예제 #1
0
파일: Repair.cpp 프로젝트: finefin/audacity
bool EffectRepair::ProcessOne(int count, WaveTrack * track,
                              sampleCount start,
                              size_t len,
                              size_t repairStart, size_t repairLen)
{
   Floats buffer{ len };
   track->Get((samplePtr) buffer.get(), floatSample, start, len);
   InterpolateAudio(buffer.get(), len, repairStart, repairLen);
   track->Set((samplePtr)&buffer[repairStart], floatSample,
              start + repairStart, repairLen);
   return !TrackProgress(count, 1.0); // TrackProgress returns true on Cancel.
}
예제 #2
0
파일: Repair.cpp 프로젝트: GYGit/Audacity
bool EffectRepair::ProcessOne(int count, WaveTrack * track,
                              sampleCount start,
                              sampleCount len,
                              sampleCount repairStart, sampleCount repairLen)
{
   float *buffer = new float[len];
   track->Get((samplePtr) buffer, floatSample, start, len);
   InterpolateAudio(buffer, len, repairStart, repairLen);
   track->Set((samplePtr)&buffer[repairStart], floatSample,
              start + repairStart, repairLen);
   delete[] buffer;
   return !TrackProgress(count, 1.0); // TrackProgress returns true on Cancel.
}
예제 #3
0
// Here's the main interpolate function, using
// Least Squares AutoRegression (LSAR):
void InterpolateAudio(float *buffer, int len,
                      int firstBad, int numBad)
{
   int N = len;
   int i, row, col;

   wxASSERT(len > 0 &&
            firstBad >= 0 &&
            numBad < len &&
            firstBad+numBad <= len);

   if(numBad >= len)
      return;  //should never have been called!

   if (firstBad == 0) {
      // The algorithm below has a weird asymmetry in that it
      // performs poorly when interpolating to the left.  If
      // we're asked to interpolate the left side of a buffer,
      // we just reverse the problem and try it that way.
      float *buffer2 = new float[len];
      for(i=0; i<len; i++)
         buffer2[len-1-i] = buffer[i];
      InterpolateAudio(buffer2, len, len-numBad, numBad);
      for(i=0; i<len; i++)
         buffer[len-1-i] = buffer2[i];
      return;
   }

   Vector s(len, buffer);

   // Choose P, the order of the autoregression equation
   int P = imin(numBad * 3, 50);
   P = imin(P, imax(firstBad - 1, len - (firstBad + numBad) - 1));

   if (P < 3) {
      LinearInterpolateAudio(buffer, len, firstBad, numBad);
      return;
   }

   // Add a tiny amount of random noise to the input signal -
   // this sounds like a bad idea, but the amount we're adding
   // is only about 1 bit in 16-bit audio, and it's an extremely
   // effective way to avoid nearly-singular matrices.  If users
   // run it more than once they get slightly different results;
   // this is sometimes even advantageous.
   for(i=0; i<N; i++)
      s[i] += (rand()-(RAND_MAX/2))/(RAND_MAX*10000.0);

   // Solve for the best autoregression coefficients
   // using a least-squares fit to all of the non-bad
   // data we have in the buffer
   Matrix X(P, P);
   Vector b(P);

   for(i=0; i<len-P; i++)
      if (i+P < firstBad || i >= (firstBad + numBad))
         for(row=0; row<P; row++) {
            for(col=0; col<P; col++)
               X[row][col] += (s[i+row] * s[i+col]);
            b[row] += s[i+P] * s[i+row];
         }

   Matrix Xinv(P, P);
   if (!InvertMatrix(X, Xinv)) {
      // The matrix is singular!  Fall back on linear...
      // In practice I have never seen this happen if
      // we add the tiny bit of random noise.
      LinearInterpolateAudio(buffer, len, firstBad, numBad);
      return;
   }

   // This vector now contains the autoregression coefficients
   Vector a = Xinv * b;

   // Create a matrix (a "Toeplitz" matrix, as it turns out)
   // which encodes the autoregressive relationship between
   // elements of the sequence.
   Matrix A(N-P, N);
   for(row=0; row<N-P; row++) {
      for(col=0; col<P; col++)
         A[row][row+col] = -a[col];
      A[row][row+P] = 1;
   }

   // Split both the Toeplitz matrix and the signal into
   // two pieces.  Note that this code could be made to
   // work even in the case where the "bad" samples are
   // not contiguous, but currently it assumes they are.
   //   "u" is for unknown (bad)
   //   "k" is for known (good)
   Matrix Au = MatrixSubset(A, 0, N-P, firstBad, numBad);
   Matrix A_left = MatrixSubset(A, 0, N-P, 0, firstBad);
   Matrix A_right = MatrixSubset(A, 0, N-P,
                                 firstBad+numBad, N-(firstBad+numBad));
   Matrix Ak = MatrixConcatenateCols(A_left, A_right);

   Vector s_left = VectorSubset(s, 0, firstBad);
   Vector s_right = VectorSubset(s, firstBad+numBad,
                                 N-(firstBad+numBad));
   Vector sk = VectorConcatenate(s_left, s_right);

   // Do some linear algebra to find the best possible
   // values that fill in the "bad" area
   Matrix AuT = TransposeMatrix(Au);
   Matrix X1 = MatrixMultiply(AuT, Au);
   Matrix X2(X1.Rows(), X1.Cols());
   if (!InvertMatrix(X1, X2)) {
      // The matrix is singular!  Fall back on linear...
      LinearInterpolateAudio(buffer, len, firstBad, numBad);
      return;
   }
   Matrix X2b = X2 * -1.0;
   Matrix X3 = MatrixMultiply(X2b, AuT);
   Matrix X4 = MatrixMultiply(X3, Ak);
   // This vector contains our best guess as to the
   // unknown values
   Vector su = X4 * sk;

   // Put the results into the return buffer
   for(i=0; i<numBad; i++)
      buffer[firstBad+i] = (float)su[i];
}