예제 #1
0
파일: mdlsup.c 프로젝트: RPG-7/reactos
/*
 * @implemented
 */
VOID
NTAPI
MmProbeAndLockPages(IN PMDL Mdl,
                    IN KPROCESSOR_MODE AccessMode,
                    IN LOCK_OPERATION Operation)
{
    PPFN_NUMBER MdlPages;
    PVOID Base, Address, LastAddress, StartAddress;
    ULONG LockPages, TotalPages;
    NTSTATUS Status = STATUS_SUCCESS;
    PEPROCESS CurrentProcess;
    NTSTATUS ProbeStatus;
    PMMPTE PointerPte, LastPte;
    PMMPDE PointerPde;
#if (_MI_PAGING_LEVELS >= 3)
    PMMPDE PointerPpe;
#endif
#if (_MI_PAGING_LEVELS == 4)
    PMMPDE PointerPxe;
#endif
    PFN_NUMBER PageFrameIndex;
    BOOLEAN UsePfnLock;
    KIRQL OldIrql;
    PMMPFN Pfn1;
    DPRINT("Probing MDL: %p\n", Mdl);

    //
    // Sanity checks
    //
    ASSERT(Mdl->ByteCount != 0);
    ASSERT(((ULONG)Mdl->ByteOffset & ~(PAGE_SIZE - 1)) == 0);
    ASSERT(((ULONG_PTR)Mdl->StartVa & (PAGE_SIZE - 1)) == 0);
    ASSERT((Mdl->MdlFlags & (MDL_PAGES_LOCKED |
                             MDL_MAPPED_TO_SYSTEM_VA |
                             MDL_SOURCE_IS_NONPAGED_POOL |
                             MDL_PARTIAL |
                             MDL_IO_SPACE)) == 0);

    //
    // Get page and base information
    //
    MdlPages = (PPFN_NUMBER)(Mdl + 1);
    Base = Mdl->StartVa;

    //
    // Get the addresses and how many pages we span (and need to lock)
    //
    Address = (PVOID)((ULONG_PTR)Base + Mdl->ByteOffset);
    LastAddress = (PVOID)((ULONG_PTR)Address + Mdl->ByteCount);
    LockPages = ADDRESS_AND_SIZE_TO_SPAN_PAGES(Address, Mdl->ByteCount);
    ASSERT(LockPages != 0);

    /* Block invalid access */
    if ((AccessMode != KernelMode) &&
        ((LastAddress > (PVOID)MM_USER_PROBE_ADDRESS) || (Address >= LastAddress)))
    {
        /* Caller should be in SEH, raise the error */
        *MdlPages = LIST_HEAD;
        ExRaiseStatus(STATUS_ACCESS_VIOLATION);
    }

    //
    // Get the process
    //
    if (Address <= MM_HIGHEST_USER_ADDRESS)
    {
        //
        // Get the process
        //
        CurrentProcess = PsGetCurrentProcess();
    }
    else
    {
        //
        // No process
        //
        CurrentProcess = NULL;
    }

    //
    // Save the number of pages we'll have to lock, and the start address
    //
    TotalPages = LockPages;
    StartAddress = Address;

    /* Large pages not supported */
    ASSERT(!MI_IS_PHYSICAL_ADDRESS(Address));

    //
    // Now probe them
    //
    ProbeStatus = STATUS_SUCCESS;
    _SEH2_TRY
    {
        //
        // Enter probe loop
        //
        do
        {
            //
            // Assume failure
            //
            *MdlPages = LIST_HEAD;

            //
            // Read
            //
            *(volatile CHAR*)Address;

            //
            // Check if this is write access (only probe for user-mode)
            //
            if ((Operation != IoReadAccess) &&
                (Address <= MM_HIGHEST_USER_ADDRESS))
            {
                //
                // Probe for write too
                //
                ProbeForWriteChar(Address);
            }

            //
            // Next address...
            //
            Address = PAGE_ALIGN((ULONG_PTR)Address + PAGE_SIZE);

            //
            // Next page...
            //
            LockPages--;
            MdlPages++;
        } while (Address < LastAddress);

        //
        // Reset back to the original page
        //
        ASSERT(LockPages == 0);
        MdlPages = (PPFN_NUMBER)(Mdl + 1);
    }
    _SEH2_EXCEPT(EXCEPTION_EXECUTE_HANDLER)
    {
        //
        // Oops :(
        //
        ProbeStatus = _SEH2_GetExceptionCode();
    }
    _SEH2_END;

    //
    // So how did that go?
    //
    if (ProbeStatus != STATUS_SUCCESS)
    {
        //
        // Fail
        //
        DPRINT1("MDL PROBE FAILED!\n");
        Mdl->Process = NULL;
        ExRaiseStatus(ProbeStatus);
    }

    //
    // Get the PTE and PDE
    //
    PointerPte = MiAddressToPte(StartAddress);
    PointerPde = MiAddressToPde(StartAddress);
#if (_MI_PAGING_LEVELS >= 3)
    PointerPpe = MiAddressToPpe(StartAddress);
#endif
#if (_MI_PAGING_LEVELS == 4)
    PointerPxe = MiAddressToPxe(StartAddress);
#endif

    //
    // Sanity check
    //
    ASSERT(MdlPages == (PPFN_NUMBER)(Mdl + 1));

    //
    // Check what kind of operation this is
    //
    if (Operation != IoReadAccess)
    {
        //
        // Set the write flag
        //
        Mdl->MdlFlags |= MDL_WRITE_OPERATION;
    }
    else
    {
        //
        // Remove the write flag
        //
        Mdl->MdlFlags &= ~(MDL_WRITE_OPERATION);
    }

    //
    // Mark the MDL as locked *now*
    //
    Mdl->MdlFlags |= MDL_PAGES_LOCKED;

    //
    // Check if this came from kernel mode
    //
    if (Base > MM_HIGHEST_USER_ADDRESS)
    {
        //
        // We should not have a process
        //
        ASSERT(CurrentProcess == NULL);
        Mdl->Process = NULL;

        //
        // In kernel mode, we don't need to check for write access
        //
        Operation = IoReadAccess;

        //
        // Use the PFN lock
        //
        UsePfnLock = TRUE;
        OldIrql = KeAcquireQueuedSpinLock(LockQueuePfnLock);
    }
    else
    {
        //
        // Sanity checks
        //
        ASSERT(TotalPages != 0);
        ASSERT(CurrentProcess == PsGetCurrentProcess());

        //
        // Track locked pages
        //
        InterlockedExchangeAddSizeT(&CurrentProcess->NumberOfLockedPages,
                                    TotalPages);

        //
        // Save the process
        //
        Mdl->Process = CurrentProcess;

        /* Lock the process working set */
        MiLockProcessWorkingSet(CurrentProcess, PsGetCurrentThread());
        UsePfnLock = FALSE;
        OldIrql = MM_NOIRQL;
    }

    //
    // Get the last PTE
    //
    LastPte = MiAddressToPte((PVOID)((ULONG_PTR)LastAddress - 1));

    //
    // Loop the pages
    //
    do
    {
        //
        // Assume failure and check for non-mapped pages
        //
        *MdlPages = LIST_HEAD;
        while (
#if (_MI_PAGING_LEVELS == 4)
               (PointerPxe->u.Hard.Valid == 0) ||
#endif
#if (_MI_PAGING_LEVELS >= 3)
               (PointerPpe->u.Hard.Valid == 0) ||
#endif
               (PointerPde->u.Hard.Valid == 0) ||
               (PointerPte->u.Hard.Valid == 0))
        {
            //
            // What kind of lock were we using?
            //
            if (UsePfnLock)
            {
                //
                // Release PFN lock
                //
                KeReleaseQueuedSpinLock(LockQueuePfnLock, OldIrql);
            }
            else
            {
                /* Release process working set */
                MiUnlockProcessWorkingSet(CurrentProcess, PsGetCurrentThread());
            }

            //
            // Access the page
            //
            Address = MiPteToAddress(PointerPte);

            //HACK: Pass a placeholder TrapInformation so the fault handler knows we're unlocked
            Status = MmAccessFault(FALSE, Address, KernelMode, (PVOID)0xBADBADA3);
            if (!NT_SUCCESS(Status))
            {
                //
                // Fail
                //
                DPRINT1("Access fault failed\n");
                goto Cleanup;
            }

            //
            // What lock should we use?
            //
            if (UsePfnLock)
            {
                //
                // Grab the PFN lock
                //
                OldIrql = KeAcquireQueuedSpinLock(LockQueuePfnLock);
            }
            else
            {
                /* Lock the process working set */
                MiLockProcessWorkingSet(CurrentProcess, PsGetCurrentThread());
            }
        }

        //
        // Check if this was a write or modify
        //
        if (Operation != IoReadAccess)
        {
            //
            // Check if the PTE is not writable
            //
            if (MI_IS_PAGE_WRITEABLE(PointerPte) == FALSE)
            {
                //
                // Check if it's copy on write
                //
                if (MI_IS_PAGE_COPY_ON_WRITE(PointerPte))
                {
                    //
                    // Get the base address and allow a change for user-mode
                    //
                    Address = MiPteToAddress(PointerPte);
                    if (Address <= MM_HIGHEST_USER_ADDRESS)
                    {
                        //
                        // What kind of lock were we using?
                        //
                        if (UsePfnLock)
                        {
                            //
                            // Release PFN lock
                            //
                            KeReleaseQueuedSpinLock(LockQueuePfnLock, OldIrql);
                        }
                        else
                        {
                            /* Release process working set */
                            MiUnlockProcessWorkingSet(CurrentProcess, PsGetCurrentThread());
                        }

                        //
                        // Access the page
                        //

                        //HACK: Pass a placeholder TrapInformation so the fault handler knows we're unlocked
                        Status = MmAccessFault(TRUE, Address, KernelMode, (PVOID)0xBADBADA3);
                        if (!NT_SUCCESS(Status))
                        {
                            //
                            // Fail
                            //
                            DPRINT1("Access fault failed\n");
                            goto Cleanup;
                        }

                        //
                        // Re-acquire the lock
                        //
                        if (UsePfnLock)
                        {
                            //
                            // Grab the PFN lock
                            //
                            OldIrql = KeAcquireQueuedSpinLock(LockQueuePfnLock);
                        }
                        else
                        {
                            /* Lock the process working set */
                            MiLockProcessWorkingSet(CurrentProcess, PsGetCurrentThread());
                        }

                        //
                        // Start over
                        //
                        continue;
                    }
                }

                //
                // Fail, since we won't allow this
                //
                Status = STATUS_ACCESS_VIOLATION;
                goto CleanupWithLock;
            }
        }

        //
        // Grab the PFN
        //
        PageFrameIndex = PFN_FROM_PTE(PointerPte);
        Pfn1 = MiGetPfnEntry(PageFrameIndex);
        if (Pfn1)
        {
            /* Either this is for kernel-mode, or the working set is held */
            ASSERT((CurrentProcess == NULL) || (UsePfnLock == FALSE));

            /* No Physical VADs supported yet */
            if (CurrentProcess) ASSERT(CurrentProcess->PhysicalVadRoot == NULL);

            /* This address should already exist and be fully valid */
            MiReferenceProbedPageAndBumpLockCount(Pfn1);
        }
        else
        {
            //
            // For I/O addresses, just remember this
            //
            Mdl->MdlFlags |= MDL_IO_SPACE;
        }

        //
        // Write the page and move on
        //
        *MdlPages++ = PageFrameIndex;
        PointerPte++;

        /* Check if we're on a PDE boundary */
        if (MiIsPteOnPdeBoundary(PointerPte)) PointerPde++;
#if (_MI_PAGING_LEVELS >= 3)
        if (MiIsPteOnPpeBoundary(PointerPte)) PointerPpe++;
#endif
#if (_MI_PAGING_LEVELS == 4)
        if (MiIsPteOnPxeBoundary(PointerPte)) PointerPxe++;
#endif

    } while (PointerPte <= LastPte);

    //
    // What kind of lock were we using?
    //
    if (UsePfnLock)
    {
        //
        // Release PFN lock
        //
        KeReleaseQueuedSpinLock(LockQueuePfnLock, OldIrql);
    }
    else
    {
        /* Release process working set */
        MiUnlockProcessWorkingSet(CurrentProcess, PsGetCurrentThread());
    }

    //
    // Sanity check
    //
    ASSERT((Mdl->MdlFlags & MDL_DESCRIBES_AWE) == 0);
    return;

CleanupWithLock:
    //
    // This is the failure path
    //
    ASSERT(!NT_SUCCESS(Status));

    //
    // What kind of lock were we using?
    //
    if (UsePfnLock)
    {
        //
        // Release PFN lock
        //
        KeReleaseQueuedSpinLock(LockQueuePfnLock, OldIrql);
    }
    else
    {
        /* Release process working set */
        MiUnlockProcessWorkingSet(CurrentProcess, PsGetCurrentThread());
    }
Cleanup:
    //
    // Pages must be locked so MmUnlock can work
    //
    ASSERT(Mdl->MdlFlags & MDL_PAGES_LOCKED);
    MmUnlockPages(Mdl);

    //
    // Raise the error
    //
    ExRaiseStatus(Status);
}
예제 #2
0
BOOLEAN
MmCreateProcessAddressSpace (
    IN ULONG MinimumWorkingSetSize,
    IN PEPROCESS NewProcess,
    OUT PULONG_PTR DirectoryTableBase
    )

/*++

Routine Description:

    This routine creates an address space which maps the system
    portion and contains a hyper space entry.

Arguments:

    MinimumWorkingSetSize - Supplies the minimum working set size for
                            this address space.  This value is only used
                            to ensure that ample physical pages exist
                            to create this process.

    NewProcess - Supplies a pointer to the process object being created.

    DirectoryTableBase - Returns the value of the newly created
                         address space's Page Directory (PD) page and
                         hyper space page.

Return Value:

    Returns TRUE if an address space was successfully created, FALSE
    if ample physical pages do not exist.

Environment:

    Kernel mode.  APCs Disabled.

--*/

{
    LOGICAL FlushTbNeeded;
    PFN_NUMBER PageDirectoryIndex;
    PFN_NUMBER HyperSpaceIndex;
    PFN_NUMBER PageContainingWorkingSet;
    PFN_NUMBER VadBitMapPage;
    MMPTE TempPte;
    MMPTE TempPte2;
    PEPROCESS CurrentProcess;
    KIRQL OldIrql;
    PMMPFN Pfn1;
    ULONG Color;
    PMMPTE PointerPte;
    ULONG PdeOffset;
    PMMPTE MappingPte;
    PMMPTE PointerFillPte;
    PMMPTE CurrentAddressSpacePde;

    //
    // Charge commitment for the page directory pages, working set page table
    // page, and working set list.  If Vad bitmap lookups are enabled, then
    // charge for a page or two for that as well.
    //

    if (MiChargeCommitment (MM_PROCESS_COMMIT_CHARGE, NULL) == FALSE) {
        return FALSE;
    }

    FlushTbNeeded = FALSE;
    CurrentProcess = PsGetCurrentProcess ();

    NewProcess->NextPageColor = (USHORT) (RtlRandom (&MmProcessColorSeed));
    KeInitializeSpinLock (&NewProcess->HyperSpaceLock);

    //
    // Get the PFN lock to get physical pages.
    //

    LOCK_PFN (OldIrql);

    //
    // Check to make sure the physical pages are available.
    //

    if (MI_NONPAGEABLE_MEMORY_AVAILABLE() <= (SPFN_NUMBER)MinimumWorkingSetSize){

        UNLOCK_PFN (OldIrql);
        MiReturnCommitment (MM_PROCESS_COMMIT_CHARGE);

        //
        // Indicate no directory base was allocated.
        //

        return FALSE;
    }

    MM_TRACK_COMMIT (MM_DBG_COMMIT_PROCESS_CREATE, MM_PROCESS_COMMIT_CHARGE);

    MI_DECREMENT_RESIDENT_AVAILABLE (MinimumWorkingSetSize,
                                     MM_RESAVAIL_ALLOCATE_CREATE_PROCESS);

    //
    // Allocate a page directory page.
    //

    if (MmAvailablePages < MM_HIGH_LIMIT) {
        MiEnsureAvailablePageOrWait (NULL, OldIrql);
    }

    Color =  MI_PAGE_COLOR_PTE_PROCESS (PDE_BASE,
                                        &CurrentProcess->NextPageColor);

    PageDirectoryIndex = MiRemoveZeroPageMayReleaseLocks (Color, OldIrql);

    Pfn1 = MI_PFN_ELEMENT (PageDirectoryIndex);

    if (Pfn1->u3.e1.CacheAttribute != MiCached) {
        Pfn1->u3.e1.CacheAttribute = MiCached;
        FlushTbNeeded = TRUE;
    }

    //
    // Allocate the hyper space page table page.
    //

    if (MmAvailablePages < MM_HIGH_LIMIT) {
        MiEnsureAvailablePageOrWait (NULL, OldIrql);
    }

    Color = MI_PAGE_COLOR_PTE_PROCESS (MiGetPdeAddress(HYPER_SPACE),
                                       &CurrentProcess->NextPageColor);

    HyperSpaceIndex = MiRemoveZeroPageMayReleaseLocks (Color, OldIrql);

    Pfn1 = MI_PFN_ELEMENT (HyperSpaceIndex);

    if (Pfn1->u3.e1.CacheAttribute != MiCached) {
        Pfn1->u3.e1.CacheAttribute = MiCached;
        FlushTbNeeded = TRUE;
    }

    //
    // Remove page(s) for the VAD bitmap.
    //

    if (MmAvailablePages < MM_HIGH_LIMIT) {
        MiEnsureAvailablePageOrWait (NULL, OldIrql);
    }

    Color = MI_PAGE_COLOR_VA_PROCESS (MmWorkingSetList,
                                      &CurrentProcess->NextPageColor);

    VadBitMapPage = MiRemoveZeroPageMayReleaseLocks (Color, OldIrql);

    Pfn1 = MI_PFN_ELEMENT (VadBitMapPage);

    if (Pfn1->u3.e1.CacheAttribute != MiCached) {
        Pfn1->u3.e1.CacheAttribute = MiCached;
        FlushTbNeeded = TRUE;
    }

    //
    // Remove a page for the working set list.
    //

    if (MmAvailablePages < MM_HIGH_LIMIT) {
        MiEnsureAvailablePageOrWait (NULL, OldIrql);
    }

    Color = MI_PAGE_COLOR_VA_PROCESS (MmWorkingSetList,
                                      &CurrentProcess->NextPageColor);

    PageContainingWorkingSet = MiRemoveZeroPageMayReleaseLocks (Color, OldIrql);

    Pfn1 = MI_PFN_ELEMENT (PageContainingWorkingSet);

    if (Pfn1->u3.e1.CacheAttribute != MiCached) {
        Pfn1->u3.e1.CacheAttribute = MiCached;
        FlushTbNeeded = TRUE;
    }

    UNLOCK_PFN (OldIrql);

    if (FlushTbNeeded == TRUE) {
        MI_FLUSH_TB_FOR_CACHED_ATTRIBUTE ();
    }

    ASSERT (NewProcess->AddressSpaceInitialized == 0);
    PS_SET_BITS (&NewProcess->Flags, PS_PROCESS_FLAGS_ADDRESS_SPACE1);
    ASSERT (NewProcess->AddressSpaceInitialized == 1);

    NewProcess->Vm.MinimumWorkingSetSize = MinimumWorkingSetSize;

    NewProcess->WorkingSetPage = PageContainingWorkingSet;

    INITIALIZE_DIRECTORY_TABLE_BASE (&DirectoryTableBase[0], PageDirectoryIndex);

    INITIALIZE_DIRECTORY_TABLE_BASE (&DirectoryTableBase[1], HyperSpaceIndex);

    //
    // Initialize the page reserved for hyper space.
    //

    TempPte = ValidPdePde;
    MI_SET_GLOBAL_STATE (TempPte, 0);

    MappingPte = MiReserveSystemPtes (1, SystemPteSpace);

    if (MappingPte != NULL) {

        MI_MAKE_VALID_KERNEL_PTE (TempPte2,
                                  HyperSpaceIndex,
                                  MM_READWRITE,
                                  MappingPte);

        MI_SET_PTE_DIRTY (TempPte2);

        MI_WRITE_VALID_PTE (MappingPte, TempPte2);

        PointerPte = MiGetVirtualAddressMappedByPte (MappingPte);
    }
    else {
        PointerPte = MiMapPageInHyperSpace (CurrentProcess, HyperSpaceIndex, &OldIrql);
    }

    TempPte.u.Hard.PageFrameNumber = VadBitMapPage;
    PointerPte[MiGetPteOffset(VAD_BITMAP_SPACE)] = TempPte;

    TempPte.u.Hard.PageFrameNumber = PageContainingWorkingSet;
    PointerPte[MiGetPteOffset(MmWorkingSetList)] = TempPte;

    if (MappingPte != NULL) {
        MiReleaseSystemPtes (MappingPte, 1, SystemPteSpace);
    }
    else {
        MiUnmapPageInHyperSpace (CurrentProcess, PointerPte, OldIrql);
    }

    //
    // Set the PTE address in the PFN for the page directory page.
    //

    Pfn1 = MI_PFN_ELEMENT (PageDirectoryIndex);

    Pfn1->PteAddress = (PMMPTE)PDE_BASE;

    TempPte = ValidPdePde;
    TempPte.u.Hard.PageFrameNumber = HyperSpaceIndex;
    MI_SET_GLOBAL_STATE (TempPte, 0);

    //
    // Add the new process to our internal list prior to filling any
    // system PDEs so if a system PDE changes (large page map or unmap)
    // it can mark this process for a subsequent update.
    //

    ASSERT (NewProcess->Pcb.DirectoryTableBase[0] == 0);

    LOCK_EXPANSION (OldIrql);

    InsertTailList (&MmProcessList, &NewProcess->MmProcessLinks);

    UNLOCK_EXPANSION (OldIrql);

    //
    // Map the page directory page in hyperspace.
    //

    MappingPte = MiReserveSystemPtes (1, SystemPteSpace);

    if (MappingPte != NULL) {

        MI_MAKE_VALID_KERNEL_PTE (TempPte2,
                                  PageDirectoryIndex,
                                  MM_READWRITE,
                                  MappingPte);

        MI_SET_PTE_DIRTY (TempPte2);

        MI_WRITE_VALID_PTE (MappingPte, TempPte2);

        PointerPte = MiGetVirtualAddressMappedByPte (MappingPte);
    }
    else {
        PointerPte = MiMapPageInHyperSpace (CurrentProcess, PageDirectoryIndex, &OldIrql);
    }

    PdeOffset = MiGetPdeOffset (MmSystemRangeStart);
    PointerFillPte = &PointerPte[PdeOffset];
    CurrentAddressSpacePde = MiGetPdeAddress (MmSystemRangeStart);

    RtlCopyMemory (PointerFillPte,
                   CurrentAddressSpacePde,
                   PAGE_SIZE - PdeOffset * sizeof (MMPTE));

    //
    // Map the working set page table page.
    //

    PdeOffset = MiGetPdeOffset (HYPER_SPACE);
    PointerPte[PdeOffset] = TempPte;

    //
    // Zero the remaining page directory range used to map the working
    // set list and its hash.
    //

    PdeOffset += 1;
    ASSERT (MiGetPdeOffset (MmHyperSpaceEnd) >= PdeOffset);

    MiZeroMemoryPte (&PointerPte[PdeOffset],
                     (MiGetPdeOffset (MmHyperSpaceEnd) - PdeOffset + 1));

    //
    // Recursively map the page directory page so it points to itself.
    //

    TempPte.u.Hard.PageFrameNumber = PageDirectoryIndex;
    PointerPte[MiGetPdeOffset(PTE_BASE)] = TempPte;

    if (MappingPte != NULL) {
        MiReleaseSystemPtes (MappingPte, 1, SystemPteSpace);
    }
    else {
        MiUnmapPageInHyperSpace (CurrentProcess, PointerPte, OldIrql);
    }

    InterlockedExchangeAddSizeT (&MmProcessCommit, MM_PROCESS_COMMIT_CHARGE);

    //
    // Up the session space reference count.
    //

    MiSessionAddProcess (NewProcess);

    return TRUE;
}
예제 #3
0
파일: mdlsup.c 프로젝트: RPG-7/reactos
/*
 * @implemented
 */
VOID
NTAPI
MmUnlockPages(IN PMDL Mdl)
{
    PPFN_NUMBER MdlPages, LastPage;
    PEPROCESS Process;
    PVOID Base;
    ULONG Flags, PageCount;
    KIRQL OldIrql;
    PMMPFN Pfn1;
    DPRINT("Unlocking MDL: %p\n", Mdl);

    //
    // Sanity checks
    //
    ASSERT((Mdl->MdlFlags & MDL_PAGES_LOCKED) != 0);
    ASSERT((Mdl->MdlFlags & MDL_SOURCE_IS_NONPAGED_POOL) == 0);
    ASSERT((Mdl->MdlFlags & MDL_PARTIAL) == 0);
    ASSERT(Mdl->ByteCount != 0);

    //
    // Get the process associated and capture the flags which are volatile
    //
    Process = Mdl->Process;
    Flags = Mdl->MdlFlags;

    //
    // Automagically undo any calls to MmGetSystemAddressForMdl's for this MDL
    //
    if (Mdl->MdlFlags & MDL_MAPPED_TO_SYSTEM_VA)
    {
        //
        // Unmap the pages from system space
        //
        MmUnmapLockedPages(Mdl->MappedSystemVa, Mdl);
    }

    //
    // Get the page count
    //
    MdlPages = (PPFN_NUMBER)(Mdl + 1);
    Base = (PVOID)((ULONG_PTR)Mdl->StartVa + Mdl->ByteOffset);
    PageCount = ADDRESS_AND_SIZE_TO_SPAN_PAGES(Base, Mdl->ByteCount);
    ASSERT(PageCount != 0);

    //
    // We don't support AWE
    //
    if (Flags & MDL_DESCRIBES_AWE) ASSERT(FALSE);

    //
    // Check if the buffer is mapped I/O space
    //
    if (Flags & MDL_IO_SPACE)
    {
        //
        // Acquire PFN lock
        //
        OldIrql = KeAcquireQueuedSpinLock(LockQueuePfnLock);

        //
        // Loop every page
        //
        LastPage = MdlPages + PageCount;
        do
        {
            //
            // Last page, break out
            //
            if (*MdlPages == LIST_HEAD) break;

            //
            // Check if this page is in the PFN database
            //
            Pfn1 = MiGetPfnEntry(*MdlPages);
            if (Pfn1) MiDereferencePfnAndDropLockCount(Pfn1);
        } while (++MdlPages < LastPage);

        //
        // Release the lock
        //
        KeReleaseQueuedSpinLock(LockQueuePfnLock, OldIrql);

        //
        // Check if we have a process
        //
        if (Process)
        {
            //
            // Handle the accounting of locked pages
            //
            ASSERT(Process->NumberOfLockedPages > 0);
            InterlockedExchangeAddSizeT(&Process->NumberOfLockedPages,
                                        -(LONG_PTR)PageCount);
        }

        //
        // We're done
        //
        Mdl->MdlFlags &= ~MDL_IO_SPACE;
        Mdl->MdlFlags &= ~MDL_PAGES_LOCKED;
        return;
    }

    //
    // Check if we have a process
    //
    if (Process)
    {
        //
        // Handle the accounting of locked pages
        //
        ASSERT(Process->NumberOfLockedPages > 0);
        InterlockedExchangeAddSizeT(&Process->NumberOfLockedPages,
                                    -(LONG_PTR)PageCount);
    }

    //
    // Loop every page
    //
    LastPage = MdlPages + PageCount;
    do
    {
        //
        // Last page reached
        //
        if (*MdlPages == LIST_HEAD)
        {
            //
            // Were there no pages at all?
            //
            if (MdlPages == (PPFN_NUMBER)(Mdl + 1))
            {
                //
                // We're already done
                //
                Mdl->MdlFlags &= ~MDL_PAGES_LOCKED;
                return;
            }

            //
            // Otherwise, stop here
            //
            LastPage = MdlPages;
            break;
        }

        /* Save the PFN entry instead for the secondary loop */
        *MdlPages = (PFN_NUMBER)MiGetPfnEntry(*MdlPages);
        ASSERT(*MdlPages != 0);
    } while (++MdlPages < LastPage);

    //
    // Reset pointer
    //
    MdlPages = (PPFN_NUMBER)(Mdl + 1);

    //
    // Now grab the PFN lock for the actual unlock and dereference
    //
    OldIrql = KeAcquireQueuedSpinLock(LockQueuePfnLock);
    do
    {
        /* Get the current entry and reference count */
        Pfn1 = (PMMPFN)*MdlPages;
        MiDereferencePfnAndDropLockCount(Pfn1);
    } while (++MdlPages < LastPage);

    //
    // Release the lock
    //
    KeReleaseQueuedSpinLock(LockQueuePfnLock, OldIrql);

    //
    // We're done
    //
    Mdl->MdlFlags &= ~MDL_PAGES_LOCKED;
}
예제 #4
0
/*
 * @unimplemented
 */
NTSTATUS
NTAPI
MmAdjustWorkingSetSize(IN SIZE_T WorkingSetMinimumInBytes,
                       IN SIZE_T WorkingSetMaximumInBytes,
                       IN ULONG SystemCache,
                       IN BOOLEAN IncreaseOkay)
{
    SIZE_T MinimumWorkingSetSize, MaximumWorkingSetSize;
    SSIZE_T Delta;
    PMMSUPPORT Ws;
    NTSTATUS Status;

    /* Check for special case: empty the working set */
    if ((WorkingSetMinimumInBytes == -1) &&
        (WorkingSetMaximumInBytes == -1))
    {
        UNIMPLEMENTED;
        return STATUS_NOT_IMPLEMENTED;
    }

    /* Assume success */
    Status = STATUS_SUCCESS;

    /* Get the working set and lock it */
    Ws = &PsGetCurrentProcess()->Vm;
    MiLockWorkingSet(PsGetCurrentThread(), Ws);

    /* Calculate the actual minimum and maximum working set size to set */
    MinimumWorkingSetSize = (WorkingSetMinimumInBytes != 0) ?
        (WorkingSetMinimumInBytes / PAGE_SIZE) : Ws->MinimumWorkingSetSize;
    MaximumWorkingSetSize = (WorkingSetMaximumInBytes != 0) ?
        (WorkingSetMaximumInBytes / PAGE_SIZE) : Ws->MaximumWorkingSetSize;

    /* Check if the new maximum exceeds the global maximum */
    if (MaximumWorkingSetSize > MmMaximumWorkingSetSize)
    {
        MaximumWorkingSetSize = MmMaximumWorkingSetSize;
        Status = STATUS_WORKING_SET_LIMIT_RANGE;
    }

    /* Check if the new minimum is below the global minimum */
    if (MinimumWorkingSetSize < MmMinimumWorkingSetSize)
    {
        MinimumWorkingSetSize = MmMinimumWorkingSetSize;
        Status = STATUS_WORKING_SET_LIMIT_RANGE;
    }

    /* Check if the new minimum exceeds the new maximum */
    if (MinimumWorkingSetSize > MaximumWorkingSetSize)
    {
        DPRINT1("MinimumWorkingSetSize > MaximumWorkingSetSize\n");
        Status = STATUS_BAD_WORKING_SET_LIMIT;
        goto Cleanup;
    }

    /* Calculate the minimum WS size adjustment and check if we increase */
    Delta = MinimumWorkingSetSize - Ws->MinimumWorkingSetSize;
    if (Delta > 0)
    {
        /* Is increasing ok? */
        if (!IncreaseOkay)
        {
            DPRINT1("Privilege for WS size increase not held\n");
            Status = STATUS_PRIVILEGE_NOT_HELD;
            goto Cleanup;
        }

        /* Check if the number of available pages is large enough */
        if (((SIZE_T)Delta / 1024) > (MmAvailablePages - 128))
        {
            DPRINT1("Not enough available pages\n");
            Status = STATUS_INSUFFICIENT_RESOURCES;
            goto Cleanup;
        }

        /* Check if there are enough resident available pages */
        if ((SIZE_T)Delta >
            (MmResidentAvailablePages - MmSystemLockPagesCount - 256))
        {
            DPRINT1("Not enough resident pages\n");
            Status = STATUS_INSUFFICIENT_RESOURCES;
            goto Cleanup;
        }
    }

    /* Update resident available pages */
    if (Delta != 0)
    {
        InterlockedExchangeAddSizeT(&MmResidentAvailablePages, -Delta);
    }

    /* Calculate new pages above minimum WS size */
    Delta += max((SSIZE_T)Ws->WorkingSetSize - MinimumWorkingSetSize, 0);

    /* Subtract old pages above minimum WS size */
    Delta -= max((SSIZE_T)Ws->WorkingSetSize - Ws->MinimumWorkingSetSize, 0);

    /* If it changed, add it to the global variable */
    if (Delta != 0)
    {
        InterlockedExchangeAddSizeT(&MmPagesAboveWsMinimum, Delta);
    }

    /* Set the new working set size */
    Ws->MinimumWorkingSetSize = MinimumWorkingSetSize;
    Ws->MaximumWorkingSetSize = MaximumWorkingSetSize;

Cleanup:

    /* Unlock the working set and return the status */
    MiUnlockWorkingSet(PsGetCurrentThread(), Ws);
    return Status;
}