the flash library
            //----ITM
            //        reinitialized by halPowerUp() or similar
            //----DWT
            //        not used by software on chip
            //----FPB
            //        not used by software on chip
            //----NVIC
            //ST_CSR - fixed, restored by cstartup when exiting deep sleep
            //ST_RVR - fixed, restored by cstartup when exiting deep sleep
            int32u INT_CFGSET_SAVED = INT_CFGSET_REG; //mask against wake sources
            //INT_PENDSET - used below when overlapping interrupts and wake sources
            //NVIC_IPR_3to0 - fixed, restored by cstartup when exiting deep sleep
            //NVIC_IPR_7to4 - fixed, restored by cstartup when exiting deep sleep
            //NVIC_IPR_11to8 - fixed, restored by cstartup when exiting deep sleep
            //NVIC_IPR_15to12 - fixed, restored by cstartup when exiting deep sleep
            //NVIC_IPR_19to16 - fixed, restored by cstartup when exiting deep sleep
            int32u SCS_VTOR_SAVED = SCS_VTOR_REG;
            //SCS_CCR - fixed, restored by cstartup when exiting deep sleep
            //SCS_SHPR_7to4 - fixed, restored by cstartup when exiting deep sleep
            //SCS_SHPR_11to8 - fixed, restored by cstartup when exiting deep sleep
            //SCS_SHPR_15to12 - fixed, restored by cstartup when exiting deep sleep
            //SCS_SHCSR - fixed, restored by cstartup when exiting deep sleep
            //----TPIU
            //        reinitialized by halPowerUp() or similar

            //stmDebugPowerDown() should have shutdown the DWT/ITM/TPIU already.

            //freeze input to the GPIO from LV (alternate output functions freeze)
            EVENT_CTRL = LV_FREEZE;
            //record GPIO state for wake monitoring purposes
            //By having a snapshot of GPIO state, we can figure out after waking
            //up exactly which GPIO could have woken us up.
            //Reading the three IN registers is done separately to avoid warnings
            //about undefined order of volatile access.
            int32u GPIO_IN_SAVED =   GPIO_PAIN;
            GPIO_IN_SAVED |= (GPIO_PBIN<<8);
            GPIO_IN_SAVED |= (GPIO_PCIN<<16);
            //reset the power up events by writing 1 to all bits.
            PWRUP_EVENT = 0xFFFFFFFF;



            //By clearing the events, the wake up event capturing is activated.
            //At this point we can safely check our interrupt flags since event
            //capturing is now overlapped.  Up to now, interrupts indicate
            //activity, after this point, powerup events indicate activity.
            //If any of the interrupt flags are set, that means we saw a wake event
            //sometime while entering sleep, so we need to skip over sleeping
            //
            //--possible interrupt sources for waking:
            //  IRQA, IRQB, IRQC, IRQD
            //  SleepTMR CMPA, CMPB, Wrap
            //  WAKE_CORE (DebugIsr)
            //
            //check for IRQA interrupt and if IRQA (PB0) is wake source
            if((INT_PENDSET&INT_IRQA) &&
                    (GPIO_PBWAKE&PB0) &&
                    (WAKE_SEL&GPIO_WAKE))
            {
                skipSleep = TRUE;
                //log IRQA as a wake event
                halInternalWakeEvent |= BIT(PORTB_PIN(0));



            }
            //check for IRQB interrupt and if IRQB (PB6) is wake source
            if((INT_PENDSET&INT_IRQB) &&
                    (GPIO_PBWAKE&PB6) &&
                    (WAKE_SEL&GPIO_WAKE))
            {
                skipSleep = TRUE;
                //log IRQB as a wake event
                halInternalWakeEvent |= BIT(PORTB_PIN(6));



            }
            //check for IRQC interrupt and if IRQC (GPIO_IRQCSEL) is wake source
            if((INT_PENDSET&INT_IRQC) &&
                    (gpioWakeSel&BIT(GPIO_IRQCSEL)) &&
                    (WAKE_SEL&GPIO_WAKE))
            {
                skipSleep = TRUE;
                //log IRQC as a wake event
                halInternalWakeEvent |= BIT(GPIO_IRQCSEL);



            }
            //check for IRQD interrupt and if IRQD (GPIO_IRQDSEL) is wake source
            if((INT_PENDSET&INT_IRQD) &&
                    (gpioWakeSel&BIT(GPIO_IRQDSEL)) &&
                    ((WAKE_SEL&GPIO_WAKE) ||
                     (WAKE_SEL&WAKE_IRQD)))
            {
                skipSleep = TRUE;
                //log IRQD as a wake event
                halInternalWakeEvent |= BIT(GPIO_IRQDSEL);



            }
            //check for SleepTMR CMPA interrupt and if SleepTMR CMPA is wake source
            if((INT_SLEEPTMR&INT_SLEEPTMRCMPA) && (WAKE_SEL&WAKE_SLEEPTMRCMPA))
            {
                skipSleep = TRUE;
                //log SleepTMR CMPA as a wake event
                halInternalWakeEvent |= BIT32(CMPA_INTERNAL_WAKE_EVENT_BIT);



            }
            //check for SleepTMR CMPB interrupt and if SleepTMR CMPB is wake source
            if((INT_SLEEPTMR&INT_SLEEPTMRCMPB) && (WAKE_SEL&WAKE_SLEEPTMRCMPB))
            {
                skipSleep = TRUE;
                //log SleepTMR CMPB as a wake event
                halInternalWakeEvent |= BIT32(CMPB_INTERNAL_WAKE_EVENT_BIT);



            }
            //check for SleepTMR WRAP interrupt and if SleepTMR WRAP is wake source
            if((INT_SLEEPTMR&INT_SLEEPTMRWRAP) && (WAKE_SEL&WAKE_SLEEPTMRWRAP))
            {
                skipSleep = TRUE;
                //log SleepTMR WRAP as a wake event
                halInternalWakeEvent |= BIT32(WRAP_INTERNAL_WAKE_EVENT_BIT);



            }
            //check for Debug interrupt and if WAKE_CORE is wake source
            if((INT_PENDSET&INT_DEBUG) && (WAKE_SEL&WAKE_WAKE_CORE))
            {
                skipSleep = TRUE;
                //log WAKE_CORE as a wake event
                halInternalWakeEvent |= BIT32(WAKE_CORE_INTERNAL_WAKE_EVENT_BIT);



            }

            //only propagate across deep sleep the interrupts that are both
            //enabled and possible wake sources
            {
                int32u wakeSourceInterruptMask = 0;

                if(GPIO_PBWAKE&PB0)
                {
                    wakeSourceInterruptMask |= INT_IRQA;



                }
                if(GPIO_PBWAKE&PB6)
                {
                    wakeSourceInterruptMask |= INT_IRQB;



                }
                if(gpioWakeSel&BIT(GPIO_IRQCSEL))
                {
                    wakeSourceInterruptMask |= INT_IRQC;



                }
                if(gpioWakeSel&BIT(GPIO_IRQDSEL))
                {
                    wakeSourceInterruptMask |= INT_IRQD;



                }
                if( (WAKE_SEL&WAKE_SLEEPTMRCMPA) ||
                        (WAKE_SEL&WAKE_SLEEPTMRCMPB) ||
                        (WAKE_SEL&WAKE_SLEEPTMRWRAP) )
                {
                    wakeSourceInterruptMask |= INT_SLEEPTMR;



                }
                if(WAKE_SEL&WAKE_WAKE_CORE)
                {
                    wakeSourceInterruptMask |= INT_DEBUG;



                }

                INT_CFGSET_SAVED &= wakeSourceInterruptMask;
            }

















            //disable watchdog while sleeping (since we can't reset it asleep)
            halInternalDisableWatchDog(MICRO_DISABLE_WATCH_DOG_KEY);

            //The chip is not allowed to enter a deep sleep mode (which could
            //cause a core reset cycle) while CSYSPWRUPREQ is set.  CSYSPWRUPREQ
            //indicates that the debugger is trying to access sections of the
            //chip that would get reset during deep sleep.  Therefore, a reset
            //cycle could very easily cause the debugger to error and we don't
            //want that.  While the power management state machine will stall
            //if CSYSPWRUPREQ is set (to avoid the situation just described),
            //in this stalled state the chip will not be responsive to wake
            //events.  To be sensitive to wake events, we must handle them in
            //software instead.  To accomplish this, we request that the
            //CSYSPWRUPACK be inhibited (which will indicate the debugger is not
            //connected).  But, we cannot induce deep sleep until CSYSPWRUPREQ/ACK
            //go low and these are under the debuggers control, so we must stall
            //and wait here.  If there is a wake event during this time, break
            //out and wake like normal.  If the ACK eventually clears,
            //we can proceed into deep sleep.  The CSYSPWRUPACK_INHIBIT
            //functionality will hold off the debugger (by holding off the ACK)
            //until we are safely past and out of deep sleep.  The power management
            //state machine then becomes responsible for clearing
            //CSYSPWRUPACK_INHIBIT and responding to a CSYSPWRUPREQ with a
            //CSYSPWRUPACK at the right/safe time.
            CSYSPWRUPACK_INHIBIT = CSYSPWRUPACK_INHIBIT_CSYSPWRUPACK_INHIBIT;
            {
                //Use a local copy of WAKE_SEL to avoid warnings from the compiler
                //about order of volatile accesses
                int32u wakeSel = WAKE_SEL;
                //stall until a wake event or CSYSPWRUPREQ/ACK clears
                while( (CSYSPWRUPACK_STATUS) && (!(PWRUP_EVENT&wakeSel)) ) {}
                //if there was a wake event, allow CSYSPWRUPACK and skip sleep
                if(PWRUP_EVENT&wakeSel)
                {
                    CSYSPWRUPACK_INHIBIT = CSYSPWRUPACK_INHIBIT_RESET;
                    skipSleep = TRUE;
                }
            }





            if(!skipSleep)
            {



                //FogBugz 7283 states that we must switch to the OSCHF when entering
                //deep sleep since using the 24MHz XTAL could result in RAM
                //corruption.  This switch must occur at least 2*24MHz cycles before
                //sleeping.
                //FogBugz 8858 states that we cannot go into deep-sleep when the
                //chip is clocked with the 24MHz XTAL with a duty cycle as low as
                //70/30 since this causes power_down generation timing to fail.
                OSC24M_CTRL &= ~OSC24M_CTRL_OSC24M_SEL;
                //If DS12 needs to be forced regardless of state, clear
                //REGEN_DSLEEP here.  This is hugely dangerous and
                //should only be done in very controlled chip tests.
                SCS_SCR |= SCS_SCR_SLEEPDEEP;      //enable deep sleep
                extern volatile boolean halPendSvSaveContext;
                halPendSvSaveContext = 1;          //1 means save context
                //The INTERRUPTS_OFF used at the beginning of this function set
                //BASEPRI such that the only interrupts that will fire are faults
                //and PendSV.  Trigger PendSV now to induce a context save.
                SCS_ICSR |= SCS_ICSR_PENDSVSET;    //pend the context save and Dsleep
                //Since the interrupt will not fire immediately it is possible to
                //execute a few lines of code.  To stay halted in this spot until the
                //WFI instruction, spin on the context flag (which will get cleared
                //during the startup sequence when restoring context).
                while(halPendSvSaveContext) {}
                //I AM ASLEEP.  WHEN EXECUTION RESUMES, CSTARTUP WILL RESTORE TO HERE
            }
            else
            {
                //Record the fact that we skipped sleep
                halInternalWakeEvent |= BIT32(SLEEPSKIPPED_INTERNAL_WAKE_EVENT_BIT);
                //If this was a true deep sleep, we would have executed cstartup and
                //PRIMASK would be set right now.  If we skipped sleep, PRIMASK is not
                //set so we explicitely set it to guarantee the powerup sequence
                //works cleanly and consistently with respect to interrupt
                //dispatching and enabling.
                _setPriMask();
            }








            //Clear the interrupt flags for all wake sources.  This
            //is necessary because if we don't execute an actual deep sleep cycle
            //the interrupt flags will never be cleared.  By clearing the flags,
            //we always mimick a real deep sleep as closely as possible and
            //guard against any accidental interrupt triggering coming out
            //of deep sleep.  (The interrupt dispatch code coming out of sleep
            //is responsible for translating wake events into interrupt events,
            //and if we don't clear interrupt flags here it's possible for an
            //interrupt to trigger even if it wasn't the true wake event.)
            INT_SLEEPTMRFLAG = (INT_SLEEPTMRCMPA |
                                INT_SLEEPTMRCMPB |
                                INT_SLEEPTMRWRAP);
            INT_GPIOFLAG = (INT_IRQAFLAG |
                            INT_IRQBFLAG |
                            INT_IRQCFLAG |
                            INT_IRQDFLAG);

            //immediately restore the registers we saved before sleeping
            //so IRQ and SleepTMR capture can be reenabled as quickly as possible
            //this is safe because our global interrupts are still disabled
            //other registers will be restored later







            SLEEPTMR_CLKEN_REG = SLEEPTMR_CLKEN_SAVED;
            INT_SLEEPTMRCFG_REG = INT_SLEEPTMRCFG_SAVED;
            INT_MGMTCFG_REG = INT_MGMTCFG_SAVED;
            GPIO_INTCFGA_REG = GPIO_INTCFGA_SAVED;
            GPIO_INTCFGB_REG = GPIO_INTCFGB_SAVED;
            GPIO_INTCFGC_REG = GPIO_INTCFGC_SAVED;
            GPIO_INTCFGD_REG = GPIO_INTCFGD_SAVED;
            OSC24M_BIASTRIM_REG = OSC24M_BIASTRIM_SAVED;
            OSCHF_TUNE_REG = OSCHF_TUNE_SAVED;
            DITHER_DIS_REG = DITHER_DIS_SAVED;
            PCTRACE_SEL_REG = PCTRACE_SEL_SAVED;
            MEM_PROT_0_REG = MEM_PROT_0_SAVED;
            MEM_PROT_1_REG = MEM_PROT_1_SAVED;
            MEM_PROT_2_REG = MEM_PROT_2_SAVED;
            MEM_PROT_3_REG = MEM_PROT_3_SAVED;
            MEM_PROT_4_REG = MEM_PROT_4_SAVED;
            MEM_PROT_5_REG = MEM_PROT_5_SAVED;
            MEM_PROT_6_REG = MEM_PROT_6_SAVED;
            MEM_PROT_7_REG = MEM_PROT_7_SAVED;
            MEM_PROT_EN_REG = MEM_PROT_EN_SAVED;
            INT_CFGSET_REG = INT_CFGSET_SAVED;
            SCS_VTOR_REG = SCS_VTOR_SAVED;

            //WAKE_CORE/INT_DEBUG and INT_IRQx is cleared by INT_PENDCLR below
            INT_PENDCLR = 0xFFFFFFFF;

            //Now that we're awake, normal interrupts are operational again
            //Take a snapshot of the new GPIO state and the EVENT register to
            //record our wake event
            int32u GPIO_IN_NEW =   GPIO_PAIN;
            GPIO_IN_NEW |= (GPIO_PBIN<<8);
            GPIO_IN_NEW |= (GPIO_PCIN<<16);
            //Only operate on power up events that are also wake events.  Power
            //up events will always trigger like an interrupt flag, so we have
            //to check them against events that are enabled for waking. (This is
            //a two step process because we're accessing two volatile values.)
            int32u powerUpEvents = PWRUP_EVENT;
            powerUpEvents &= WAKE_SEL;
            halInternalWakeEvent |= ((GPIO_IN_SAVED^GPIO_IN_NEW)&gpioWakeSel);
            //PWRUP_SC1 is PB2 which is bit 10
            halInternalWakeEvent |= (!!(powerUpEvents&PWRUP_SC1))<<((1*8)+2);
            //PWRUP_SC2 is PA2 which is bit 2
            halInternalWakeEvent |= (!!(powerUpEvents&PWRUP_SC2))<<((0*8)+2);
            //PWRUP_IRQD is chosen by GPIO_IRQDSEL
            halInternalWakeEvent |= (!!(powerUpEvents&PWRUP_IRQD))<<(GPIO_IRQDSEL);
            halInternalWakeEvent |= ((powerUpEvents &
                                      (PWRUP_CSYSPWRUPREQ_MASK  |
                                       PWRUP_CDBGPWRUPREQ_MASK  |
                                       PWRUP_WAKECORE_MASK      |
                                       PWRUP_SLEEPTMRWRAP_MASK  |
                                       PWRUP_SLEEPTMRCOMPB_MASK |
                                       PWRUP_SLEEPTMRCOMPA_MASK ))
                                     <<INTERNAL_WAKE_EVENT_BIT_SHIFT);
            //at this point wake events are fully captured and interrupts have
            //taken over handling all new events






            //Bring limited interrupts back online.  INTERRUPTS_OFF will use
            //BASEPRI to disable all interrupts except fault handlers and PendSV.
            //PRIMASK is still set though (global interrupt disable) so we need
            //to clear that next.
            INTERRUPTS_OFF();





            //Now that BASEPRI has taken control of interrupt enable/disable,
            //we can clear PRIMASK to reenable global interrupt operation.
            _clearPriMask();





            //wake events are saved and interrupts are back on track,
            //disable gpio freeze
            EVENT_CTRL = EVENT_CTRL_RESET;

            //restart watchdog if it was running when we entered sleep
            //do this before dispatching interrupts while we still have tight
            //control of code execution
            if(restoreWatchdog)
            {
                halInternalEnableWatchDog();
            }





            //Pend any interrupts associated with deep sleep wake sources.  The
            //restoration of INT_CFGSET above and the changing of BASEPRI below
            //is responsible for proper dispatching of interrupts at the end of
            //halSleepWithOptions.
            //
            //
            //The WAKE_CORE wake source triggers a Debug Interrupt.  If INT_DEBUG
            //interrupt is enabled and WAKE_CORE is a wake event, then pend the
            //Debug interrupt (using the wake_core bit).
            if( (INT_CFGSET&INT_DEBUG) &&
                    (halInternalWakeEvent&BIT(WAKE_CORE_INTERNAL_WAKE_EVENT_BIT)) )
            {
                WAKE_CORE = WAKE_CORE_FIELD;



            }
            //
            //
            //The SleepTMR CMPA is linked to a real ISR.  If the SleepTMR CMPA
            //interrupt is enabled and CMPA is a wake event, then pend the CMPA
            //interrupt (force the second level interrupt).
            if( (INT_SLEEPTMRCFG&INT_SLEEPTMRCMPA) &&
                    (halInternalWakeEvent&BIT(CMPA_INTERNAL_WAKE_EVENT_BIT)) )
            {
                INT_SLEEPTMRFORCE = INT_SLEEPTMRCMPA;



            }
            //
            //The SleepTMR CMPB is linked to a real ISR.  If the SleepTMR CMPB
            //interrupt is enabled and CMPB is a wake event, then pend the CMPB
            //interrupt (force the second level interrupt).
            if( (INT_SLEEPTMRCFG&INT_SLEEPTMRCMPB) &&
                    (halInternalWakeEvent&BIT(CMPB_INTERNAL_WAKE_EVENT_BIT)) )
            {
                INT_SLEEPTMRFORCE = INT_SLEEPTMRCMPB;



            }
            //
            //The SleepTMR WRAP is linked to a real ISR.  If the SleepTMR WRAP
            //interrupt is enabled and WRAP is a wake event, then pend the WRAP
            //interrupt (force the second level interrupt).
            if( (INT_SLEEPTMRCFG&INT_SLEEPTMRWRAP) &&
                    (halInternalWakeEvent&BIT(WRAP_INTERNAL_WAKE_EVENT_BIT)) )
            {
                INT_SLEEPTMRFORCE = INT_SLEEPTMRWRAP;



            }
            //
            //
            //The four IRQs are linked to a real ISR.  If any of the four IRQs
            //triggered, then pend their ISR
            //
            //If the IRQA interrupt mode is enabled and IRQA (PB0) is wake
            //event, then pend the interrupt.
            if( ((GPIO_INTCFGA&GPIO_INTMOD)!=0) &&
                    (halInternalWakeEvent&BIT(PORTB_PIN(0))) )
            {
                INT_PENDSET = INT_IRQA;



            }
            //If the IRQB interrupt mode is enabled and IRQB (PB6) is wake
            //event, then pend the interrupt.
            if( ((GPIO_INTCFGB&GPIO_INTMOD)!=0) &&
                    (halInternalWakeEvent&BIT(PORTB_PIN(6))) )
            {
                INT_PENDSET = INT_IRQB;



            }
            //If the IRQC interrupt mode is enabled and IRQC (GPIO_IRQCSEL) is wake
            //event, then pend the interrupt.
            if( ((GPIO_INTCFGC&GPIO_INTMOD)!=0) &&
                    (halInternalWakeEvent&BIT(GPIO_IRQCSEL)) )
            {
                INT_PENDSET = INT_IRQC;



            }
            //If the IRQD interrupt mode is enabled and IRQD (GPIO_IRQDSEL) is wake
            //event, then pend the interrupt.
            if( ((GPIO_INTCFGD&GPIO_INTMOD)!=0) &&
                    (halInternalWakeEvent&BIT(GPIO_IRQDSEL)) )
            {
                INT_PENDSET = INT_IRQD;



            }
        }






        //Mark the wake events valid just before exiting
        halInternalWakeEvent |= BIT32(WAKEINFOVALID_INTERNAL_WAKE_EVENT_BIT);

        //We are now reconfigured, appropriate ISRs are pended, and ready to go,
        //so enable interrupts!
        INTERRUPTS_ON();





        break; //and deep sleeping is done!

    case SLEEPMODE_IDLE:
        //Only the CPU is idled.  The rest of the chip continues runing
        //normally.  The chip will wake from any interrupt.
    {
        boolean restoreWatchdog = halInternalWatchDogEnabled();
        //disable watchdog while sleeping (since we can't reset it asleep)
        halInternalDisableWatchDog(MICRO_DISABLE_WATCH_DOG_KEY);
        //Normal ATOMIC/INTERRUPTS_OFF/INTERRUPTS_ON uses the BASEPRI mask
        //to juggle priority levels so that the fault handlers can always
        //be serviced.  But, the WFI instruction is only capable of
        //working with the PRIMASK bit.  Therefore, we have to switch from
        //using BASEPRI to PRIMASK to keep interrupts disabled so that the
        //WFI can return on an interrupt
        //Globally disable interrupts with PRIMASK
        _setPriMask();
        //Bring the BASEPRI up to 0 to allow interrupts (but still disabled
        //with PRIMASK)
        INTERRUPTS_ON();
        //an internal function call is made here instead of injecting the
        //"WFI" assembly instruction because injecting assembly code will
        //cause the compiler's optimizer to reduce efficiency.
        halInternalIdleSleep();
        //The WFI instruction does not actually clear the PRIMASK bit, it
        //only allows the PRIMASK bit to be bypassed.  Therefore, we must
        //manually clear PRIMASK to reenable all interrupts.
        _clearPriMask();
        //restart watchdog if it was running when we entered sleep
        if(restoreWatchdog)
            halInternalEnableWatchDog();
    }
    break;

    default:
        //Oops!  Invalid sleepMode parameter.
        assert(0);
    }
}