예제 #1
0
void spiInitDevice(SPIDevice device)
{
    spiDevice_t *spi = &(spiHardwareMap[device]);

#ifdef SDCARD_SPI_INSTANCE
    if (spi->dev == SDCARD_SPI_INSTANCE) {
        spi->leadingEdge = true;
    }
#endif
#ifdef RX_SPI_INSTANCE
    if (spi->dev == RX_SPI_INSTANCE) {
        spi->leadingEdge = true;
    }
#endif

    // Enable SPI clock
    RCC_ClockCmd(spi->rcc, ENABLE);
    RCC_ResetCmd(spi->rcc, ENABLE);

    IOInit(IOGetByTag(spi->sck),  OWNER_SPI_SCK,  RESOURCE_INDEX(device));
    IOInit(IOGetByTag(spi->miso), OWNER_SPI_MISO, RESOURCE_INDEX(device));
    IOInit(IOGetByTag(spi->mosi), OWNER_SPI_MOSI, RESOURCE_INDEX(device));

#if defined(STM32F3) || defined(STM32F4) || defined(STM32F7)
    IOConfigGPIOAF(IOGetByTag(spi->sck),  SPI_IO_AF_CFG, spi->af);
    IOConfigGPIOAF(IOGetByTag(spi->miso), SPI_IO_AF_CFG, spi->af);
    IOConfigGPIOAF(IOGetByTag(spi->mosi), SPI_IO_AF_CFG, spi->af);

    if (spi->nss) {
        IOInit(IOGetByTag(spi->nss), OWNER_SPI_CS, RESOURCE_INDEX(device));
        IOConfigGPIOAF(IOGetByTag(spi->nss), SPI_IO_CS_CFG, spi->af);
    }
#endif
#if defined(STM32F10X)
    IOConfigGPIO(IOGetByTag(spi->sck), SPI_IO_AF_SCK_CFG);
    IOConfigGPIO(IOGetByTag(spi->miso), SPI_IO_AF_MISO_CFG);
    IOConfigGPIO(IOGetByTag(spi->mosi), SPI_IO_AF_MOSI_CFG);

    if (spi->nss) {
        IOInit(IOGetByTag(spi->nss), OWNER_SPI_CS, RESOURCE_INDEX(device));
        IOConfigGPIO(IOGetByTag(spi->nss), SPI_IO_CS_CFG);
    }
#endif
    spiHardwareMap[device].hspi.Instance = spi->dev;
    // Init SPI hardware
    HAL_SPI_DeInit(&spiHardwareMap[device].hspi);

    spiHardwareMap[device].hspi.Init.Mode = SPI_MODE_MASTER;
    spiHardwareMap[device].hspi.Init.Direction = SPI_DIRECTION_2LINES;
    spiHardwareMap[device].hspi.Init.DataSize = SPI_DATASIZE_8BIT;
    spiHardwareMap[device].hspi.Init.NSS = SPI_NSS_SOFT;
    spiHardwareMap[device].hspi.Init.FirstBit = SPI_FIRSTBIT_MSB;
    spiHardwareMap[device].hspi.Init.CRCPolynomial = 7;
    spiHardwareMap[device].hspi.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256;
    spiHardwareMap[device].hspi.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
    spiHardwareMap[device].hspi.Init.TIMode = SPI_TIMODE_DISABLED;

    if (spi->leadingEdge) {
        spiHardwareMap[device].hspi.Init.CLKPolarity = SPI_POLARITY_LOW;
        spiHardwareMap[device].hspi.Init.CLKPhase = SPI_PHASE_1EDGE;
    }
    else {
        spiHardwareMap[device].hspi.Init.CLKPolarity = SPI_POLARITY_HIGH;
        spiHardwareMap[device].hspi.Init.CLKPhase = SPI_PHASE_2EDGE;
    }

    if (HAL_SPI_Init(&spiHardwareMap[device].hspi) == HAL_OK)
    {
        if (spi->nss) {
            IOHi(IOGetByTag(spi->nss));
        }
    }
}
예제 #2
0
void max7456Init(const max7456Config_t *max7456Config, const vcdProfile_t *pVcdProfile, bool cpuOverclock)
{
    max7456HardwareReset();

#ifdef MAX7456_SPI_CS_PIN
    max7456CsPin = IOGetByTag(IO_TAG(MAX7456_SPI_CS_PIN));
#endif
    IOInit(max7456CsPin, OWNER_OSD_CS, 0);
    IOConfigGPIO(max7456CsPin, SPI_IO_CS_CFG);
    IOHi(max7456CsPin);

    // Detect device type by writing and reading CA[8] bit at CMAL[6].
    // Do this at half the speed for safety.
    spiSetDivisor(MAX7456_SPI_INSTANCE, MAX7456_SPI_CLK * 2);

    max7456Send(MAX7456ADD_CMAL, (1 << 6)); // CA[8] bit

    if (max7456Send(MAX7456ADD_CMAL|MAX7456ADD_READ, 0xff) & (1 << 6)) {
        max7456DeviceType = MAX7456_DEVICE_TYPE_AT;
    } else {
        max7456DeviceType = MAX7456_DEVICE_TYPE_MAX;
    }

#if defined(USE_OVERCLOCK)
    // Determine SPI clock divisor based on config and the device type.

    switch (max7456Config->clockConfig) {
    case MAX7456_CLOCK_CONFIG_HALF:
        max7456SpiClock = MAX7456_SPI_CLK * 2;
        break;

    case MAX7456_CLOCK_CONFIG_OC:
        max7456SpiClock = (cpuOverclock && (max7456DeviceType == MAX7456_DEVICE_TYPE_MAX)) ? MAX7456_SPI_CLK * 2 : MAX7456_SPI_CLK;
        break;

    case MAX7456_CLOCK_CONFIG_FULL:
        max7456SpiClock = MAX7456_SPI_CLK;
        break;
    }

    DEBUG_SET(DEBUG_MAX7456_SPICLOCK, DEBUG_MAX7456_SPICLOCK_OVERCLOCK, cpuOverclock);
    DEBUG_SET(DEBUG_MAX7456_SPICLOCK, DEBUG_MAX7456_SPICLOCK_DEVTYPE, max7456DeviceType);
    DEBUG_SET(DEBUG_MAX7456_SPICLOCK, DEBUG_MAX7456_SPICLOCK_DIVISOR, max7456SpiClock);
#else
    UNUSED(max7456Config);
    UNUSED(cpuOverclock);
#endif

    spiSetDivisor(MAX7456_SPI_INSTANCE, max7456SpiClock);

    // force soft reset on Max7456
    ENABLE_MAX7456;
    max7456Send(MAX7456ADD_VM0, MAX7456_RESET);
    DISABLE_MAX7456;

    // Setup values to write to registers
    videoSignalCfg = pVcdProfile->video_system;
    hosRegValue = 32 - pVcdProfile->h_offset;
    vosRegValue = 16 - pVcdProfile->v_offset;

#ifdef MAX7456_DMA_CHANNEL_TX
    dmaSetHandler(MAX7456_DMA_IRQ_HANDLER_ID, max7456_dma_irq_handler, NVIC_PRIO_MAX7456_DMA, 0);
#endif

    // Real init will be made later when driver detect idle.
}
void ws2811LedStripHardwareInit(void)
{
    TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;
    TIM_OCInitTypeDef  TIM_OCInitStructure;
    DMA_InitTypeDef DMA_InitStructure;

    uint16_t prescalerValue;

    dmaSetHandler(WS2811_DMA_HANDLER_IDENTIFER, WS2811_DMA_IRQHandler, NVIC_PRIO_WS2811_DMA, 0);

    ws2811IO = IOGetByTag(IO_TAG(WS2811_PIN));
/* GPIOA Configuration: TIM5 Channel 1 as alternate function push-pull */
    IOInit(ws2811IO, OWNER_LED_STRIP, RESOURCE_OUTPUT, 0);
    IOConfigGPIO(ws2811IO, IO_CONFIG(GPIO_Speed_50MHz, GPIO_Mode_AF_PP));

    RCC_ClockCmd(timerRCC(WS2811_TIMER), ENABLE);

    /* Compute the prescaler value */
    prescalerValue = (uint16_t) (SystemCoreClock / 24000000) - 1;
    /* Time base configuration */
    TIM_TimeBaseStructInit(&TIM_TimeBaseStructure);
    TIM_TimeBaseStructure.TIM_Period = 29; // 800kHz
    TIM_TimeBaseStructure.TIM_Prescaler = prescalerValue;
    TIM_TimeBaseStructure.TIM_ClockDivision = 0;
    TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
    TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure);

    /* PWM1 Mode configuration: Channel1 */
    TIM_OCStructInit(&TIM_OCInitStructure);
    TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
    TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
    TIM_OCInitStructure.TIM_Pulse = 0;
    TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
    TIM_OC1Init(TIM3, &TIM_OCInitStructure);
    TIM_OC1PreloadConfig(TIM3, TIM_OCPreload_Enable);

    TIM_CtrlPWMOutputs(TIM3, ENABLE);

    /* configure DMA */
    /* DMA clock enable */
    RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);

    /* DMA1 Channel6 Config */
    DMA_DeInit(DMA1_Channel6);

    DMA_StructInit(&DMA_InitStructure);
    DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)&TIM3->CCR1;
    DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)ledStripDMABuffer;
    DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralDST;
    DMA_InitStructure.DMA_BufferSize = WS2811_DMA_BUFFER_SIZE;
    DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
    DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
    DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;
    DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;
    DMA_InitStructure.DMA_Mode = DMA_Mode_Normal;
    DMA_InitStructure.DMA_Priority = DMA_Priority_High;
    DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;

    DMA_Init(DMA1_Channel6, &DMA_InitStructure);

    /* TIM3 CC1 DMA Request enable */
    TIM_DMACmd(TIM3, TIM_DMA_CC1, ENABLE);

    DMA_ITConfig(DMA1_Channel6, DMA_IT_TC, ENABLE);

    const hsvColor_t hsv_white = {  0, 255, 255};
    ws2811Initialised = true;
    setStripColor(&hsv_white);
    ws2811UpdateStrip();
}
예제 #4
0
void i2cInit(I2CDevice device)
{
    
    i2cDevice_t *i2c;
    i2c = &(i2cHardwareMap[device]);

    I2C_TypeDef *I2Cx;
    I2Cx = i2c->dev;
       
    IO_t scl = IOGetByTag(i2c->scl);
    IO_t sda = IOGetByTag(i2c->sda);
    
    RCC_ClockCmd(i2c->rcc, ENABLE);
    RCC_I2CCLKConfig(I2Cx == I2C2 ? RCC_I2C2CLK_SYSCLK : RCC_I2C1CLK_SYSCLK);

	IOInit(scl, OWNER_I2C, RESOURCE_I2C_SCL, RESOURCE_INDEX(device));
    IOConfigGPIOAF(scl, IOCFG_I2C, GPIO_AF_4);

	IOInit(sda, OWNER_I2C, RESOURCE_I2C_SDA, RESOURCE_INDEX(device));
    IOConfigGPIOAF(sda, IOCFG_I2C, GPIO_AF_4);

    I2C_InitTypeDef i2cInit = {
        .I2C_Mode = I2C_Mode_I2C,
        .I2C_AnalogFilter = I2C_AnalogFilter_Enable,
        .I2C_DigitalFilter = 0x00,
        .I2C_OwnAddress1 = 0x00,
        .I2C_Ack = I2C_Ack_Enable,
        .I2C_AcknowledgedAddress = I2C_AcknowledgedAddress_7bit,
        .I2C_Timing = (i2c->overClock ? I2C_HIGHSPEED_TIMING : I2C_STANDARD_TIMING)
    };
    
    I2C_Init(I2Cx, &i2cInit);

    I2C_StretchClockCmd(I2Cx, ENABLE);
      
    I2C_Cmd(I2Cx, ENABLE);
}

uint16_t i2cGetErrorCounter(void)
{
    return i2cErrorCount;
}

bool i2cWrite(I2CDevice device, uint8_t addr_, uint8_t reg, uint8_t data)
{
    addr_ <<= 1;

    I2C_TypeDef *I2Cx;
    I2Cx = i2cHardwareMap[device].dev; 
    
    /* Test on BUSY Flag */
    i2cTimeout = I2C_LONG_TIMEOUT;
    while (I2C_GetFlagStatus(I2Cx, I2C_ISR_BUSY) != RESET) {
        if ((i2cTimeout--) == 0) {
            return i2cTimeoutUserCallback();
        }
    }

        /* Configure slave address, nbytes, reload, end mode and start or stop generation */
    I2C_TransferHandling(I2Cx, addr_, 1, I2C_Reload_Mode, I2C_Generate_Start_Write);

        /* Wait until TXIS flag is set */
    i2cTimeout = I2C_LONG_TIMEOUT;
    while (I2C_GetFlagStatus(I2Cx, I2C_ISR_TXIS) == RESET) {
        if ((i2cTimeout--) == 0) {
            return i2cTimeoutUserCallback();
        }
    }

        /* Send Register address */
    I2C_SendData(I2Cx, (uint8_t) reg);

        /* Wait until TCR flag is set */
    i2cTimeout = I2C_LONG_TIMEOUT;
    while (I2C_GetFlagStatus(I2Cx, I2C_ISR_TCR) == RESET)
    {
        if ((i2cTimeout--) == 0) {
            return i2cTimeoutUserCallback();
        }
    }

        /* Configure slave address, nbytes, reload, end mode and start or stop generation */
    I2C_TransferHandling(I2Cx, addr_, 1, I2C_AutoEnd_Mode, I2C_No_StartStop);

        /* Wait until TXIS flag is set */
    i2cTimeout = I2C_LONG_TIMEOUT;
    while (I2C_GetFlagStatus(I2Cx, I2C_ISR_TXIS) == RESET) {
        if ((i2cTimeout--) == 0) {
            return i2cTimeoutUserCallback();
        }
    }

        /* Write data to TXDR */
    I2C_SendData(I2Cx, data);

        /* Wait until STOPF flag is set */
    i2cTimeout = I2C_LONG_TIMEOUT;
    while (I2C_GetFlagStatus(I2Cx, I2C_ISR_STOPF) == RESET) {
        if ((i2cTimeout--) == 0) {
            return i2cTimeoutUserCallback();
        }
    }

        /* Clear STOPF flag */
    I2C_ClearFlag(I2Cx, I2C_ICR_STOPCF);

    return true;
}
예제 #5
0
void motorInit(const motorConfig_t *motorConfig, uint16_t idlePulse, uint8_t motorCount)
{
    uint32_t timerMhzCounter = 0;
    pwmWriteFuncPtr pwmWritePtr;
    bool useUnsyncedPwm = motorConfig->useUnsyncedPwm;
    bool isDigital = false;

    switch (motorConfig->motorPwmProtocol) {
    default:
    case PWM_TYPE_ONESHOT125:
        timerMhzCounter = ONESHOT125_TIMER_MHZ;
        pwmWritePtr = pwmWriteOneShot125;
        break;
    case PWM_TYPE_ONESHOT42:
        timerMhzCounter = ONESHOT42_TIMER_MHZ;
        pwmWritePtr = pwmWriteOneShot42;
        break;
    case PWM_TYPE_MULTISHOT:
        timerMhzCounter = MULTISHOT_TIMER_MHZ;
        pwmWritePtr = pwmWriteMultiShot;
        break;
    case PWM_TYPE_BRUSHED:
        timerMhzCounter = PWM_BRUSHED_TIMER_MHZ;
        pwmWritePtr = pwmWriteBrushed;
        useUnsyncedPwm = true;
        idlePulse = 0;
        break;
    case PWM_TYPE_STANDARD:
        timerMhzCounter = PWM_TIMER_MHZ;
        pwmWritePtr = pwmWriteStandard;
        useUnsyncedPwm = true;
        idlePulse = 0;
        break;
#ifdef USE_DSHOT
    case PWM_TYPE_DSHOT600:
    case PWM_TYPE_DSHOT300:
    case PWM_TYPE_DSHOT150:
        pwmCompleteWritePtr = pwmCompleteDigitalMotorUpdate;
        isDigital = true;
        break;
#endif
    }

    if (!useUnsyncedPwm && !isDigital) {
        pwmCompleteWritePtr = pwmCompleteOneshotMotorUpdate;
    }

    for (int motorIndex = 0; motorIndex < MAX_SUPPORTED_MOTORS && motorIndex < motorCount; motorIndex++) {
        const ioTag_t tag = motorConfig->ioTags[motorIndex];

        if (!tag) {
            break;
        }

        const timerHardware_t *timerHardware = timerGetByTag(tag, TIM_USE_ANY);

        if (timerHardware == NULL) {
            /* flag failure and disable ability to arm */
            break;
        }

        motors[motorIndex].io = IOGetByTag(tag);

#ifdef USE_DSHOT
        if (isDigital) {
            pwmDigitalMotorHardwareConfig(timerHardware, motorIndex, motorConfig->motorPwmProtocol);
            motors[motorIndex].pwmWritePtr = pwmWriteDigital;
            motors[motorIndex].enabled = true;
            continue;
        }
#endif

        IOInit(motors[motorIndex].io, OWNER_MOTOR, RESOURCE_INDEX(motorIndex));
        IOConfigGPIO(motors[motorIndex].io, IOCFG_AF_PP);

        motors[motorIndex].pwmWritePtr = pwmWritePtr;
        if (useUnsyncedPwm) {
            const uint32_t hz = timerMhzCounter * 1000000;
            pwmOutConfig(&motors[motorIndex], timerHardware, timerMhzCounter, hz / motorConfig->motorPwmRate, idlePulse);
        } else {
            pwmOutConfig(&motors[motorIndex], timerHardware, timerMhzCounter, 0xFFFF, 0);
        }
        motors[motorIndex].enabled = true;
    }
}
예제 #6
0
void adcInit(const adcConfig_t *config)
{
    uint8_t i;
    uint8_t configuredAdcChannels = 0;

    memset(&adcOperatingConfig, 0, sizeof(adcOperatingConfig));

    if (config->vbat.enabled) {
        adcOperatingConfig[ADC_BATTERY].tag = config->vbat.ioTag;
    }

    if (config->rssi.enabled) {
        adcOperatingConfig[ADC_RSSI].tag = config->rssi.ioTag;  //RSSI_ADC_CHANNEL;
    }

    if (config->external1.enabled) {
        adcOperatingConfig[ADC_EXTERNAL1].tag = config->external1.ioTag; //EXTERNAL1_ADC_CHANNEL;
    }

    if (config->current.enabled) {
        adcOperatingConfig[ADC_CURRENT].tag = config->current.ioTag;  //CURRENT_METER_ADC_CHANNEL;
    }

    ADCDevice device = adcDeviceByInstance(ADC_INSTANCE);
    if (device == ADCINVALID)
        return;

    adcDevice_t adc = adcHardware[device];

    bool adcActive = false;
    for (int i = 0; i < ADC_CHANNEL_COUNT; i++) {
        if (!adcVerifyPin(adcOperatingConfig[i].tag, device)) {
            continue;
        }

        adcActive = true;
        IOInit(IOGetByTag(adcOperatingConfig[i].tag), OWNER_ADC_BATT + i, 0);
        IOConfigGPIO(IOGetByTag(adcOperatingConfig[i].tag), IO_CONFIG(GPIO_MODE_ANALOG, 0, GPIO_NOPULL));
        adcOperatingConfig[i].adcChannel = adcChannelByTag(adcOperatingConfig[i].tag);
        adcOperatingConfig[i].dmaIndex = configuredAdcChannels++;
        adcOperatingConfig[i].sampleTime = ADC_SAMPLETIME_480CYCLES;
        adcOperatingConfig[i].enabled = true;
    }

    if (!adcActive) {
        return;
    }

    RCC_ClockCmd(adc.rccADC, ENABLE);
    dmaInit(dmaGetIdentifier(adc.DMAy_Streamx), OWNER_ADC, 0);

    adc.ADCHandle.Init.ClockPrescaler        = ADC_CLOCK_SYNC_PCLK_DIV8;
    adc.ADCHandle.Init.ContinuousConvMode    = ENABLE;
    adc.ADCHandle.Init.Resolution            = ADC_RESOLUTION_12B;
    adc.ADCHandle.Init.ExternalTrigConv      = ADC_EXTERNALTRIGCONV_T1_CC1;
    adc.ADCHandle.Init.ExternalTrigConvEdge  = ADC_EXTERNALTRIGCONVEDGE_NONE;
    adc.ADCHandle.Init.DataAlign             = ADC_DATAALIGN_RIGHT;
    adc.ADCHandle.Init.NbrOfConversion       = configuredAdcChannels;
    adc.ADCHandle.Init.ScanConvMode          = configuredAdcChannels > 1 ? ENABLE : DISABLE; // 1=scan more that one channel in group
    adc.ADCHandle.Init.DiscontinuousConvMode = DISABLE;
    adc.ADCHandle.Init.NbrOfDiscConversion   = 0;
    adc.ADCHandle.Init.DMAContinuousRequests = ENABLE;
    adc.ADCHandle.Init.EOCSelection          = DISABLE;
    adc.ADCHandle.Instance = adc.ADCx;

    /*##-1- Configure the ADC peripheral #######################################*/
    if (HAL_ADC_Init(&adc.ADCHandle) != HAL_OK)
    {
      /* Initialization Error */
    }

    adc.DmaHandle.Init.Channel = adc.channel;
    adc.DmaHandle.Init.Direction = DMA_PERIPH_TO_MEMORY;
    adc.DmaHandle.Init.PeriphInc = DMA_PINC_DISABLE;
    adc.DmaHandle.Init.MemInc = configuredAdcChannels > 1 ? DMA_MINC_ENABLE : DMA_MINC_DISABLE;
    adc.DmaHandle.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;
    adc.DmaHandle.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD;
    adc.DmaHandle.Init.Mode = DMA_CIRCULAR;
    adc.DmaHandle.Init.Priority = DMA_PRIORITY_HIGH;
    adc.DmaHandle.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
    adc.DmaHandle.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
    adc.DmaHandle.Init.MemBurst = DMA_MBURST_SINGLE;
    adc.DmaHandle.Init.PeriphBurst = DMA_PBURST_SINGLE;
    adc.DmaHandle.Instance = adc.DMAy_Streamx;

    /*##-2- Initialize the DMA stream ##########################################*/
    if (HAL_DMA_Init(&adc.DmaHandle) != HAL_OK)
    {
        /* Initialization Error */
    }

    __HAL_LINKDMA(&adc.ADCHandle, DMA_Handle, adc.DmaHandle);

    uint8_t rank = 1;
    for (i = 0; i < ADC_CHANNEL_COUNT; i++) {
        if (!adcOperatingConfig[i].enabled) {
            continue;
        }
        ADC_ChannelConfTypeDef sConfig;
        sConfig.Channel      = adcOperatingConfig[i].adcChannel;
        sConfig.Rank         = rank++;
        sConfig.SamplingTime = adcOperatingConfig[i].sampleTime;
        sConfig.Offset       = 0;

        /*##-3- Configure ADC regular channel ######################################*/
        if (HAL_ADC_ConfigChannel(&adc.ADCHandle, &sConfig) != HAL_OK)
        {
          /* Channel Configuration Error */
        }
    }

    //HAL_CLEANINVALIDATECACHE((uint32_t*)&adcValues, configuredAdcChannels);
    /*##-4- Start the conversion process #######################################*/
    if (HAL_ADC_Start_DMA(&adc.ADCHandle, (uint32_t*)&adcValues, configuredAdcChannels) != HAL_OK)
    {
        /* Start Conversation Error */
    }
}
예제 #7
0
void i2cInit(I2CDevice device)
{
    if (device == I2CINVALID) {
        return;
    }

    i2cDevice_t *pDev = &i2cDevice[device];

    const i2cHardware_t *hardware = pDev->hardware;

    if (!hardware) {
        return;
    }

    IO_t scl = pDev->scl;
    IO_t sda = pDev->sda;

    IOInit(scl, OWNER_I2C_SCL, RESOURCE_INDEX(device));
    IOInit(sda, OWNER_I2C_SDA, RESOURCE_INDEX(device));

    // Enable RCC
    RCC_ClockCmd(hardware->rcc, ENABLE);

    i2cUnstick(scl, sda);

    // Init pins
#ifdef STM32F7
    IOConfigGPIOAF(scl, pDev->pullUp ? IOCFG_I2C_PU : IOCFG_I2C, GPIO_AF4_I2C);
    IOConfigGPIOAF(sda, pDev->pullUp ? IOCFG_I2C_PU : IOCFG_I2C, GPIO_AF4_I2C);
#else
    IOConfigGPIO(scl, IOCFG_AF_OD);
    IOConfigGPIO(sda, IOCFG_AF_OD);
#endif

    // Init I2C peripheral

    I2C_HandleTypeDef *pHandle = &pDev->handle;

    memset(pHandle, 0, sizeof(*pHandle));

    pHandle->Instance = pDev->hardware->reg;

    /// TODO: HAL check if I2C timing is correct

    if (pDev->overClock) {
        // 800khz Maximum speed tested on various boards without issues
        pHandle->Init.Timing = 0x00500D1D;
    } else {
        pHandle->Init.Timing = 0x00500C6F;
    }

    pHandle->Init.OwnAddress1 = 0x0;
    pHandle->Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
    pHandle->Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
    pHandle->Init.OwnAddress2 = 0x0;
    pHandle->Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
    pHandle->Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;

    HAL_I2C_Init(pHandle);

    // Enable the Analog I2C Filter
    HAL_I2CEx_ConfigAnalogFilter(pHandle, I2C_ANALOGFILTER_ENABLE);

    // Setup interrupt handlers
    HAL_NVIC_SetPriority(hardware->er_irq, NVIC_PRIORITY_BASE(NVIC_PRIO_I2C_ER), NVIC_PRIORITY_SUB(NVIC_PRIO_I2C_ER));
    HAL_NVIC_EnableIRQ(hardware->er_irq);
    HAL_NVIC_SetPriority(hardware->ev_irq, NVIC_PRIORITY_BASE(NVIC_PRIO_I2C_EV), NVIC_PRIORITY_SUB(NVIC_PRIO_I2C_EV));
    HAL_NVIC_EnableIRQ(hardware->ev_irq);
}
예제 #8
0
void adcInit(drv_adc_config_t *init)
{

#if !defined(VBAT_ADC_PIN) && !defined(EXTERNAL1_ADC_PIN) && !defined(RSSI_ADC_PIN) && !defined(CURRENT_METER_ADC_PIN)
    UNUSED(init);
#endif

    uint8_t configuredAdcChannels = 0;

    memset(&adcConfig, 0, sizeof(adcConfig));

#ifdef VBAT_ADC_PIN
    if (init->enableVBat) {
        adcConfig[ADC_BATTERY].tag = IO_TAG(VBAT_ADC_PIN);
    }
#endif

#ifdef RSSI_ADC_PIN
    if (init->enableRSSI) {
        adcConfig[ADC_RSSI].tag = IO_TAG(RSSI_ADC_PIN);
    }
#endif

#ifdef EXTERNAL1_ADC_PIN
    if (init->enableExternal1) {
        adcConfig[ADC_EXTERNAL1].tag = IO_TAG(EXTERNAL1_ADC_PIN);
    }
#endif

#ifdef CURRENT_METER_ADC_PIN
    if (init->enableCurrentMeter) {
        adcConfig[ADC_CURRENT].tag = IO_TAG(CURRENT_METER_ADC_PIN);
    }
#endif

    ADCDevice device = adcDeviceByInstance(ADC_INSTANCE);
    if (device == ADCINVALID)
        return;

    const adcDevice_t adc = adcHardware[device];

    for (int  i = 0; i < ADC_CHANNEL_COUNT; i++) {
        if (!adcConfig[i].tag)
            continue;

        IOInit(IOGetByTag(adcConfig[i].tag), OWNER_ADC, RESOURCE_ADC_BATTERY+i, 0);
        IOConfigGPIO(IOGetByTag(adcConfig[i].tag), IO_CONFIG(GPIO_Mode_AIN, 0));
        adcConfig[i].adcChannel = adcChannelByTag(adcConfig[i].tag);
        adcConfig[i].dmaIndex = configuredAdcChannels++;
        adcConfig[i].sampleTime = ADC_SampleTime_239Cycles5;
        adcConfig[i].enabled = true;
    }

    RCC_ADCCLKConfig(RCC_PCLK2_Div8);  // 9MHz from 72MHz APB2 clock(HSE), 8MHz from 64MHz (HSI)
    RCC_ClockCmd(adc.rccADC, ENABLE);
    RCC_ClockCmd(adc.rccDMA, ENABLE);

    DMA_DeInit(adc.DMAy_Channelx);
    DMA_InitTypeDef DMA_InitStructure;
    DMA_StructInit(&DMA_InitStructure);
    DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)&adc.ADCx->DR;
    DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)adcValues;
    DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;
    DMA_InitStructure.DMA_BufferSize = configuredAdcChannels;
    DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
    DMA_InitStructure.DMA_MemoryInc = configuredAdcChannels > 1 ? DMA_MemoryInc_Enable : DMA_MemoryInc_Disable;
    DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;
    DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;
    DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;
    DMA_InitStructure.DMA_Priority = DMA_Priority_High;
    DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;
    DMA_Init(adc.DMAy_Channelx, &DMA_InitStructure);
    DMA_Cmd(adc.DMAy_Channelx, ENABLE);

    ADC_InitTypeDef ADC_InitStructure;
    ADC_StructInit(&ADC_InitStructure);
    ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;
    ADC_InitStructure.ADC_ScanConvMode = configuredAdcChannels > 1 ? ENABLE : DISABLE;
    ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;
    ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;
    ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
    ADC_InitStructure.ADC_NbrOfChannel = configuredAdcChannels;
    ADC_Init(adc.ADCx, &ADC_InitStructure);

    uint8_t rank = 1;
    for (int i = 0; i < ADC_CHANNEL_COUNT; i++) {
        if (!adcConfig[i].enabled) {
            continue;
        }
        ADC_RegularChannelConfig(adc.ADCx, adcConfig[i].adcChannel, rank++, adcConfig[i].sampleTime);
    }

    ADC_DMACmd(adc.ADCx, ENABLE);
    ADC_Cmd(adc.ADCx, ENABLE);

    ADC_ResetCalibration(adc.ADCx);
    while (ADC_GetResetCalibrationStatus(adc.ADCx));
    ADC_StartCalibration(adc.ADCx);
    while (ADC_GetCalibrationStatus(adc.ADCx));

    ADC_SoftwareStartConvCmd(adc.ADCx, ENABLE);
}
예제 #9
0
void max7456_init(uint8_t video_system)
{
    uint8_t max_screen_rows;
    uint8_t srdata = 0;
    uint16_t x;

#ifdef MAX7456_SPI_CS_PIN
    max7456CsPin = IOGetByTag(IO_TAG(MAX7456_SPI_CS_PIN));
#endif
    IOInit(max7456CsPin, OWNER_OSD, RESOURCE_SPI_CS, 0);
    IOConfigGPIO(max7456CsPin, SPI_IO_CS_CFG);

    //Minimum spi clock period for max7456 is 100ns (10Mhz)
    spiSetDivisor(MAX7456_SPI_INSTANCE, SPI_CLOCK_STANDARD);

    delay(1000);
    // force soft reset on Max7456
    ENABLE_MAX7456;
    max7456_send(VM0_REG, MAX7456_RESET);
    delay(100);

    srdata = max7456_send(0xA0, 0xFF);
    if ((0x01 & srdata) == 0x01) {     //PAL
          video_signal_type = VIDEO_MODE_PAL;
    }
    else if ((0x02 & srdata) == 0x02) { //NTSC
        video_signal_type = VIDEO_MODE_NTSC;
    }

    // Override detected type: 0-AUTO, 1-PAL, 2-NTSC
    switch(video_system) {
        case PAL:
            video_signal_type = VIDEO_MODE_PAL;
            break;
        case NTSC:
            video_signal_type = VIDEO_MODE_NTSC;
            break;
    }

    if (video_signal_type) { //PAL
        max_screen_size = VIDEO_BUFFER_CHARS_PAL;
        max_screen_rows = VIDEO_LINES_PAL;
    } else {                 // NTSC
        max_screen_size = VIDEO_BUFFER_CHARS_NTSC;
        max_screen_rows = VIDEO_LINES_NTSC;
    }

    // set all rows to same charactor black/white level
    for(x = 0; x < max_screen_rows; x++) {
        max7456_send(MAX7456ADD_RB0 + x, BWBRIGHTNESS);
    }

    // make sure the Max7456 is enabled
    max7456_send(VM0_REG, OSD_ENABLE | video_signal_type);

    DISABLE_MAX7456;
    delay(100);

    for (x = 0; x < max_screen_size; x++)
        SCREEN_BUFFER[x] = MAX7456_CHAR(' ');

#ifdef MAX7456_DMA_CHANNEL_TX
    max7456_screen[0] = (uint16_t)(MAX7456ADD_DMAH | (0 << 8));
    max7456_screen[1] = (uint16_t)(MAX7456ADD_DMAL | (0 << 8));
    max7456_screen[2] = (uint16_t)(MAX7456ADD_DMM | (1 << 8));
    max7456_screen[max_screen_size + 3] = (uint16_t)(MAX7456ADD_DMDI | (0xFF << 8));
    max7456_screen[max_screen_size + 4] = (uint16_t)(MAX7456ADD_DMM  | (0 << 8));

    dmaSetHandler(MAX7456_DMA_IRQ_HANDLER_ID, max7456_dma_irq_handler, NVIC_PRIO_MAX7456_DMA, 0);
#endif
}
예제 #10
0
void adcInit(adcConfig_t *config)
{
    ADC_InitTypeDef ADC_InitStructure;
    DMA_InitTypeDef DMA_InitStructure;

    uint8_t i;
    uint8_t configuredAdcChannels = 0;

    memset(&adcOperatingConfig, 0, sizeof(adcOperatingConfig));

    if (config->vbat.enabled) {
        adcOperatingConfig[ADC_BATTERY].tag = config->vbat.ioTag;
    }

    if (config->rssi.enabled) {
        adcOperatingConfig[ADC_RSSI].tag = config->rssi.ioTag;  //RSSI_ADC_CHANNEL;
    }

    if (config->external1.enabled) {
        adcOperatingConfig[ADC_EXTERNAL1].tag = config->external1.ioTag; //EXTERNAL1_ADC_CHANNEL;
    }

    if (config->currentMeter.enabled) {
        adcOperatingConfig[ADC_CURRENT].tag = config->currentMeter.ioTag;  //CURRENT_METER_ADC_CHANNEL;
    }

    ADCDevice device = adcDeviceByInstance(ADC_INSTANCE);
    if (device == ADCINVALID)
        return;

    adcDevice_t adc = adcHardware[device];

    bool adcActive = false;
    for (int i = 0; i < ADC_CHANNEL_COUNT; i++) {
        if (!adcOperatingConfig[i].tag)
            continue;

        adcActive = true;
        IOInit(IOGetByTag(adcOperatingConfig[i].tag), OWNER_ADC_BATT + i, 0);
        IOConfigGPIO(IOGetByTag(adcOperatingConfig[i].tag), IO_CONFIG(GPIO_Mode_AN, 0, GPIO_OType_OD, GPIO_PuPd_NOPULL));
        adcOperatingConfig[i].adcChannel = adcChannelByTag(adcOperatingConfig[i].tag);
        adcOperatingConfig[i].dmaIndex = configuredAdcChannels++;
        adcOperatingConfig[i].sampleTime = ADC_SampleTime_480Cycles;
        adcOperatingConfig[i].enabled = true;
    }

    if (!adcActive) {
        return;
    }
    
    RCC_ClockCmd(adc.rccADC, ENABLE);

    dmaInit(dmaGetIdentifier(adc.DMAy_Streamx), OWNER_ADC, 0);

    DMA_DeInit(adc.DMAy_Streamx);

    DMA_StructInit(&DMA_InitStructure);
    DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)&adc.ADCx->DR;
    DMA_InitStructure.DMA_Channel = adc.channel;
    DMA_InitStructure.DMA_Memory0BaseAddr = (uint32_t)adcValues;
    DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralToMemory;
    DMA_InitStructure.DMA_BufferSize = configuredAdcChannels;
    DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
    DMA_InitStructure.DMA_MemoryInc = configuredAdcChannels > 1 ? DMA_MemoryInc_Enable : DMA_MemoryInc_Disable;
    DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;
    DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;
    DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;
    DMA_InitStructure.DMA_Priority = DMA_Priority_High;
    DMA_Init(adc.DMAy_Streamx, &DMA_InitStructure);

    DMA_Cmd(adc.DMAy_Streamx, ENABLE);

    ADC_CommonInitTypeDef ADC_CommonInitStructure;

    ADC_CommonStructInit(&ADC_CommonInitStructure);
    ADC_CommonInitStructure.ADC_Mode             = ADC_Mode_Independent;
    ADC_CommonInitStructure.ADC_Prescaler        = ADC_Prescaler_Div8;
    ADC_CommonInitStructure.ADC_DMAAccessMode    = ADC_DMAAccessMode_Disabled;
    ADC_CommonInitStructure.ADC_TwoSamplingDelay = ADC_TwoSamplingDelay_5Cycles;
    ADC_CommonInit(&ADC_CommonInitStructure);

    ADC_StructInit(&ADC_InitStructure);

    ADC_InitStructure.ADC_ContinuousConvMode       = ENABLE;
    ADC_InitStructure.ADC_Resolution               = ADC_Resolution_12b;
    ADC_InitStructure.ADC_ExternalTrigConv         = ADC_ExternalTrigConv_T1_CC1;
    ADC_InitStructure.ADC_ExternalTrigConvEdge     = ADC_ExternalTrigConvEdge_None;
    ADC_InitStructure.ADC_DataAlign                = ADC_DataAlign_Right;
    ADC_InitStructure.ADC_NbrOfConversion          = configuredAdcChannels;
    ADC_InitStructure.ADC_ScanConvMode             = configuredAdcChannels > 1 ? ENABLE : DISABLE; // 1=scan more that one channel in group

    ADC_Init(adc.ADCx, &ADC_InitStructure);

    uint8_t rank = 1;
    for (i = 0; i < ADC_CHANNEL_COUNT; i++) {
        if (!adcOperatingConfig[i].enabled) {
            continue;
        }
        ADC_RegularChannelConfig(adc.ADCx, adcOperatingConfig[i].adcChannel, rank++, adcOperatingConfig[i].sampleTime);
    }
    ADC_DMARequestAfterLastTransferCmd(adc.ADCx, ENABLE);

    ADC_DMACmd(adc.ADCx, ENABLE);
    ADC_Cmd(adc.ADCx, ENABLE);

    ADC_SoftwareStartConv(adc.ADCx);
}
예제 #11
0
파일: adc_stm32f7xx.c 프로젝트: npsm/inav
void adcInit(drv_adc_config_t *init)
{
    uint8_t i;
    uint8_t configuredAdcChannels = 0;

    memset(&adcConfig, 0, sizeof(adcConfig));

#ifdef VBAT_ADC_PIN
    if (init->enableVBat) {
        adcConfig[ADC_BATTERY].tag = IO_TAG(VBAT_ADC_PIN); //VBAT_ADC_CHANNEL;
    }
#endif

#ifdef RSSI_ADC_PIN
    if (init->enableRSSI) {
        adcConfig[ADC_RSSI].tag = IO_TAG(RSSI_ADC_PIN);  //RSSI_ADC_CHANNEL;
    }
#endif

#ifdef EXTERNAL1_ADC_PIN
    if (init->enableExternal1) {
        adcConfig[ADC_EXTERNAL1].tag = IO_TAG(EXTERNAL1_ADC_PIN); //EXTERNAL1_ADC_CHANNEL;
    }
#endif

#ifdef CURRENT_METER_ADC_PIN
    if (init->enableCurrentMeter) {
        adcConfig[ADC_CURRENT].tag = IO_TAG(CURRENT_METER_ADC_PIN);  //CURRENT_METER_ADC_CHANNEL;
    }
#endif
    __HAL_RCC_DMA2_CLK_ENABLE();
    __HAL_RCC_ADC1_CLK_ENABLE();
    
    AdcHandle_1.Instance          = ADC1;

    AdcHandle_1.Init.ClockPrescaler        = ADC_CLOCKPRESCALER_PCLK_DIV8;
    AdcHandle_1.Init.Resolution            = ADC_RESOLUTION_12B;
    AdcHandle_1.Init.ScanConvMode          = configuredAdcChannels > 1 ? ENABLE : DISABLE;
    AdcHandle_1.Init.ContinuousConvMode    = ENABLE;
    AdcHandle_1.Init.DiscontinuousConvMode = DISABLE;
    AdcHandle_1.Init.NbrOfDiscConversion   = 0;
    AdcHandle_1.Init.ExternalTrigConvEdge  = ADC_EXTERNALTRIGCONVEDGE_NONE;        /* Conversion start trigged at each external event */
    AdcHandle_1.Init.ExternalTrigConv      = ADC_EXTERNALTRIGCONV_T1_CC1;
    AdcHandle_1.Init.DataAlign             = ADC_DATAALIGN_RIGHT;
    AdcHandle_1.Init.NbrOfConversion       = configuredAdcChannels;
    AdcHandle_1.Init.DMAContinuousRequests = ENABLE;
    AdcHandle_1.Init.EOCSelection          = DISABLE;

    HAL_ADC_Init(&AdcHandle_1);


    hdma_adc_1.Instance = MCU_ADC1_DMA_STREAM;
  
    hdma_adc_1.Init.Channel  = MCU_ADC1_DMA_CHANNEL;
    hdma_adc_1.Init.Direction = DMA_PERIPH_TO_MEMORY;
    hdma_adc_1.Init.PeriphInc = DMA_PINC_DISABLE;
    hdma_adc_1.Init.MemInc = configuredAdcChannels > 1 ? DMA_MINC_ENABLE : DMA_MINC_DISABLE;;
    hdma_adc_1.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;
    hdma_adc_1.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD;
    hdma_adc_1.Init.Mode = DMA_CIRCULAR;
    hdma_adc_1.Init.Priority = DMA_PRIORITY_HIGH;
    hdma_adc_1.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
    hdma_adc_1.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_HALFFULL;
    hdma_adc_1.Init.MemBurst = DMA_MBURST_SINGLE;
    hdma_adc_1.Init.PeriphBurst = DMA_PBURST_SINGLE;
  
    HAL_DMA_Init(&hdma_adc_1);
  
    /* Associate the initialized DMA handle to the ADC handle */
    __HAL_LINKDMA(&AdcHandle_1, DMA_Handle, hdma_adc_1);
  
    /* NVIC configuration for DMA transfer complete interrupt */
//    HAL_NVIC_SetPriority(MCU_ADC1_DMA_STREAM_IRQn, NVIC_PRIORITY_BASE(NVIC_PRIO_ADC1_DMA), NVIC_PRIORITY_SUB(NVIC_PRIO_ADC1_DMA));
//    HAL_NVIC_EnableIRQ(MCU_ADC1_DMA_STREAM_IRQn);    

    uint8_t rank = 1;
    for (i = 0; i < ADC_CHANNEL_COUNT; i++) 
    {
        if (!adcConfig[i].enabled) {
            continue;
        }
        
        IOInit(IOGetByTag(adcConfig[i].tag), OWNER_ADC, RESOURCE_ADC_BATTERY + i, 0);
        IOConfigGPIO(IOGetByTag(adcConfig[i].tag), IO_CONFIG(GPIO_Mode_AN, 0, GPIO_OType_OD, GPIO_PuPd_NOPULL));
        ADC_ChannelConfTypeDef sConfig;        
        sConfig.Channel      = adcChannelByTag(adcConfig[i].tag);
        sConfig.Rank         = rank++;
        sConfig.SamplingTime = ADC_SAMPLETIME_480CYCLES;
        sConfig.Offset       = 0;
        HAL_ADC_ConfigChannel(&AdcHandle_1, &sConfig);
    }

    HAL_ADC_Start_DMA(&AdcHandle_1, (uint32_t*)&adcValues, configuredAdcChannels);
}
예제 #12
0
void pwmDshotMotorHardwareConfig(const timerHardware_t *timerHardware, uint8_t motorIndex, motorPwmProtocolTypes_e pwmProtocolType, uint8_t output)
{
    motorDmaOutput_t * const motor = &dmaMotors[motorIndex];
    motor->timerHardware = timerHardware;

    TIM_TypeDef *timer = timerHardware->tim;
    const IO_t motorIO = IOGetByTag(timerHardware->tag);

    const uint8_t timerIndex = getTimerIndex(timer);

    IOInit(motorIO, OWNER_MOTOR, RESOURCE_INDEX(motorIndex));
    IOConfigGPIOAF(motorIO, IO_CONFIG(GPIO_MODE_AF_PP, GPIO_SPEED_FREQ_VERY_HIGH, GPIO_PULLUP), timerHardware->alternateFunction);

    __DMA1_CLK_ENABLE();

    RCC_ClockCmd(timerRCC(timer), ENABLE);

    motor->TimHandle.Instance = timerHardware->tim;
    motor->TimHandle.Init.Prescaler = (timerClock(timer) / getDshotHz(pwmProtocolType)) - 1;
    motor->TimHandle.Init.Period = pwmProtocolType == PWM_TYPE_PROSHOT1000 ? MOTOR_NIBBLE_LENGTH_PROSHOT : MOTOR_BITLENGTH;
    motor->TimHandle.Init.RepetitionCounter = 0;
    motor->TimHandle.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
    motor->TimHandle.Init.CounterMode = TIM_COUNTERMODE_UP;
    motor->TimHandle.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
    if (HAL_TIM_PWM_Init(&motor->TimHandle) != HAL_OK) {
        /* Initialization Error */
        return;
    }

    motor->timerDmaSource = timerDmaSource(timerHardware->channel);
    dmaMotorTimers[timerIndex].timerDmaSources |= motor->timerDmaSource;

    /* Set the parameters to be configured */
    motor->hdma_tim.Init.Channel = timerHardware->dmaChannel;
    motor->hdma_tim.Init.Direction = DMA_MEMORY_TO_PERIPH;
    motor->hdma_tim.Init.PeriphInc = DMA_PINC_DISABLE;
    motor->hdma_tim.Init.MemInc = DMA_MINC_ENABLE;
    motor->hdma_tim.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD;
    motor->hdma_tim.Init.MemDataAlignment = DMA_MDATAALIGN_WORD;
    motor->hdma_tim.Init.Mode = DMA_NORMAL;
    motor->hdma_tim.Init.Priority = DMA_PRIORITY_HIGH;
    motor->hdma_tim.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
    motor->hdma_tim.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
    motor->hdma_tim.Init.MemBurst = DMA_MBURST_SINGLE;
    motor->hdma_tim.Init.PeriphBurst = DMA_PBURST_SINGLE;

    /* Set hdma_tim instance */
    if (timerHardware->dmaRef == NULL) {
        /* Initialization Error */
        return;
    }
    motor->hdma_tim.Instance = timerHardware->dmaRef;

    /* Link hdma_tim to hdma[x] (channelx) */
    __HAL_LINKDMA(&motor->TimHandle, hdma[motor->timerDmaSource], motor->hdma_tim);

    dmaInit(timerHardware->dmaIrqHandler, OWNER_MOTOR, RESOURCE_INDEX(motorIndex));
    dmaSetHandler(timerHardware->dmaIrqHandler, motor_DMA_IRQHandler, NVIC_BUILD_PRIORITY(1, 2), motorIndex);

    /* Initialize TIMx DMA handle */
    if (HAL_DMA_Init(motor->TimHandle.hdma[motor->timerDmaSource]) != HAL_OK) {
        /* Initialization Error */
        return;
    }

    TIM_OC_InitTypeDef TIM_OCInitStructure;

    /* PWM1 Mode configuration: Channel1 */
    TIM_OCInitStructure.OCMode = TIM_OCMODE_PWM1;
    if (output & TIMER_OUTPUT_N_CHANNEL) {
        TIM_OCInitStructure.OCIdleState = TIM_OCIDLESTATE_RESET;
        TIM_OCInitStructure.OCPolarity = (output & TIMER_OUTPUT_INVERTED) ? TIM_OCPOLARITY_HIGH : TIM_OCPOLARITY_LOW;
        TIM_OCInitStructure.OCNIdleState = TIM_OCNIDLESTATE_RESET;
        TIM_OCInitStructure.OCNPolarity = (output & TIMER_OUTPUT_INVERTED) ? TIM_OCNPOLARITY_HIGH : TIM_OCNPOLARITY_LOW;
    } else {
        TIM_OCInitStructure.OCIdleState = TIM_OCIDLESTATE_SET;
        TIM_OCInitStructure.OCPolarity = (output & TIMER_OUTPUT_INVERTED) ? TIM_OCPOLARITY_LOW : TIM_OCPOLARITY_HIGH;
        TIM_OCInitStructure.OCNIdleState = TIM_OCNIDLESTATE_SET;
        TIM_OCInitStructure.OCNPolarity = (output & TIMER_OUTPUT_INVERTED) ? TIM_OCNPOLARITY_LOW : TIM_OCNPOLARITY_HIGH;
    }
    TIM_OCInitStructure.OCFastMode = TIM_OCFAST_DISABLE;
    TIM_OCInitStructure.Pulse = 0;

    if (HAL_TIM_PWM_ConfigChannel(&motor->TimHandle, &TIM_OCInitStructure, motor->timerHardware->channel) != HAL_OK) {
        /* Configuration Error */
        return;
    }
}
예제 #13
0
void pwmDigitalMotorHardwareConfig(const timerHardware_t *timerHardware, uint8_t motorIndex, motorPwmProtocolTypes_e pwmProtocolType)
{
    TIM_OCInitTypeDef TIM_OCInitStructure;
    DMA_InitTypeDef DMA_InitStructure;

    motorDmaOutput_t * const motor = &dmaMotors[motorIndex];
    motor->timerHardware = timerHardware;

    TIM_TypeDef *timer = timerHardware->tim;
    const IO_t motorIO = IOGetByTag(timerHardware->tag);

    const uint8_t timerIndex = getTimerIndex(timer);
    const bool configureTimer = (timerIndex == dmaMotorTimerCount-1);

    IOInit(motorIO, OWNER_MOTOR, RESOURCE_INDEX(motorIndex));
    IOConfigGPIOAF(motorIO, IO_CONFIG(GPIO_Mode_AF, GPIO_Speed_50MHz, GPIO_OType_PP, GPIO_PuPd_UP), timerHardware->alternateFunction);

    if (configureTimer) {
        TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
        TIM_TimeBaseStructInit(&TIM_TimeBaseStructure);

        RCC_ClockCmd(timerRCC(timer), ENABLE);
        TIM_Cmd(timer, DISABLE);

        uint32_t hz;
        switch (pwmProtocolType) {
            case(PWM_TYPE_DSHOT600):
                hz = MOTOR_DSHOT600_MHZ * 1000000;
                break;
            case(PWM_TYPE_DSHOT300):
                hz = MOTOR_DSHOT300_MHZ * 1000000;
                break;
            default:
            case(PWM_TYPE_DSHOT150):
                hz = MOTOR_DSHOT150_MHZ * 1000000;
        }

        TIM_TimeBaseStructure.TIM_Prescaler = (uint16_t)((SystemCoreClock / timerClockDivisor(timer) / hz) - 1);
        TIM_TimeBaseStructure.TIM_Period = MOTOR_BITLENGTH;
        TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1;
        TIM_TimeBaseStructure.TIM_RepetitionCounter = 0;
        TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
        TIM_TimeBaseInit(timer, &TIM_TimeBaseStructure);
    }

    TIM_OCStructInit(&TIM_OCInitStructure);
    TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
    if (timerHardware->output & TIMER_OUTPUT_N_CHANNEL) {
        TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable;
        TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCNIdleState_Reset;
        TIM_OCInitStructure.TIM_OCNPolarity = (timerHardware->output & TIMER_OUTPUT_INVERTED) ? TIM_OCNPolarity_Low : TIM_OCNPolarity_High;
    } else {
        TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
        TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Set;
        TIM_OCInitStructure.TIM_OCPolarity =  (timerHardware->output & TIMER_OUTPUT_INVERTED) ? TIM_OCPolarity_Low : TIM_OCPolarity_High;
    }
    TIM_OCInitStructure.TIM_Pulse = 0;

    timerOCInit(timer, timerHardware->channel, &TIM_OCInitStructure);
    timerOCPreloadConfig(timer, timerHardware->channel, TIM_OCPreload_Enable);
    motor->timerDmaSource = timerDmaSource(timerHardware->channel);
    dmaMotorTimers[timerIndex].timerDmaSources |= motor->timerDmaSource;

    TIM_CCxCmd(timer, timerHardware->channel, TIM_CCx_Enable);

    if (configureTimer) {
        TIM_CtrlPWMOutputs(timer, ENABLE);
        TIM_ARRPreloadConfig(timer, ENABLE);
        TIM_Cmd(timer, ENABLE);
    }

    DMA_Channel_TypeDef *channel = timerHardware->dmaChannel;

    if (channel == NULL) {
        /* trying to use a non valid channel */
        return;
    }

    dmaInit(timerHardware->dmaIrqHandler, OWNER_MOTOR, RESOURCE_INDEX(motorIndex));
    dmaSetHandler(timerHardware->dmaIrqHandler, motor_DMA_IRQHandler, NVIC_BUILD_PRIORITY(1, 2), motorIndex);

    DMA_Cmd(channel, DISABLE);
    DMA_DeInit(channel);
    DMA_StructInit(&DMA_InitStructure);
    DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)timerChCCR(timerHardware);
    DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)motor->dmaBuffer;
    DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralDST;
    DMA_InitStructure.DMA_BufferSize = MOTOR_DMA_BUFFER_SIZE;
    DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
    DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
    DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Word;
    DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Word;
    DMA_InitStructure.DMA_Mode = DMA_Mode_Normal;
    DMA_InitStructure.DMA_Priority = DMA_Priority_High;
    DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;

    DMA_Init(channel, &DMA_InitStructure);

    DMA_ITConfig(channel, DMA_IT_TC, ENABLE);
}
예제 #14
0
void adcInit(drv_adc_config_t *init)
{
    ADC_InitTypeDef ADC_InitStructure;
    DMA_InitTypeDef DMA_InitStructure;

    uint8_t i;
    uint8_t adcChannelCount = 0;

    memset(&adcConfig, 0, sizeof(adcConfig));

#ifdef VBAT_ADC_PIN
    if (init->enableVBat) {
	    IOInit(IOGetByTag(IO_TAG(VBAT_ADC_PIN)), OWNER_SYSTEM, RESOURCE_ADC);
	    IOConfigGPIO(IOGetByTag(IO_TAG(VBAT_ADC_PIN)), IO_CONFIG(GPIO_Mode_AN, 0, GPIO_OType_OD, GPIO_PuPd_NOPULL));

        adcConfig[ADC_BATTERY].adcChannel = VBAT_ADC_CHANNEL;
        adcConfig[ADC_BATTERY].dmaIndex = adcChannelCount;
        adcConfig[ADC_BATTERY].sampleTime = ADC_SampleTime_601Cycles5;
        adcConfig[ADC_BATTERY].enabled = true;
        adcChannelCount++;
    }
#endif

#ifdef RSSI_ADC_PIN
    if (init->enableRSSI) {
	    IOInit(IOGetByTag(IO_TAG(RSSI_ADC_PIN)), OWNER_SYSTEM, RESOURCE_ADC);
	    IOConfigGPIO(IOGetByTag(IO_TAG(RSSI_ADC_PIN)), IO_CONFIG(GPIO_Mode_AN, 0, GPIO_OType_OD, GPIO_PuPd_NOPULL));

        adcConfig[ADC_RSSI].adcChannel = RSSI_ADC_CHANNEL;
        adcConfig[ADC_RSSI].dmaIndex = adcChannelCount;
        adcConfig[ADC_RSSI].sampleTime = ADC_SampleTime_601Cycles5;
        adcConfig[ADC_RSSI].enabled = true;
        adcChannelCount++;
    }
#endif

#ifdef CURRENT_METER_ADC_PIN
    if (init->enableCurrentMeter) {
	    IOInit(IOGetByTag(IO_TAG(CURRENT_METER_ADC_PIN)), OWNER_SYSTEM, RESOURCE_ADC);
	    IOConfigGPIO(IOGetByTag(IO_TAG(CURRENT_METER_ADC_PIN)), IO_CONFIG(GPIO_Mode_AN, 0, GPIO_OType_OD, GPIO_PuPd_NOPULL));

        adcConfig[ADC_CURRENT].adcChannel = CURRENT_METER_ADC_CHANNEL;
        adcConfig[ADC_CURRENT].dmaIndex = adcChannelCount;
        adcConfig[ADC_CURRENT].sampleTime = ADC_SampleTime_601Cycles5;
        adcConfig[ADC_CURRENT].enabled = true;
        adcChannelCount++;
    }
#endif

#ifdef EXTERNAL1_ADC_PIN
    if (init->enableExternal1) {
	    IOInit(IOGetByTag(IO_TAG(EXTERNAL1_ADC_PIN)), OWNER_SYSTEM, RESOURCE_ADC);
	    IOConfigGPIO(IOGetByTag(IO_TAG(EXTERNAL1_ADC_PIN)), IO_CONFIG(GPIO_Mode_AN, 0, GPIO_OType_OD, GPIO_PuPd_NOPULL));

        adcConfig[ADC_EXTERNAL1].adcChannel = EXTERNAL1_ADC_CHANNEL;
        adcConfig[ADC_EXTERNAL1].dmaIndex = adcChannelCount;
        adcConfig[ADC_EXTERNAL1].sampleTime = ADC_SampleTime_601Cycles5;
        adcConfig[ADC_EXTERNAL1].enabled = true;
        adcChannelCount++;
    }
#endif

    RCC_ADCCLKConfig(RCC_ADC12PLLCLK_Div256);  // 72 MHz divided by 256 = 281.25 kHz
    RCC_AHBPeriphClockCmd(ADC_AHB_PERIPHERAL | RCC_AHBPeriph_ADC12, ENABLE);

    DMA_DeInit(ADC_DMA_CHANNEL);

    DMA_StructInit(&DMA_InitStructure);
    DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)&ADC_INSTANCE->DR;
    DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)adcValues;
    DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;
    DMA_InitStructure.DMA_BufferSize = adcChannelCount;
    DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
    DMA_InitStructure.DMA_MemoryInc = adcChannelCount > 1 ? DMA_MemoryInc_Enable : DMA_MemoryInc_Disable;
    DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;
    DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;
    DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;
    DMA_InitStructure.DMA_Priority = DMA_Priority_High;
    DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;

    DMA_Init(ADC_DMA_CHANNEL, &DMA_InitStructure);

    DMA_Cmd(ADC_DMA_CHANNEL, ENABLE);


    // calibrate

    ADC_VoltageRegulatorCmd(ADC_INSTANCE, ENABLE);
    delay(10);
    ADC_SelectCalibrationMode(ADC_INSTANCE, ADC_CalibrationMode_Single);
    ADC_StartCalibration(ADC_INSTANCE);
    while(ADC_GetCalibrationStatus(ADC_INSTANCE) != RESET);
    ADC_VoltageRegulatorCmd(ADC_INSTANCE, DISABLE);


    ADC_CommonInitTypeDef ADC_CommonInitStructure;

    ADC_CommonStructInit(&ADC_CommonInitStructure);
    ADC_CommonInitStructure.ADC_Mode = ADC_Mode_Independent;
    ADC_CommonInitStructure.ADC_Clock = ADC_Clock_SynClkModeDiv4;
    ADC_CommonInitStructure.ADC_DMAAccessMode = ADC_DMAAccessMode_1;
    ADC_CommonInitStructure.ADC_DMAMode = ADC_DMAMode_Circular;
    ADC_CommonInitStructure.ADC_TwoSamplingDelay = 0;
    ADC_CommonInit(ADC_INSTANCE, &ADC_CommonInitStructure);

    ADC_StructInit(&ADC_InitStructure);

    ADC_InitStructure.ADC_ContinuousConvMode    = ADC_ContinuousConvMode_Enable;
    ADC_InitStructure.ADC_Resolution            = ADC_Resolution_12b;
    ADC_InitStructure.ADC_ExternalTrigConvEvent = ADC_ExternalTrigConvEvent_0;
    ADC_InitStructure.ADC_ExternalTrigEventEdge = ADC_ExternalTrigEventEdge_None;
    ADC_InitStructure.ADC_DataAlign             = ADC_DataAlign_Right;
    ADC_InitStructure.ADC_OverrunMode           = ADC_OverrunMode_Disable;
    ADC_InitStructure.ADC_AutoInjMode           = ADC_AutoInjec_Disable;
    ADC_InitStructure.ADC_NbrOfRegChannel       = adcChannelCount;

    ADC_Init(ADC_INSTANCE, &ADC_InitStructure);

    uint8_t rank = 1;
    for (i = 0; i < ADC_CHANNEL_COUNT; i++) {
        if (!adcConfig[i].enabled) {
            continue;
        }
        ADC_RegularChannelConfig(ADC_INSTANCE, adcConfig[i].adcChannel, rank++, adcConfig[i].sampleTime);
    }

    ADC_Cmd(ADC_INSTANCE, ENABLE);

    while(!ADC_GetFlagStatus(ADC_INSTANCE, ADC_FLAG_RDY));

    ADC_DMAConfig(ADC_INSTANCE, ADC_DMAMode_Circular);

    ADC_DMACmd(ADC_INSTANCE, ENABLE);

    ADC_StartConversion(ADC_INSTANCE);
}
예제 #15
0
/**
 * Function to set the SPI module.
 * \param obj - SPIContext pointer
 * \param options - SPI options
 * \param pin - SlaveSelect pin, use SPI_OPT_NO_SS if not necessary
 * \param speed - desired connection speed. System will automatically calculate the nearest possible speed
 * \return - 0 the operation is successful
 * \return - 1 the operation is failed. Check internal error for more details
 */
BOOL SPIConfig(SPIContext * obj, int options, int pin, long speed)
{
	double tout=0;
	obj->delay=100;
	obj->SPICON1=0;
	obj->SPICON2=0;
	obj->SPISTAT=0;
	obj->primary=0;
	obj->secondary=0;
	obj->ss_pin=0;
	obj->SPIIE=0;
	obj->SPFIE=0;
	obj->mode16 = FALSE;
	int index=0;
	#ifdef SPI_DBG_CFG
	uartwrite(1,"[SPI_DBG] Initiating configuration\n");
	#endif
	if(speed > _SPI_MAX_SPD)
	{
		#ifdef SPI_DBG_CFG
		uartwrite(1,"[SPI_DBG] Speed too fast during config, quitting.\n");
		#endif
		_intSPIerr = SpdTooFast;
		return 1;
	}
	unsigned int divider = (unsigned int)ceil(16000000.0/(double)speed);
	#ifdef SPI_DBG_CFG
	sprintf(spi_dbg_msg,"[SPI_DBG] Calculated divider: %d\n",divider);
	UARTWrite(1,spi_dbg_msg);	
	#endif
	index = _spi_find_divider_index(divider);
	obj->primary = _spi_divider_primary[index];
	obj->secondary = _spi_divider_secondary[index];
	obj->ss_pin = pin;
	#ifdef SPI_DBG_CFG
	sprintf(spi_dbg_msg,"[SPI_DBG] primary %d\n[SPI_DBG] secondary %d\n",_spi_divider_primary_value[obj->primary],_spi_divider_secondary_value[obj->secondary]);
	uartwrite(1,spi_dbg_msg);
	#endif	
	tout = ((float)_spi_divider_primary_value[obj->primary] * (float)_spi_divider_secondary_value[obj->secondary])/16; // time (in us) per bit shifted out
	if (options & SPI_OPT_MODE16)
	{
		obj->mode16 = TRUE;
		obj->SPICON1 |= SPI_MSK_MODE16;
		obj->delay = ceil(32*tout/10);
	}
	else
		obj->delay = ceil(16*tout/10);
	if (obj->delay < 1)
		obj->delay = 1;
	#ifdef SPI_DBG_CFG
	sprintf(spi_dbg_msg,"[SPI_DBG] Requested speed %.2f KHz\n[SPI_DBG] Nearest speed %.2f KHz\n",(double)speed/1000,1000/tout);
	uartwrite(1,spi_dbg_msg);
	#endif	
	if((options & SPI_OPT_MODE_0) || (!(options & (SPI_OPT_MODE_0 | SPI_OPT_MODE_1 | SPI_OPT_MODE_2 | SPI_OPT_MODE_3))))
	{
		#ifdef SPI_DBG_CFG
		uartwrite(1,"[SPI_DBG] Selecting MODE 0\n");
		#endif
		obj->SPICON1 |= SPI_MSK_CPHA; //288 //  bit5=1 master mode + bit8=1 data changes on clock trailing edge
		obj->SPICON1 &= ~SPI_MSK_CPOL;
	}
	
	if(options & SPI_OPT_MODE_1)
	{
		#ifdef SPI_DBG_CFG
		uartwrite(1,"[SPI_DBG] Selecting MODE 1\n");
		#endif
		obj->SPICON1 &= ~SPI_MSK_CPHA;
 		obj->SPICON1 &= ~SPI_MSK_CPOL; //32// bit5=1 master mode
	}
	
	if(options & SPI_OPT_MODE_2)
	{
		#ifdef SPI_DBG_CFG
		uartwrite(1,"[SPI_DBG] Selecting MODE 2\n");
		#endif
		obj->SPICON1 |= SPI_MSK_CPHA | SPI_MSK_CPOL; //352 // bit5=1 master mode + bit8=1 data changes on clock trailing edge + bit6=1 clock polarity reversed
	}
		
	if(options & SPI_OPT_MODE_3)
	{
		#ifdef SPI_DBG_CFG
		uartwrite(1,"[SPI_DBG] Selecting MODE 3\n");
		#endif
		obj->SPICON1 |= SPI_MSK_CPOL;
		obj->SPICON1 &= ~SPI_MSK_CPHA; //96 // bit5=1 master mode + bit6=1 clock polarity
	}
	
	obj->SPICON1 |= obj->primary&0b00000011;
	obj->SPICON1 |= (obj->secondary&0b00011100)<<2;
	if(options & SPI_OPT_MASTER)
		obj->SPICON1 |=  SPI_MSK_MASTER;
	if(options & SPI_OPT_SLAVE)
		obj->SPICON1 &=  ~SPI_MSK_MASTER; //0b1111111111011111;
		
	if(options & SPI_OPT_SLAVE_SELECT)
		obj->SPICON1 |= SPI_MSK_SSEN;
	
	if ((options & (SPI_OPT_SLAVE | SPI_OPT_MASTER)) == 0)
	{
		#ifdef SPI_DBG_CFG
		uartwrite(1,"[SPI_DBG] No mode (Master/Slave) selected, quitting\n");
		#endif
		_intSPIerr=NoModeSpecified;
		obj->SPICON1=0;
		obj->SPICON2=0;
		obj->SPISTAT=0;
		obj->primary=0;
		obj->secondary=0;
		obj->ss_pin=0;
		return 1;
	}
	/*#if(GroveNest == Board)
	obj->SPICON1 |= 0b1000000;
	#endif*/

	obj->SPISTAT = 0x00;
	obj->SPICON2 = 0x00;
	obj->SPIIE = 0;
	obj->SPFIE = 0;
	obj->IP = 1;
	obj->FIP = 1;
	#ifndef SPI2_FLASH
	if(pin != SPI_OPT_NO_SS)
	{
		#ifdef SPI_DBG_CFG
		uartwrite(1,"[SPI_DBG] SS pin selected, configuring\n");
		#endif
		obj->ss_pin = pin;
		IOInit(pin,out);
		vTaskDelay(1);
		IOPut(pin,on);
		#ifdef SPI_DBG_CFG
		sprintf(spi_dbg_msg,"[SPI_DBG] SS us of delay %u\n",obj->delay*10);
		UARTWrite(1,spi_dbg_msg);
		#endif
	}
	else
	{
		#ifdef SPI_DBG_CFG
		uartwrite(1,"[SPI_DBG] SS pin cleared, not using\n");
		#endif
		obj->ss_pin=SPI_OPT_NO_SS;
	}
	#else
	TRISDbits.TRISD6=0;
	#endif
	if(options & SPI_OPT_DI_SAMPLE_END)
	{
		#ifdef SPI_DBG_CFG
		uartwrite(1,"[SPI_DBG] DI sample set to end of DO clock time\n");
		#endif
		obj->SPICON1 |= 0b1000000000;
	}
	_intSPIerr=SPI_NO_ERR;
	return 0;
}
예제 #16
0
// USART1 - Telemetry (RX/TX by DMA)
uartPort_t *serialUART1(uint32_t baudRate, portMode_t mode, portOptions_t options)
{
    uartPort_t *s;
    static volatile uint8_t rx1Buffer[UART1_RX_BUFFER_SIZE];
    static volatile uint8_t tx1Buffer[UART1_TX_BUFFER_SIZE];

    s = &uartPort1;
    s->port.vTable = uartVTable;

    s->port.baudRate = baudRate;

    s->port.rxBuffer = rx1Buffer;
    s->port.txBuffer = tx1Buffer;
    s->port.rxBufferSize = UART1_RX_BUFFER_SIZE;
    s->port.txBufferSize = UART1_TX_BUFFER_SIZE;

    s->USARTx = USART1;

#ifdef USE_UART1_RX_DMA
    dmaInit(DMA1_CH5_HANDLER, OWNER_SERIAL_RX, 1);
    s->rxDMAChannel = DMA1_Channel5;
    s->rxDMAPeripheralBaseAddr = (uint32_t)&s->USARTx->DR;
#endif
    s->txDMAChannel = DMA1_Channel4;
    s->txDMAPeripheralBaseAddr = (uint32_t)&s->USARTx->DR;

    RCC_ClockCmd(RCC_APB2(USART1), ENABLE);

    // UART1_TX    PA9
    // UART1_RX    PA10
    if (options & SERIAL_BIDIR) {
        IOInit(IOGetByTag(IO_TAG(PA9)), OWNER_SERIAL_TX, 1);
        IOConfigGPIO(IOGetByTag(IO_TAG(PA9)), IOCFG_AF_OD);
    } else {
        if (mode & MODE_TX) {
            IOInit(IOGetByTag(IO_TAG(PA9)), OWNER_SERIAL_TX, 1);
            IOConfigGPIO(IOGetByTag(IO_TAG(PA9)), IOCFG_AF_PP);
        }

        if (mode & MODE_RX) {
            IOInit(IOGetByTag(IO_TAG(PA10)), OWNER_SERIAL_RX, 1);
            IOConfigGPIO(IOGetByTag(IO_TAG(PA10)), IOCFG_IPU);
        }
    }

    // DMA TX Interrupt
    dmaInit(DMA1_CH4_HANDLER, OWNER_SERIAL_TX, 1);
    dmaSetHandler(DMA1_CH4_HANDLER, uart_tx_dma_IRQHandler, NVIC_PRIO_SERIALUART1_TXDMA, (uint32_t)&uartPort1);

#ifndef USE_UART1_RX_DMA
    // RX/TX Interrupt
    NVIC_InitTypeDef NVIC_InitStructure;

    NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;
    NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = NVIC_PRIORITY_BASE(NVIC_PRIO_SERIALUART1);
    NVIC_InitStructure.NVIC_IRQChannelSubPriority = NVIC_PRIORITY_SUB(NVIC_PRIO_SERIALUART1);
    NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
    NVIC_Init(&NVIC_InitStructure);
#endif

    return s;
}
예제 #17
0
void hmc5883lInit(void)
{
    int16_t magADC[3];
    int i;
    int32_t xyz_total[3] = { 0, 0, 0 }; // 32 bit totals so they won't overflow.
    bool bret = true;           // Error indicator

#ifdef USE_MAG_DATA_READY_SIGNAL
    if (hmc5883Config && hmc5883Config->io) {
        intIO = IOGetByTag(hmc5883Config->io);
        IOInit(intIO, OWNER_SYSTEM, RESOURCE_INPUT | RESOURCE_EXTI);
        IOConfigGPIO(intIO, IOCFG_IN_FLOATING);
    }
#endif
    delay(50);
    i2cWrite(HMC5883L_I2C_INSTANCE, MAG_ADDRESS, HMC58X3_R_CONFA, 0x010 + HMC_POS_BIAS);   // Reg A DOR = 0x010 + MS1, MS0 set to pos bias
    // Note that the  very first measurement after a gain change maintains the same gain as the previous setting.
    // The new gain setting is effective from the second measurement and on.
    i2cWrite(HMC5883L_I2C_INSTANCE, MAG_ADDRESS, HMC58X3_R_CONFB, 0x60); // Set the Gain to 2.5Ga (7:5->011)
    delay(100);
    hmc5883lRead(magADC);

    for (i = 0; i < 10; i++) {  // Collect 10 samples
        i2cWrite(HMC5883L_I2C_INSTANCE, MAG_ADDRESS, HMC58X3_R_MODE, 1);
        delay(50);
        hmc5883lRead(magADC);       // Get the raw values in case the scales have already been changed.

        // Since the measurements are noisy, they should be averaged rather than taking the max.
        xyz_total[X] += magADC[X];
        xyz_total[Y] += magADC[Y];
        xyz_total[Z] += magADC[Z];

        // Detect saturation.
        if (-4096 >= MIN(magADC[X], MIN(magADC[Y], magADC[Z]))) {
            bret = false;
            break;              // Breaks out of the for loop.  No sense in continuing if we saturated.
        }
        LED1_TOGGLE;
    }

    // Apply the negative bias. (Same gain)
    i2cWrite(HMC5883L_I2C_INSTANCE, MAG_ADDRESS, HMC58X3_R_CONFA, 0x010 + HMC_NEG_BIAS);   // Reg A DOR = 0x010 + MS1, MS0 set to negative bias.
    for (i = 0; i < 10; i++) {
        i2cWrite(HMC5883L_I2C_INSTANCE, MAG_ADDRESS, HMC58X3_R_MODE, 1);
        delay(50);
        hmc5883lRead(magADC);               // Get the raw values in case the scales have already been changed.

        // Since the measurements are noisy, they should be averaged.
        xyz_total[X] -= magADC[X];
        xyz_total[Y] -= magADC[Y];
        xyz_total[Z] -= magADC[Z];

        // Detect saturation.
        if (-4096 >= MIN(magADC[X], MIN(magADC[Y], magADC[Z]))) {
            bret = false;
            break;              // Breaks out of the for loop.  No sense in continuing if we saturated.
        }
        LED1_TOGGLE;
    }

    magGain[X] = fabsf(660.0f * HMC58X3_X_SELF_TEST_GAUSS * 2.0f * 10.0f / xyz_total[X]);
    magGain[Y] = fabsf(660.0f * HMC58X3_Y_SELF_TEST_GAUSS * 2.0f * 10.0f / xyz_total[Y]);
    magGain[Z] = fabsf(660.0f * HMC58X3_Z_SELF_TEST_GAUSS * 2.0f * 10.0f / xyz_total[Z]);

    // leave test mode
    i2cWrite(HMC5883L_I2C_INSTANCE, MAG_ADDRESS, HMC58X3_R_CONFA, 0x70);   // Configuration Register A  -- 0 11 100 00  num samples: 8 ; output rate: 15Hz ; normal measurement mode
    i2cWrite(HMC5883L_I2C_INSTANCE, MAG_ADDRESS, HMC58X3_R_CONFB, 0x20);   // Configuration Register B  -- 001 00000    configuration gain 1.3Ga
    i2cWrite(HMC5883L_I2C_INSTANCE, MAG_ADDRESS, HMC58X3_R_MODE, 0x00);    // Mode register             -- 000000 00    continuous Conversion Mode
    delay(100);

    if (!bret) {                // Something went wrong so get a best guess
        magGain[X] = 1.0f;
        magGain[Y] = 1.0f;
        magGain[Z] = 1.0f;
    }
    
#ifdef USE_MAG_DATA_READY_SIGNAL
    do {
        if (!(hmc5883Config && intIO))
            break;
# ifdef ENSURE_MAG_DATA_READY_IS_HIGH
        if (!IORead(intIO))
            break;
# endif
        EXTIHandlerInit(&hmc5883_extiCallbackRec, hmc5883_extiHandler);
        EXTIConfig(intIO, &hmc5883_extiCallbackRec, NVIC_PRIO_MAG_INT_EXTI, EXTI_Trigger_Rising);
        EXTIEnable(intIO, true);
    } while (0);
#endif
}
예제 #18
0
void adcInit(drv_adc_config_t *init)
{
    ADC_InitTypeDef ADC_InitStructure;
    DMA_InitTypeDef DMA_InitStructure;

    uint8_t i;
    uint8_t configuredAdcChannels = 0;

    memset(&adcConfig, 0, sizeof(adcConfig));

#if !defined(VBAT_ADC_PIN) && !defined(EXTERNAL1_ADC_PIN) && !defined(RSSI_ADC_PIN) && !defined(CURRENT_METER_ADC_PIN)
    UNUSED(init);
#endif

#ifdef VBAT_ADC_PIN
    if (init->enableVBat) {
        IOInit(IOGetByTag(IO_TAG(VBAT_ADC_PIN)), OWNER_SYSTEM, RESOURCE_ADC);
        IOConfigGPIO(IOGetByTag(IO_TAG(VBAT_ADC_PIN)), IO_CONFIG(GPIO_Mode_AN, 0, GPIO_OType_OD, GPIO_PuPd_NOPULL));
        adcConfig[ADC_BATTERY].adcChannel = VBAT_ADC_CHANNEL;
        adcConfig[ADC_BATTERY].dmaIndex = configuredAdcChannels++;
        adcConfig[ADC_BATTERY].enabled = true;
        adcConfig[ADC_BATTERY].sampleTime = ADC_SampleTime_480Cycles;
    }
#endif

#ifdef EXTERNAL1_ADC_PIN
    if (init->enableExternal1) {
        IOInit(IOGetByTag(IO_TAG(EXTERNAL1_ADC_PIN)), OWNER_SYSTEM, RESOURCE_ADC);
	    IOConfigGPIO(IOGetByTag(IO_TAG(EXTERNAL1_ADC_PIN)), IO_CONFIG(GPIO_Mode_AN, 0, GPIO_OType_OD, GPIO_PuPd_NOPULL));
        adcConfig[ADC_EXTERNAL1].adcChannel = EXTERNAL1_ADC_CHANNEL;
        adcConfig[ADC_EXTERNAL1].dmaIndex = configuredAdcChannels++;
        adcConfig[ADC_EXTERNAL1].enabled = true;
        adcConfig[ADC_EXTERNAL1].sampleTime = ADC_SampleTime_480Cycles;
    }
#endif

#ifdef RSSI_ADC_PIN
    if (init->enableRSSI) {
        IOInit(IOGetByTag(IO_TAG(RSSI_ADC_PIN)), OWNER_SYSTEM, RESOURCE_ADC);
	    IOConfigGPIO(IOGetByTag(IO_TAG(RSSI_ADC_PIN)), IO_CONFIG(GPIO_Mode_AN, 0, GPIO_OType_OD, GPIO_PuPd_NOPULL));
        adcConfig[ADC_RSSI].adcChannel = RSSI_ADC_CHANNEL;
        adcConfig[ADC_RSSI].dmaIndex = configuredAdcChannels++;
        adcConfig[ADC_RSSI].enabled = true;
        adcConfig[ADC_RSSI].sampleTime = ADC_SampleTime_480Cycles;
    }
#endif

#ifdef CURRENT_METER_ADC_PIN
    if (init->enableCurrentMeter) {
        IOInit(IOGetByTag(IO_TAG(CURRENT_METER_ADC_PIN)), OWNER_SYSTEM, RESOURCE_ADC);
	    IOConfigGPIO(IOGetByTag(IO_TAG(CURRENT_METER_ADC_PIN)), IO_CONFIG(GPIO_Mode_AN, 0, GPIO_OType_OD, GPIO_PuPd_NOPULL));
        adcConfig[ADC_CURRENT].adcChannel = CURRENT_METER_ADC_CHANNEL;
        adcConfig[ADC_CURRENT].dmaIndex = configuredAdcChannels++;
        adcConfig[ADC_CURRENT].enabled = true;
        adcConfig[ADC_CURRENT].sampleTime = ADC_SampleTime_480Cycles;
    }
#endif

    //RCC_ADCCLKConfig(RCC_ADC12PLLCLK_Div256);  // 72 MHz divided by 256 = 281.25 kHz
    
    RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_DMA2, ENABLE);
    RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOC, ENABLE);
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE);

    DMA_DeInit(DMA2_Stream4);

    DMA_StructInit(&DMA_InitStructure);
    DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)&ADC1->DR;
    DMA_InitStructure.DMA_Channel = DMA_Channel_0;
    DMA_InitStructure.DMA_Memory0BaseAddr = (uint32_t)adcValues;
    DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralToMemory;
    DMA_InitStructure.DMA_BufferSize = configuredAdcChannels;
    DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
    DMA_InitStructure.DMA_MemoryInc = configuredAdcChannels > 1 ? DMA_MemoryInc_Enable : DMA_MemoryInc_Disable;
    DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;
    DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;
    DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;
    DMA_InitStructure.DMA_Priority = DMA_Priority_High;
    DMA_Init(DMA2_Stream4, &DMA_InitStructure);

    DMA_Cmd(DMA2_Stream4, ENABLE);

    // calibrate

    /*
    ADC_VoltageRegulatorCmd(ADC1, ENABLE);
    delay(10);
    ADC_SelectCalibrationMode(ADC1, ADC_CalibrationMode_Single);
    ADC_StartCalibration(ADC1);
    while(ADC_GetCalibrationStatus(ADC1) != RESET);
    ADC_VoltageRegulatorCmd(ADC1, DISABLE);
    */

    ADC_CommonInitTypeDef ADC_CommonInitStructure;

    ADC_CommonStructInit(&ADC_CommonInitStructure);
    ADC_CommonInitStructure.ADC_Mode = ADC_Mode_Independent;
    ADC_CommonInitStructure.ADC_Prescaler = ADC_Prescaler_Div8;
    ADC_CommonInitStructure.ADC_DMAAccessMode = ADC_DMAAccessMode_Disabled;
    ADC_CommonInitStructure.ADC_TwoSamplingDelay = ADC_TwoSamplingDelay_5Cycles;
    ADC_CommonInit(&ADC_CommonInitStructure);

    ADC_StructInit(&ADC_InitStructure);

    ADC_InitStructure.ADC_ContinuousConvMode    = ENABLE;
    ADC_InitStructure.ADC_Resolution            = ADC_Resolution_12b;
    ADC_InitStructure.ADC_ExternalTrigConv 		= ADC_ExternalTrigConv_T1_CC1;
    ADC_InitStructure.ADC_ExternalTrigConvEdge 	= ADC_ExternalTrigConvEdge_None;
    ADC_InitStructure.ADC_DataAlign             = ADC_DataAlign_Right;
    ADC_InitStructure.ADC_NbrOfConversion       = configuredAdcChannels;
    ADC_InitStructure.ADC_ScanConvMode 			= configuredAdcChannels > 1 ? ENABLE : DISABLE; // 1=scan more that one channel in group

    ADC_Init(ADC1, &ADC_InitStructure);

    uint8_t rank = 1;
    for (i = 0; i < ADC_CHANNEL_COUNT; i++) {
        if (!adcConfig[i].enabled) {
            continue;
        }
        ADC_RegularChannelConfig(ADC1, adcConfig[i].adcChannel, rank++, adcConfig[i].sampleTime);
    }
    ADC_DMARequestAfterLastTransferCmd(ADC1, ENABLE);

    ADC_DMACmd(ADC1, ENABLE);
    ADC_Cmd(ADC1, ENABLE);

    ADC_SoftwareStartConv(ADC1);
}
예제 #19
0
static void serialOutputPortConfig(ioTag_t pin, uint8_t portIndex)
{
    IOInit(IOGetByTag(pin), OWNER_SOFTSERIAL, RESOURCE_UART_TX, RESOURCE_INDEX(portIndex));
    IOConfigGPIO(IOGetByTag(pin), IOCFG_OUT_PP);
}
예제 #20
0
void spiInitDevice(SPIDevice device)
{
    SPI_InitTypeDef spiInit;

    spiDevice_t *spi = &(spiHardwareMap[device]);

#ifdef SDCARD_SPI_INSTANCE
    if (spi->dev == SDCARD_SPI_INSTANCE)
        spi->sdcard = true;
#endif

    // Enable SPI clock
    RCC_ClockCmd(spi->rcc, ENABLE);
    RCC_ResetCmd(spi->rcc, ENABLE);

    IOInit(IOGetByTag(spi->sck),  OWNER_SPI, RESOURCE_SPI_SCK,  device + 1);
    IOInit(IOGetByTag(spi->miso), OWNER_SPI, RESOURCE_SPI_MISO, device + 1);
    IOInit(IOGetByTag(spi->mosi), OWNER_SPI, RESOURCE_SPI_MOSI, device + 1);

#if defined(STM32F3) || defined(STM32F4)
    IOConfigGPIOAF(IOGetByTag(spi->sck),  SPI_IO_AF_CFG, spi->af);
    IOConfigGPIOAF(IOGetByTag(spi->miso), SPI_IO_AF_CFG, spi->af);
    IOConfigGPIOAF(IOGetByTag(spi->mosi), SPI_IO_AF_CFG, spi->af);

    if (spi->nss)
        IOConfigGPIOAF(IOGetByTag(spi->nss), SPI_IO_CS_CFG, spi->af);
#endif
#if defined(STM32F10X)
    IOConfigGPIO(IOGetByTag(spi->sck), SPI_IO_AF_SCK_CFG);
    IOConfigGPIO(IOGetByTag(spi->miso), SPI_IO_AF_MISO_CFG);
    IOConfigGPIO(IOGetByTag(spi->mosi), SPI_IO_AF_MOSI_CFG);

    if (spi->nss)
        IOConfigGPIO(IOGetByTag(spi->nss), SPI_IO_CS_CFG);
#endif

            // Init SPI hardware
    SPI_I2S_DeInit(spi->dev);

    spiInit.SPI_Mode = SPI_Mode_Master;
    spiInit.SPI_Direction = SPI_Direction_2Lines_FullDuplex;
    spiInit.SPI_DataSize = SPI_DataSize_8b;
    spiInit.SPI_NSS = SPI_NSS_Soft;
    spiInit.SPI_FirstBit = SPI_FirstBit_MSB;
    spiInit.SPI_CRCPolynomial = 7;
    spiInit.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_8;

    if (spi->sdcard) {
        spiInit.SPI_CPOL = SPI_CPOL_Low;
        spiInit.SPI_CPHA = SPI_CPHA_1Edge;
    }
    else {
        spiInit.SPI_CPOL = SPI_CPOL_High;
        spiInit.SPI_CPHA = SPI_CPHA_2Edge;
    }

#ifdef STM32F303xC
    // Configure for 8-bit reads.
    SPI_RxFIFOThresholdConfig(spi->dev, SPI_RxFIFOThreshold_QF);
#endif

    SPI_Init(spi->dev, &spiInit);
    SPI_Cmd(spi->dev, ENABLE);

    if (spi->nss)
        IOHi(IOGetByTag(spi->nss));
}
예제 #21
0
bool hcsr04Detect(rangefinderDev_t *dev, const sonarConfig_t * rangefinderHardwarePins)
{
    bool detected = false;

#ifdef STM32F10X
    // enable AFIO for EXTI support
    RCC_ClockCmd(RCC_APB2(AFIO), ENABLE);
#endif

#if defined(STM32F3) || defined(STM32F4)
    RCC_ClockCmd(RCC_APB2(SYSCFG), ENABLE); // XXX Do we need this?
#endif

    triggerIO = IOGetByTag(rangefinderHardwarePins->triggerTag);
    echoIO = IOGetByTag(rangefinderHardwarePins->echoTag);

    if (IOGetOwner(triggerIO) != OWNER_FREE) {
        return false;
    }

    if (IOGetOwner(echoIO) != OWNER_FREE) {
        return false;
    }

    // trigger pin
    IOInit(triggerIO, OWNER_SONAR_TRIGGER, 0);
    IOConfigGPIO(triggerIO, IOCFG_OUT_PP);
    IOLo(triggerIO);
    delay(100);

    // echo pin
    IOInit(echoIO, OWNER_SONAR_ECHO, 0);
    IOConfigGPIO(echoIO, IOCFG_IN_FLOATING);

    // HC-SR04 echo line should be low by default and should return a response pulse when triggered
    if (IORead(echoIO) == false) {
        for (int i = 0; i < 5 && !detected; i++) {
            timeMs_t requestTime = millis();
            hcsr04_start_reading();

            while ((millis() - requestTime) < HCSR04_MinimumFiringIntervalMs) {
                if (IORead(echoIO) == true) {
                    detected = true;
                    break;
                }
            }
        }
    }

    if (detected) {
        // Hardware detected - configure the driver
#ifdef USE_EXTI
        EXTIHandlerInit(&hcsr04_extiCallbackRec, hcsr04_extiHandler);
        EXTIConfig(echoIO, &hcsr04_extiCallbackRec, NVIC_PRIO_SONAR_EXTI, EXTI_Trigger_Rising_Falling); // TODO - priority!
        EXTIEnable(echoIO, true);
#endif

        dev->delayMs = 100;
        dev->maxRangeCm = HCSR04_MAX_RANGE_CM;
        dev->detectionConeDeciDegrees = HCSR04_DETECTION_CONE_DECIDEGREES;
        dev->detectionConeExtendedDeciDegrees = HCSR04_DETECTION_CONE_EXTENDED_DECIDEGREES;

        dev->init = &hcsr04_init;
        dev->update = &hcsr04_update;
        dev->read = &hcsr04_get_distance;

        return true;
    }
    else {
        // Not detected - free resources
        IORelease(triggerIO);
        IORelease(echoIO);
        return false;
    }
}