PetscErrorCode MatSolve_SeqSBSTRM_4_inplace(Mat A,Vec bb,Vec xx) { Mat_SeqSBAIJ *a =(Mat_SeqSBAIJ*)A->data; IS isrow=a->row; PetscInt mbs =a->mbs,*ai=a->i,*aj=a->j,bs=A->rmap->bs,bs2=a->bs2; PetscErrorCode ierr; const PetscInt *r; PetscInt nz,*vj,k,idx; PetscScalar *x,*b,x0,x1,x2,x3,*t,*tp; Mat_SeqSBSTRM *sbstrm = (Mat_SeqSBSTRM*)A->spptr; MatScalar *as =sbstrm->as,*diag; PetscScalar tp0, tp1, tp2, tp3; const MatScalar *v0, *v1, *v2, *v3; PetscInt slen; PetscFunctionBegin; slen = 4*(ai[mbs]-ai[0]); v0 = as + 16*ai[0]; v1 = v0 + slen; v2 = v1 + slen; v3 = v2 + slen; ierr = VecGetArray(bb,&b);CHKERRQ(ierr); ierr = VecGetArray(xx,&x);CHKERRQ(ierr); t = a->solve_work; ierr = ISGetIndices(isrow,&r);CHKERRQ(ierr); /* solve U^T * D * y = b by forward substitution */ tp = t; for (k=0; k<mbs; k++) { /* t <- perm(b) */ idx = 4*r[k]; tp[0] = b[idx]; tp[1] = b[idx+1]; tp[2] = b[idx+2]; tp[3] = b[idx+3]; tp += 4; } for (k=0; k<mbs; k++) { vj = aj + ai[k]; tp = t + k*4; x0 = tp[0]; x1=tp[1]; x2=tp[2]; x3=tp[3]; nz = ai[k+1] - ai[k]; tp = t + (*vj)*4; while (nz--) { tp[0] += v0[0]*x0 + v1[0]*x1 + v2[0]*x2 + v3[0]*x3; tp[1] += v0[1]*x0 + v1[1]*x1 + v2[1]*x2 + v3[1]*x3; tp[2] += v0[2]*x0 + v1[2]*x1 + v2[2]*x2 + v3[2]*x3; tp[3] += v0[3]*x0 + v1[3]*x1 + v2[3]*x2 + v3[3]*x3; vj++; tp = t + (*vj)*4; v0 += 4; v1 += 4; v2 += 4; v3 += 4; } /* xk = inv(Dk)*(Dk*xk) */ diag = as+k*16; /* ptr to inv(Dk) */ tp = t + k*4; tp[0] = diag[0]*x0 + diag[4]*x1 + diag[8]*x2 + diag[12]*x3; tp[1] = diag[1]*x0 + diag[5]*x1 + diag[9]*x2 + diag[13]*x3; tp[2] = diag[2]*x0 + diag[6]*x1 + diag[10]*x2+ diag[14]*x3; tp[3] = diag[3]*x0 + diag[7]*x1 + diag[11]*x2+ diag[15]*x3; } /* solve U*x = y by back substitution */ for (k=mbs-1; k>=0; k--) { vj = aj + ai[k+1]; tp = t + k*4; x0 = tp[0]; x1=tp[1]; x2=tp[2]; x3=tp[3]; /* xk */ nz = ai[k+1] - ai[k]; tp = t + (*vj)*4; while (nz--) { /* xk += U(k,* */ v0 -= 4; v1 -= 4; v2 -= 4; v3 -= 4; vj--; tp = t + (*vj)*4; tp0 = tp[0]; tp1 = tp[1]; tp2 = tp[2]; tp3 = tp[3]; x0 += v0[3]*tp3 + v0[2]*tp2 + v0[1]*tp1 + v0[0]*tp0; x1 += v1[3]*tp3 + v1[2]*tp2 + v1[1]*tp1 + v1[0]*tp0; x2 += v2[3]*tp3 + v2[2]*tp2 + v2[1]*tp1 + v2[0]*tp0; x3 += v3[3]*tp3 + v3[2]*tp2 + v3[1]*tp1 + v3[0]*tp0; } tp = t + k*4; tp[0] = x0; tp[1]=x1; tp[2]=x2; tp[3]=x3; idx = 4*r[k]; x[idx] = x0; x[idx+1] = x1; x[idx+2] = x2; x[idx+3] = x3; } ierr = ISRestoreIndices(isrow,&r);CHKERRQ(ierr); ierr = VecRestoreArray(bb,&b);CHKERRQ(ierr); ierr = VecRestoreArray(xx,&x);CHKERRQ(ierr); ierr = PetscLogFlops(4.0*bs2*a->nz - (bs+2.0*bs2)*mbs);CHKERRQ(ierr); PetscFunctionReturn(0); }
/* This function is used before applying a symmetric reordering to matrix A that is in SBAIJ format. The permutation is assumed to be symmetric, i.e., P = P^T (= inv(P)), so the permuted matrix P*A*inv(P)=P*A*P^T is ensured to be symmetric. - a wrong assumption! This code needs rework! -- Hong The function is modified from sro.f of YSMP. The description from YSMP: C THE NONZERO ENTRIES OF THE MATRIX M ARE ASSUMED TO BE STORED C SYMMETRICALLY IN (IA,JA,A) FORMAT (I.E., NOT BOTH M(I,J) AND M(J,I) C ARE STORED IF I NE J). C C SRO DOES NOT REARRANGE THE ORDER OF THE ROWS, BUT DOES MOVE C NONZEROES FROM ONE ROW TO ANOTHER TO ENSURE THAT IF M(I,J) WILL BE C IN THE UPPER TRIANGLE OF M WITH RESPECT TO THE NEW ORDERING, THEN C M(I,J) IS STORED IN ROW I (AND THUS M(J,I) IS NOT STORED); WHEREAS C IF M(I,J) WILL BE IN THE STRICT LOWER TRIANGLE OF M, THEN M(J,I) IS C STORED IN ROW J (AND THUS M(I,J) IS NOT STORED). -- output: new index set (inew, jnew) for A and a map a2anew that maps values a to anew, such that all nonzero A_(perm(i),iperm(k)) will be stored in the upper triangle. Note: matrix A is not permuted by this function! */ PetscErrorCode MatReorderingSeqSBAIJ(Mat A,IS perm) { Mat_SeqSBAIJ *a=(Mat_SeqSBAIJ*)A->data; const PetscInt mbs=a->mbs; PetscFunctionBegin; if (!mbs) PetscFunctionReturn(0); SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"Matrix reordering is not supported for sbaij matrix. Use aij format"); #if 0 PetscErrorCode ierr; const PetscInt *rip,*riip; PetscInt *ai,*aj,*r; PetscInt *nzr,nz,jmin,jmax,j,k,ajk,i; IS iperm; /* inverse of perm */ ierr = ISGetIndices(perm,&rip);CHKERRQ(ierr); ierr = ISInvertPermutation(perm,PETSC_DECIDE,&iperm);CHKERRQ(ierr); ierr = ISGetIndices(iperm,&riip);CHKERRQ(ierr); for (i=0; i<mbs; i++) { if (rip[i] != riip[i]) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Non-symmetric permutation, use symmetric permutation for symmetric matrices"); } ierr = ISRestoreIndices(iperm,&riip);CHKERRQ(ierr); ierr = ISDestroy(&iperm);CHKERRQ(ierr); if (!a->inew) { ierr = PetscMalloc2(mbs+1,&ai, 2*a->i[mbs],&aj);CHKERRQ(ierr); } else { ai = a->inew; aj = a->jnew; } ierr = PetscMemcpy(ai,a->i,(mbs+1)*sizeof(PetscInt));CHKERRQ(ierr); ierr = PetscMemcpy(aj,a->j,(a->i[mbs])*sizeof(PetscInt));CHKERRQ(ierr); /* Phase 1: Find row index r in which to store each nonzero. Initialize count of nonzeros to be stored in each row (nzr). At the end of this phase, a nonzero a(*,*)=a(r(),aj()) s.t. a(perm(r),perm(aj)) will fall into upper triangle part. */ ierr = PetscMalloc1(mbs,&nzr);CHKERRQ(ierr); ierr = PetscMalloc1(ai[mbs],&r);CHKERRQ(ierr); for (i=0; i<mbs; i++) nzr[i] = 0; for (i=0; i<ai[mbs]; i++) r[i] = 0; /* for each nonzero element */ for (i=0; i<mbs; i++) { nz = ai[i+1] - ai[i]; j = ai[i]; /* printf("nz = %d, j=%d\n",nz,j); */ while (nz--) { /* --- find row (=r[j]) and column (=aj[j]) in which to store a[j] ...*/ k = aj[j]; /* col. index */ /* printf("nz = %d, k=%d\n", nz,k); */ /* for entry that will be permuted into lower triangle, swap row and col. index */ if (rip[k] < rip[i]) aj[j] = i; else k = i; r[j] = k; j++; nzr[k]++; /* increment count of nonzeros in that row */ } } /* Phase 2: Find new ai and permutation to apply to (aj,a). Determine pointers (r) to delimit rows in permuted (aj,a). Note: r is different from r used in phase 1. At the end of this phase, (aj[j],a[j]) will be stored in (aj[r(j)],a[r(j)]). */ for (i=0; i<mbs; i++) { ai[i+1] = ai[i] + nzr[i]; nzr[i] = ai[i+1]; } /* determine where each (aj[j], a[j]) is stored in new (aj,a) for each nonzero element (in reverse order) */ jmin = ai[0]; jmax = ai[mbs]; nz = jmax - jmin; j = jmax-1; while (nz--) { i = r[j]; /* row value */ if (aj[j] == i) r[j] = ai[i]; /* put diagonal nonzero at beginning of row */ else { /* put off-diagonal nonzero in last unused location in row */ nzr[i]--; r[j] = nzr[i]; } j--; } a->a2anew = aj + ai[mbs]; ierr = PetscMemcpy(a->a2anew,r,ai[mbs]*sizeof(PetscInt));CHKERRQ(ierr); /* Phase 3: permute (aj,a) to upper triangular form (wrt new ordering) */ for (j=jmin; j<jmax; j++) { while (r[j] != j) { k = r[j]; r[j] = r[k]; r[k] = k; ajk = aj[k]; aj[k] = aj[j]; aj[j] = ajk; /* ak = aa[k]; aa[k] = aa[j]; aa[j] = ak; */ } } ierr= ISRestoreIndices(perm,&rip);CHKERRQ(ierr); a->inew = ai; a->jnew = aj; ierr = ISDestroy(&a->row);CHKERRQ(ierr); ierr = ISDestroy(&a->icol);CHKERRQ(ierr); ierr = PetscObjectReference((PetscObject)perm);CHKERRQ(ierr); ierr = ISDestroy(&a->row);CHKERRQ(ierr); a->row = perm; ierr = PetscObjectReference((PetscObject)perm);CHKERRQ(ierr); ierr = ISDestroy(&a->icol);CHKERRQ(ierr); a->icol = perm; ierr = PetscFree(nzr);CHKERRQ(ierr); ierr = PetscFree(r);CHKERRQ(ierr); PetscFunctionReturn(0); #endif }
static PetscErrorCode MatIncreaseOverlap_MPISBAIJ_Once(Mat C,PetscInt is_max,IS is[]) { Mat_MPISBAIJ *c = (Mat_MPISBAIJ*)C->data; PetscErrorCode ierr; PetscMPIInt size,rank,tag1,tag2,*len_s,nrqr,nrqs,*id_r1,*len_r1,flag,len,*iwork; const PetscInt *idx_i; PetscInt idx,isz,col,*n,*data1,**data1_start,*data2,*data2_i,*data,*data_i, Mbs,i,j,k,*odata1,*odata2, proc_id,**odata2_ptr,*ctable=0,*btable,len_max,len_est; PetscInt proc_end=0,len_unused,nodata2; PetscInt ois_max; /* max no of is[] in each of processor */ char *t_p; MPI_Comm comm; MPI_Request *s_waits1,*s_waits2,r_req; MPI_Status *s_status,r_status; PetscBT *table; /* mark indices of this processor's is[] */ PetscBT table_i; PetscBT otable; /* mark indices of other processors' is[] */ PetscInt bs=C->rmap->bs,Bn = c->B->cmap->n,Bnbs = Bn/bs,*Bowners; IS garray_local,garray_gl; PetscFunctionBegin; comm = ((PetscObject)C)->comm; size = c->size; rank = c->rank; Mbs = c->Mbs; ierr = PetscObjectGetNewTag((PetscObject)C,&tag1);CHKERRQ(ierr); ierr = PetscObjectGetNewTag((PetscObject)C,&tag2);CHKERRQ(ierr); /* create tables used in step 1: table[i] - mark c->garray of proc [i] step 3: table[i] - mark indices of is[i] when whose=MINE table[0] - mark incideces of is[] when whose=OTHER */ len = PetscMax(is_max, size);CHKERRQ(ierr); ierr = PetscMalloc2(len,PetscBT,&table,(Mbs/PETSC_BITS_PER_BYTE+1)*len,char,&t_p);CHKERRQ(ierr); for (i=0; i<len; i++) { table[i] = t_p + (Mbs/PETSC_BITS_PER_BYTE+1)*i; } ierr = MPI_Allreduce(&is_max,&ois_max,1,MPIU_INT,MPI_MAX,comm);CHKERRQ(ierr); /* 1. Send this processor's is[] to other processors */ /*---------------------------------------------------*/ /* allocate spaces */ ierr = PetscMalloc(is_max*sizeof(PetscInt),&n);CHKERRQ(ierr); len = 0; for (i=0; i<is_max; i++) { ierr = ISGetLocalSize(is[i],&n[i]);CHKERRQ(ierr); len += n[i]; } if (!len) { is_max = 0; } else { len += 1 + is_max; /* max length of data1 for one processor */ } ierr = PetscMalloc((size*len+1)*sizeof(PetscInt),&data1);CHKERRQ(ierr); ierr = PetscMalloc(size*sizeof(PetscInt*),&data1_start);CHKERRQ(ierr); for (i=0; i<size; i++) data1_start[i] = data1 + i*len; ierr = PetscMalloc4(size,PetscInt,&len_s,size,PetscInt,&btable,size,PetscMPIInt,&iwork,size+1,PetscInt,&Bowners);CHKERRQ(ierr); /* gather c->garray from all processors */ ierr = ISCreateGeneral(comm,Bnbs,c->garray,PETSC_COPY_VALUES,&garray_local);CHKERRQ(ierr); ierr = ISAllGather(garray_local, &garray_gl);CHKERRQ(ierr); ierr = ISDestroy(&garray_local);CHKERRQ(ierr); ierr = MPI_Allgather(&Bnbs,1,MPIU_INT,Bowners+1,1,MPIU_INT,comm);CHKERRQ(ierr); Bowners[0] = 0; for (i=0; i<size; i++) Bowners[i+1] += Bowners[i]; if (is_max){ /* hash table ctable which maps c->row to proc_id) */ ierr = PetscMalloc(Mbs*sizeof(PetscInt),&ctable);CHKERRQ(ierr); for (proc_id=0,j=0; proc_id<size; proc_id++) { for (; j<C->rmap->range[proc_id+1]/bs; j++) { ctable[j] = proc_id; } } /* hash tables marking c->garray */ ierr = ISGetIndices(garray_gl,&idx_i);CHKERRQ(ierr); for (i=0; i<size; i++){ table_i = table[i]; ierr = PetscBTMemzero(Mbs,table_i);CHKERRQ(ierr); for (j = Bowners[i]; j<Bowners[i+1]; j++){ /* go through B cols of proc[i]*/ ierr = PetscBTSet(table_i,idx_i[j]);CHKERRQ(ierr); } } ierr = ISRestoreIndices(garray_gl,&idx_i);CHKERRQ(ierr); } /* if (is_max) */ ierr = ISDestroy(&garray_gl);CHKERRQ(ierr); /* evaluate communication - mesg to who, length, and buffer space */ for (i=0; i<size; i++) len_s[i] = 0; /* header of data1 */ for (proc_id=0; proc_id<size; proc_id++){ iwork[proc_id] = 0; *data1_start[proc_id] = is_max; data1_start[proc_id]++; for (j=0; j<is_max; j++) { if (proc_id == rank){ *data1_start[proc_id] = n[j]; } else { *data1_start[proc_id] = 0; } data1_start[proc_id]++; } } for (i=0; i<is_max; i++) { ierr = ISGetIndices(is[i],&idx_i);CHKERRQ(ierr); for (j=0; j<n[i]; j++){ idx = idx_i[j]; *data1_start[rank] = idx; data1_start[rank]++; /* for local proccessing */ proc_end = ctable[idx]; for (proc_id=0; proc_id<=proc_end; proc_id++){ /* for others to process */ if (proc_id == rank ) continue; /* done before this loop */ if (proc_id < proc_end && !PetscBTLookup(table[proc_id],idx)) continue; /* no need for sending idx to [proc_id] */ *data1_start[proc_id] = idx; data1_start[proc_id]++; len_s[proc_id]++; } } /* update header data */ for (proc_id=0; proc_id<size; proc_id++){ if (proc_id== rank) continue; *(data1 + proc_id*len + 1 + i) = len_s[proc_id] - iwork[proc_id]; iwork[proc_id] = len_s[proc_id] ; } ierr = ISRestoreIndices(is[i],&idx_i);CHKERRQ(ierr); } nrqs = 0; nrqr = 0; for (i=0; i<size; i++){ data1_start[i] = data1 + i*len; if (len_s[i]){ nrqs++; len_s[i] += 1 + is_max; /* add no. of header msg */ } } for (i=0; i<is_max; i++) { ierr = ISDestroy(&is[i]);CHKERRQ(ierr); } ierr = PetscFree(n);CHKERRQ(ierr); ierr = PetscFree(ctable);CHKERRQ(ierr); /* Determine the number of messages to expect, their lengths, from from-ids */ ierr = PetscGatherNumberOfMessages(comm,PETSC_NULL,len_s,&nrqr);CHKERRQ(ierr); ierr = PetscGatherMessageLengths(comm,nrqs,nrqr,len_s,&id_r1,&len_r1);CHKERRQ(ierr); /* Now post the sends */ ierr = PetscMalloc2(size,MPI_Request,&s_waits1,size,MPI_Request,&s_waits2);CHKERRQ(ierr); k = 0; for (proc_id=0; proc_id<size; proc_id++){ /* send data1 to processor [proc_id] */ if (len_s[proc_id]){ ierr = MPI_Isend(data1_start[proc_id],len_s[proc_id],MPIU_INT,proc_id,tag1,comm,s_waits1+k);CHKERRQ(ierr); k++; } } /* 2. Receive other's is[] and process. Then send back */ /*-----------------------------------------------------*/ len = 0; for (i=0; i<nrqr; i++){ if (len_r1[i] > len)len = len_r1[i]; } ierr = PetscFree(len_r1);CHKERRQ(ierr); ierr = PetscFree(id_r1);CHKERRQ(ierr); for (proc_id=0; proc_id<size; proc_id++) len_s[proc_id] = iwork[proc_id] = 0; ierr = PetscMalloc((len+1)*sizeof(PetscInt),&odata1);CHKERRQ(ierr); ierr = PetscMalloc(size*sizeof(PetscInt**),&odata2_ptr);CHKERRQ(ierr); ierr = PetscBTCreate(Mbs,&otable);CHKERRQ(ierr); len_max = ois_max*(Mbs+1); /* max space storing all is[] for each receive */ len_est = 2*len_max; /* estimated space of storing is[] for all receiving messages */ ierr = PetscMalloc((len_est+1)*sizeof(PetscInt),&odata2);CHKERRQ(ierr); nodata2 = 0; /* nodata2+1: num of PetscMalloc(,&odata2_ptr[]) called */ odata2_ptr[nodata2] = odata2; len_unused = len_est; /* unused space in the array odata2_ptr[nodata2]-- needs to be >= len_max */ k = 0; while (k < nrqr){ /* Receive messages */ ierr = MPI_Iprobe(MPI_ANY_SOURCE,tag1,comm,&flag,&r_status);CHKERRQ(ierr); if (flag){ ierr = MPI_Get_count(&r_status,MPIU_INT,&len);CHKERRQ(ierr); proc_id = r_status.MPI_SOURCE; ierr = MPI_Irecv(odata1,len,MPIU_INT,proc_id,r_status.MPI_TAG,comm,&r_req);CHKERRQ(ierr); ierr = MPI_Wait(&r_req,&r_status);CHKERRQ(ierr); /* Process messages */ /* make sure there is enough unused space in odata2 array */ if (len_unused < len_max){ /* allocate more space for odata2 */ ierr = PetscMalloc((len_est+1)*sizeof(PetscInt),&odata2);CHKERRQ(ierr); odata2_ptr[++nodata2] = odata2; len_unused = len_est; } ierr = MatIncreaseOverlap_MPISBAIJ_Local(C,odata1,OTHER,odata2,&otable);CHKERRQ(ierr); len = 1 + odata2[0]; for (i=0; i<odata2[0]; i++){ len += odata2[1 + i]; } /* Send messages back */ ierr = MPI_Isend(odata2,len,MPIU_INT,proc_id,tag2,comm,s_waits2+k);CHKERRQ(ierr); k++; odata2 += len; len_unused -= len; len_s[proc_id] = len; /* num of messages sending back to [proc_id] by this proc */ } } ierr = PetscFree(odata1);CHKERRQ(ierr); ierr = PetscBTDestroy(&otable);CHKERRQ(ierr); /* 3. Do local work on this processor's is[] */ /*-------------------------------------------*/ /* make sure there is enough unused space in odata2(=data) array */ len_max = is_max*(Mbs+1); /* max space storing all is[] for this processor */ if (len_unused < len_max){ /* allocate more space for odata2 */ ierr = PetscMalloc((len_est+1)*sizeof(PetscInt),&odata2);CHKERRQ(ierr); odata2_ptr[++nodata2] = odata2; } data = odata2; ierr = MatIncreaseOverlap_MPISBAIJ_Local(C,data1_start[rank],MINE,data,table);CHKERRQ(ierr); ierr = PetscFree(data1_start);CHKERRQ(ierr); /* 4. Receive work done on other processors, then merge */ /*------------------------------------------------------*/ /* get max number of messages that this processor expects to recv */ ierr = MPI_Allreduce(len_s,iwork,size,MPI_INT,MPI_MAX,comm);CHKERRQ(ierr); ierr = PetscMalloc((iwork[rank]+1)*sizeof(PetscInt),&data2);CHKERRQ(ierr); ierr = PetscFree4(len_s,btable,iwork,Bowners);CHKERRQ(ierr); k = 0; while (k < nrqs){ /* Receive messages */ ierr = MPI_Iprobe(MPI_ANY_SOURCE,tag2,comm,&flag,&r_status);CHKERRQ(ierr); if (flag){ ierr = MPI_Get_count(&r_status,MPIU_INT,&len);CHKERRQ(ierr); proc_id = r_status.MPI_SOURCE; ierr = MPI_Irecv(data2,len,MPIU_INT,proc_id,r_status.MPI_TAG,comm,&r_req);CHKERRQ(ierr); ierr = MPI_Wait(&r_req,&r_status);CHKERRQ(ierr); if (len > 1+is_max){ /* Add data2 into data */ data2_i = data2 + 1 + is_max; for (i=0; i<is_max; i++){ table_i = table[i]; data_i = data + 1 + is_max + Mbs*i; isz = data[1+i]; for (j=0; j<data2[1+i]; j++){ col = data2_i[j]; if (!PetscBTLookupSet(table_i,col)) {data_i[isz++] = col;} } data[1+i] = isz; if (i < is_max - 1) data2_i += data2[1+i]; } } k++; } } ierr = PetscFree(data2);CHKERRQ(ierr); ierr = PetscFree2(table,t_p);CHKERRQ(ierr); /* phase 1 sends are complete */ ierr = PetscMalloc(size*sizeof(MPI_Status),&s_status);CHKERRQ(ierr); if (nrqs) {ierr = MPI_Waitall(nrqs,s_waits1,s_status);CHKERRQ(ierr);} ierr = PetscFree(data1);CHKERRQ(ierr); /* phase 2 sends are complete */ if (nrqr){ierr = MPI_Waitall(nrqr,s_waits2,s_status);CHKERRQ(ierr);} ierr = PetscFree2(s_waits1,s_waits2);CHKERRQ(ierr); ierr = PetscFree(s_status);CHKERRQ(ierr); /* 5. Create new is[] */ /*--------------------*/ for (i=0; i<is_max; i++) { data_i = data + 1 + is_max + Mbs*i; ierr = ISCreateGeneral(PETSC_COMM_SELF,data[1+i],data_i,PETSC_COPY_VALUES,is+i);CHKERRQ(ierr); } for (k=0; k<=nodata2; k++){ ierr = PetscFree(odata2_ptr[k]);CHKERRQ(ierr); } ierr = PetscFree(odata2_ptr);CHKERRQ(ierr); PetscFunctionReturn(0); }
PetscErrorCode MatIncreaseOverlap_MPISBAIJ(Mat C,PetscInt is_max,IS is[],PetscInt ov) { PetscErrorCode ierr; PetscInt i,N=C->cmap->N, bs=C->rmap->bs,M=C->rmap->N,Mbs=M/bs,*nidx,isz,iov; IS *is_new,*is_row; Mat *submats; Mat_MPISBAIJ *c=(Mat_MPISBAIJ*)C->data; Mat_SeqSBAIJ *asub_i; PetscBT table; PetscInt *ai,brow,nz,nis,l,nmax,nstages_local,nstages,max_no,pos; const PetscInt *idx; PetscBool flg,*allcolumns,*allrows; PetscFunctionBegin; ierr = PetscMalloc(is_max*sizeof(IS),&is_new);CHKERRQ(ierr); /* Convert the indices into block format */ ierr = ISCompressIndicesGeneral(N,C->rmap->n,bs,is_max,is,is_new);CHKERRQ(ierr); if (ov < 0){ SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Negative overlap specified\n");} /* ----- previous non-scalable implementation ----- */ flg=PETSC_FALSE; ierr = PetscOptionsHasName(PETSC_NULL, "-IncreaseOverlap_old", &flg);CHKERRQ(ierr); if (flg){ /* previous non-scalable implementation */ printf("use previous non-scalable implementation...\n"); for (i=0; i<ov; ++i) { ierr = MatIncreaseOverlap_MPISBAIJ_Once(C,is_max,is_new);CHKERRQ(ierr); } } else { /* implementation using modified BAIJ routines */ ierr = PetscMalloc((Mbs+1)*sizeof(PetscInt),&nidx);CHKERRQ(ierr); ierr = PetscBTCreate(Mbs,&table);CHKERRQ(ierr); /* for column search */ ierr = PetscMalloc2(is_max+1,PetscBool,&allcolumns,is_max+1,PetscBool,&allrows);CHKERRQ(ierr); /* Create is_row */ ierr = PetscMalloc(is_max*sizeof(IS **),&is_row);CHKERRQ(ierr); ierr = ISCreateStride(PETSC_COMM_SELF,Mbs,0,1,&is_row[0]);CHKERRQ(ierr); allrows[0] = PETSC_TRUE; for (i=1; i<is_max; i++) { is_row[i] = is_row[0]; /* reuse is_row[0] */ allrows[i] = PETSC_TRUE; } /* Allocate memory to hold all the submatrices - Modified from MatGetSubMatrices_MPIBAIJ() */ ierr = PetscMalloc((is_max+1)*sizeof(Mat),&submats);CHKERRQ(ierr); /* Check for special case: each processor gets entire matrix columns */ for (i=0; i<is_max; i++) { ierr = ISIdentity(is_new[i],&flg);CHKERRQ(ierr); ierr = ISGetLocalSize(is_new[i],&isz);CHKERRQ(ierr); if (flg && isz == Mbs){ allcolumns[i] = PETSC_TRUE; } else { allcolumns[i] = PETSC_FALSE; } } /* Determine the number of stages through which submatrices are done */ nmax = 20*1000000 / (c->Nbs * sizeof(PetscInt)); if (!nmax) nmax = 1; nstages_local = is_max/nmax + ((is_max % nmax)?1:0); /* Make sure every processor loops through the nstages */ ierr = MPI_Allreduce(&nstages_local,&nstages,1,MPIU_INT,MPI_MAX,((PetscObject)C)->comm);CHKERRQ(ierr); for (iov=0; iov<ov; ++iov) { /* 1) Get submats for column search */ for (i=0,pos=0; i<nstages; i++) { if (pos+nmax <= is_max) max_no = nmax; else if (pos == is_max) max_no = 0; else max_no = is_max-pos; c->ijonly = PETSC_TRUE; ierr = MatGetSubMatrices_MPIBAIJ_local(C,max_no,is_row+pos,is_new+pos,MAT_INITIAL_MATRIX,allrows+pos,allcolumns+pos,submats+pos);CHKERRQ(ierr); pos += max_no; } /* 2) Row search */ ierr = MatIncreaseOverlap_MPIBAIJ_Once(C,is_max,is_new);CHKERRQ(ierr); /* 3) Column search */ for (i=0; i<is_max; i++){ asub_i = (Mat_SeqSBAIJ*)submats[i]->data; ai=asub_i->i;; /* put is_new obtained from MatIncreaseOverlap_MPIBAIJ() to table */ ierr = PetscBTMemzero(Mbs,table);CHKERRQ(ierr); ierr = ISGetIndices(is_new[i],&idx);CHKERRQ(ierr); ierr = ISGetLocalSize(is_new[i],&nis);CHKERRQ(ierr); for (l=0; l<nis; l++) { ierr = PetscBTSet(table,idx[l]);CHKERRQ(ierr); nidx[l] = idx[l]; } isz = nis; /* add column entries to table */ for (brow=0; brow<Mbs; brow++){ nz = ai[brow+1] - ai[brow]; if (nz) { if (!PetscBTLookupSet(table,brow)) nidx[isz++] = brow; } } ierr = ISRestoreIndices(is_new[i],&idx);CHKERRQ(ierr); ierr = ISDestroy(&is_new[i]);CHKERRQ(ierr); /* create updated is_new */ ierr = ISCreateGeneral(PETSC_COMM_SELF,isz,nidx,PETSC_COPY_VALUES,is_new+i);CHKERRQ(ierr); } /* Free tmp spaces */ for (i=0; i<is_max; i++){ ierr = MatDestroy(&submats[i]);CHKERRQ(ierr); } } ierr = PetscFree2(allcolumns,allrows);CHKERRQ(ierr); ierr = PetscBTDestroy(&table);CHKERRQ(ierr); ierr = PetscFree(submats);CHKERRQ(ierr); ierr = ISDestroy(&is_row[0]);CHKERRQ(ierr); ierr = PetscFree(is_row);CHKERRQ(ierr); ierr = PetscFree(nidx);CHKERRQ(ierr); } for (i=0; i<is_max; i++) {ierr = ISDestroy(&is[i]);CHKERRQ(ierr);} ierr = ISExpandIndicesGeneral(N,N,bs,is_max,is_new,is);CHKERRQ(ierr); for (i=0; i<is_max; i++) {ierr = ISDestroy(&is_new[i]);CHKERRQ(ierr);} ierr = PetscFree(is_new);CHKERRQ(ierr); PetscFunctionReturn(0); }
PETSC_EXTERN PetscErrorCode AOCreate_Basic(AO ao) { AO_Basic *aobasic; PetscMPIInt size,rank,count,*lens,*disp; PetscInt napp,*allpetsc,*allapp,ip,ia,N,i,*petsc=NULL,start; PetscErrorCode ierr; IS isapp=ao->isapp,ispetsc=ao->ispetsc; MPI_Comm comm; const PetscInt *myapp,*mypetsc=NULL; PetscFunctionBegin; /* create special struct aobasic */ ierr = PetscNewLog(ao, AO_Basic, &aobasic);CHKERRQ(ierr); ao->data = (void*) aobasic; ierr = PetscMemcpy(ao->ops,&AOOps_Basic,sizeof(struct _AOOps));CHKERRQ(ierr); ierr = PetscObjectChangeTypeName((PetscObject)ao,AOBASIC);CHKERRQ(ierr); ierr = ISGetLocalSize(isapp,&napp);CHKERRQ(ierr); ierr = ISGetIndices(isapp,&myapp);CHKERRQ(ierr); ierr = PetscMPIIntCast(napp,&count);CHKERRQ(ierr); /* transmit all lengths to all processors */ ierr = PetscObjectGetComm((PetscObject)isapp,&comm);CHKERRQ(ierr); ierr = MPI_Comm_size(comm, &size);CHKERRQ(ierr); ierr = MPI_Comm_rank(comm, &rank);CHKERRQ(ierr); ierr = PetscMalloc2(size,PetscMPIInt, &lens,size,PetscMPIInt,&disp);CHKERRQ(ierr); ierr = MPI_Allgather(&count, 1, MPI_INT, lens, 1, MPI_INT, comm);CHKERRQ(ierr); N = 0; for (i = 0; i < size; i++) { ierr = PetscMPIIntCast(N,disp+i);CHKERRQ(ierr); /* = sum(lens[j]), j< i */ N += lens[i]; } ao->N = N; ao->n = N; /* If mypetsc is 0 then use "natural" numbering */ if (napp) { if (!ispetsc) { start = disp[rank]; ierr = PetscMalloc((napp+1) * sizeof(PetscInt), &petsc);CHKERRQ(ierr); for (i=0; i<napp; i++) petsc[i] = start + i; } else { ierr = ISGetIndices(ispetsc,&mypetsc);CHKERRQ(ierr); petsc = (PetscInt*)mypetsc; } } /* get all indices on all processors */ ierr = PetscMalloc2(N,PetscInt,&allpetsc,N,PetscInt,&allapp);CHKERRQ(ierr); ierr = MPI_Allgatherv(petsc, count, MPIU_INT, allpetsc, lens, disp, MPIU_INT, comm);CHKERRQ(ierr); ierr = MPI_Allgatherv((void*)myapp, count, MPIU_INT, allapp, lens, disp, MPIU_INT, comm);CHKERRQ(ierr); ierr = PetscFree2(lens,disp);CHKERRQ(ierr); #if defined(PETSC_USE_DEBUG) { PetscInt *sorted; ierr = PetscMalloc(N*sizeof(PetscInt),&sorted);CHKERRQ(ierr); ierr = PetscMemcpy(sorted,allpetsc,N*sizeof(PetscInt));CHKERRQ(ierr); ierr = PetscSortInt(N,sorted);CHKERRQ(ierr); for (i=0; i<N; i++) { if (sorted[i] != i) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"PETSc ordering requires a permutation of numbers 0 to N-1\n it is missing %D has %D",i,sorted[i]); } ierr = PetscMemcpy(sorted,allapp,N*sizeof(PetscInt));CHKERRQ(ierr); ierr = PetscSortInt(N,sorted);CHKERRQ(ierr); for (i=0; i<N; i++) { if (sorted[i] != i) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Application ordering requires a permutation of numbers 0 to N-1\n it is missing %D has %D",i,sorted[i]); } ierr = PetscFree(sorted);CHKERRQ(ierr); } #endif /* generate a list of application and PETSc node numbers */ ierr = PetscMalloc2(N,PetscInt, &aobasic->app,N,PetscInt,&aobasic->petsc);CHKERRQ(ierr); ierr = PetscLogObjectMemory(ao,2*N*sizeof(PetscInt));CHKERRQ(ierr); ierr = PetscMemzero(aobasic->app, N*sizeof(PetscInt));CHKERRQ(ierr); ierr = PetscMemzero(aobasic->petsc, N*sizeof(PetscInt));CHKERRQ(ierr); for (i = 0; i < N; i++) { ip = allpetsc[i]; ia = allapp[i]; /* check there are no duplicates */ if (aobasic->app[ip]) SETERRQ3(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Duplicate in PETSc ordering at position %d. Already mapped to %d, not %d.", i, aobasic->app[ip]-1, ia); aobasic->app[ip] = ia + 1; if (aobasic->petsc[ia]) SETERRQ3(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Duplicate in Application ordering at position %d. Already mapped to %d, not %d.", i, aobasic->petsc[ia]-1, ip); aobasic->petsc[ia] = ip + 1; } if (napp && !mypetsc) { ierr = PetscFree(petsc);CHKERRQ(ierr); } ierr = PetscFree2(allpetsc,allapp);CHKERRQ(ierr); /* shift indices down by one */ for (i = 0; i < N; i++) { aobasic->app[i]--; aobasic->petsc[i]--; } ierr = ISRestoreIndices(isapp,&myapp);CHKERRQ(ierr); if (napp) { if (ispetsc) { ierr = ISRestoreIndices(ispetsc,&mypetsc);CHKERRQ(ierr); } else { ierr = PetscFree(petsc);CHKERRQ(ierr); } } PetscFunctionReturn(0); }
static PetscErrorCode permutematrix(Mat Ain, Mat Bin, Mat *Aout, Mat *Bout, int **permIndices) { PetscErrorCode ierr; MatPartitioning part; IS isn, is, iscols; PetscInt *nlocal,localCols,m,n; PetscMPIInt size, rank; MPI_Comm comm; PetscFunctionBegin; ierr = PetscObjectGetComm((PetscObject)Ain,&comm);CHKERRQ(ierr); ierr = MPI_Comm_size(comm,&size);CHKERRQ(ierr); ierr = MPI_Comm_rank(comm,&rank);CHKERRQ(ierr); ierr = MatGetSize(Ain,&m,&n);CHKERRQ(ierr); ierr = MatPartitioningCreate(comm,&part);CHKERRQ(ierr); ierr = MatPartitioningSetAdjacency(part,Ain);CHKERRQ(ierr); ierr = MatPartitioningSetFromOptions(part);CHKERRQ(ierr); /* get new processor owner number of each vertex */ ierr = MatPartitioningApply(part,&is);CHKERRQ(ierr); /* get new global number of each old global number */ ierr = ISPartitioningToNumbering(is,&isn);CHKERRQ(ierr); ierr = PetscMalloc(size*sizeof(int),&nlocal);CHKERRQ(ierr); /* get number of new vertices for each processor */ ierr = ISPartitioningCount(is,size,nlocal);CHKERRQ(ierr); ierr = ISDestroy(&is);CHKERRQ(ierr); /* get old global number of each new global number */ ierr = ISInvertPermutation(isn,nlocal[rank],&is);CHKERRQ(ierr); ierr = ISDestroy(&isn);CHKERRQ(ierr); ierr = MatPartitioningDestroy(&part);CHKERRQ(ierr); ierr = ISSort(is);CHKERRQ(ierr); /* If matrix is square, the permutation is applied to rows and columns; otherwise it is only applied to rows. */ if (m == n) { iscols = is; localCols = nlocal[rank]; } else { PetscInt lowj, highj; ierr = MatGetOwnershipRangeColumn(Ain,&lowj,&highj);CHKERRQ(ierr); localCols = highj-lowj; ierr = ISCreateStride(comm,localCols, lowj, 1, &iscols);CHKERRQ(ierr); } /* copy permutation */ if (permIndices) { const PetscInt *indices; PetscInt i; *permIndices = malloc(sizeof(int)*(nlocal[rank]+localCols)); ierr = ISGetIndices(is, &indices);CHKERRQ(ierr); for (i=0; i<nlocal[rank]; i++) (*permIndices)[i] = indices[i]; ierr = ISRestoreIndices(is, &indices);CHKERRQ(ierr); ierr = ISGetIndices(iscols, &indices);CHKERRQ(ierr); for (i=0; i<localCols; i++) (*permIndices)[i+nlocal[rank]] = indices[i]; ierr = ISRestoreIndices(iscols, &indices);CHKERRQ(ierr); } ierr = PetscFree(nlocal);CHKERRQ(ierr); ierr = MatGetSubMatrix(Ain,is,iscols,MAT_INITIAL_MATRIX,Aout);CHKERRQ(ierr); if (Bin && Bout) { ierr = MatGetSubMatrix(Bin,is,iscols,MAT_INITIAL_MATRIX,Bout);CHKERRQ(ierr); } ierr = ISDestroy(&is);CHKERRQ(ierr); if (m != n) { ierr = ISDestroy(&iscols);CHKERRQ(ierr); } PetscFunctionReturn(0); }