/* TaoSolve_NTR - Implements Newton's Method with a trust region approach for solving unconstrained minimization problems. The basic algorithm is taken from MINPACK-2 (dstrn). TaoSolve_NTR computes a local minimizer of a twice differentiable function f by applying a trust region variant of Newton's method. At each stage of the algorithm, we use the prconditioned conjugate gradient method to determine an approximate minimizer of the quadratic equation q(s) = <s, Hs + g> subject to the trust region constraint || s ||_M <= radius, where radius is the trust region radius and M is a symmetric positive definite matrix (the preconditioner). Here g is the gradient and H is the Hessian matrix. Note: TaoSolve_NTR MUST use the iterative solver KSPCGNASH, KSPCGSTCG, or KSPCGGLTR. Thus, we set KSPCGNASH, KSPCGSTCG, or KSPCGGLTR in this routine regardless of what the user may have previously specified. */ static PetscErrorCode TaoSolve_NTR(Tao tao) { TAO_NTR *tr = (TAO_NTR *)tao->data; KSPType ksp_type; PetscBool is_nash,is_stcg,is_gltr; KSPConvergedReason ksp_reason; PC pc; TaoConvergedReason reason; PetscReal fmin, ftrial, prered, actred, kappa, sigma, beta; PetscReal tau, tau_1, tau_2, tau_max, tau_min, max_radius; PetscReal f, gnorm; PetscReal delta; PetscReal norm_d; PetscErrorCode ierr; PetscInt bfgsUpdates = 0; PetscInt needH; PetscInt i_max = 5; PetscInt j_max = 1; PetscInt i, j, N, n, its; PetscFunctionBegin; if (tao->XL || tao->XU || tao->ops->computebounds) { ierr = PetscPrintf(((PetscObject)tao)->comm,"WARNING: Variable bounds have been set but will be ignored by ntr algorithm\n");CHKERRQ(ierr); } ierr = KSPGetType(tao->ksp,&ksp_type);CHKERRQ(ierr); ierr = PetscStrcmp(ksp_type,KSPCGNASH,&is_nash);CHKERRQ(ierr); ierr = PetscStrcmp(ksp_type,KSPCGSTCG,&is_stcg);CHKERRQ(ierr); ierr = PetscStrcmp(ksp_type,KSPCGGLTR,&is_gltr);CHKERRQ(ierr); if (!is_nash && !is_stcg && !is_gltr) { SETERRQ(PETSC_COMM_SELF,1,"TAO_NTR requires nash, stcg, or gltr for the KSP"); } /* Initialize the radius and modify if it is too large or small */ tao->trust = tao->trust0; tao->trust = PetscMax(tao->trust, tr->min_radius); tao->trust = PetscMin(tao->trust, tr->max_radius); if (NTR_PC_BFGS == tr->pc_type && !tr->M) { ierr = VecGetLocalSize(tao->solution,&n);CHKERRQ(ierr); ierr = VecGetSize(tao->solution,&N);CHKERRQ(ierr); ierr = MatCreateLMVM(((PetscObject)tao)->comm,n,N,&tr->M);CHKERRQ(ierr); ierr = MatLMVMAllocateVectors(tr->M,tao->solution);CHKERRQ(ierr); } /* Check convergence criteria */ ierr = TaoComputeObjectiveAndGradient(tao, tao->solution, &f, tao->gradient);CHKERRQ(ierr); ierr = TaoGradientNorm(tao, tao->gradient,NORM_2,&gnorm);CHKERRQ(ierr); if (PetscIsInfOrNanReal(f) || PetscIsInfOrNanReal(gnorm)) SETERRQ(PETSC_COMM_SELF,1,"User provided compute function generated Inf or NaN"); needH = 1; ierr = TaoMonitor(tao, tao->niter, f, gnorm, 0.0, 1.0, &reason);CHKERRQ(ierr); if (reason != TAO_CONTINUE_ITERATING) PetscFunctionReturn(0); /* Create vectors for the limited memory preconditioner */ if ((NTR_PC_BFGS == tr->pc_type) && (BFGS_SCALE_BFGS != tr->bfgs_scale_type)) { if (!tr->Diag) { ierr = VecDuplicate(tao->solution, &tr->Diag);CHKERRQ(ierr); } } /* Modify the preconditioner to use the bfgs approximation */ ierr = KSPGetPC(tao->ksp, &pc);CHKERRQ(ierr); switch(tr->pc_type) { case NTR_PC_NONE: ierr = PCSetType(pc, PCNONE);CHKERRQ(ierr); ierr = PCSetFromOptions(pc);CHKERRQ(ierr); break; case NTR_PC_AHESS: ierr = PCSetType(pc, PCJACOBI);CHKERRQ(ierr); ierr = PCSetFromOptions(pc);CHKERRQ(ierr); ierr = PCJacobiSetUseAbs(pc,PETSC_TRUE);CHKERRQ(ierr); break; case NTR_PC_BFGS: ierr = PCSetType(pc, PCSHELL);CHKERRQ(ierr); ierr = PCSetFromOptions(pc);CHKERRQ(ierr); ierr = PCShellSetName(pc, "bfgs");CHKERRQ(ierr); ierr = PCShellSetContext(pc, tr->M);CHKERRQ(ierr); ierr = PCShellSetApply(pc, MatLMVMSolveShell);CHKERRQ(ierr); break; default: /* Use the pc method set by pc_type */ break; } /* Initialize trust-region radius */ switch(tr->init_type) { case NTR_INIT_CONSTANT: /* Use the initial radius specified */ break; case NTR_INIT_INTERPOLATION: /* Use the initial radius specified */ max_radius = 0.0; for (j = 0; j < j_max; ++j) { fmin = f; sigma = 0.0; if (needH) { ierr = TaoComputeHessian(tao,tao->solution,tao->hessian,tao->hessian_pre);CHKERRQ(ierr); needH = 0; } for (i = 0; i < i_max; ++i) { ierr = VecCopy(tao->solution, tr->W);CHKERRQ(ierr); ierr = VecAXPY(tr->W, -tao->trust/gnorm, tao->gradient);CHKERRQ(ierr); ierr = TaoComputeObjective(tao, tr->W, &ftrial);CHKERRQ(ierr); if (PetscIsInfOrNanReal(ftrial)) { tau = tr->gamma1_i; } else { if (ftrial < fmin) { fmin = ftrial; sigma = -tao->trust / gnorm; } ierr = MatMult(tao->hessian, tao->gradient, tao->stepdirection);CHKERRQ(ierr); ierr = VecDot(tao->gradient, tao->stepdirection, &prered);CHKERRQ(ierr); prered = tao->trust * (gnorm - 0.5 * tao->trust * prered / (gnorm * gnorm)); actred = f - ftrial; if ((PetscAbsScalar(actred) <= tr->epsilon) && (PetscAbsScalar(prered) <= tr->epsilon)) { kappa = 1.0; } else { kappa = actred / prered; } tau_1 = tr->theta_i * gnorm * tao->trust / (tr->theta_i * gnorm * tao->trust + (1.0 - tr->theta_i) * prered - actred); tau_2 = tr->theta_i * gnorm * tao->trust / (tr->theta_i * gnorm * tao->trust - (1.0 + tr->theta_i) * prered + actred); tau_min = PetscMin(tau_1, tau_2); tau_max = PetscMax(tau_1, tau_2); if (PetscAbsScalar(kappa - 1.0) <= tr->mu1_i) { /* Great agreement */ max_radius = PetscMax(max_radius, tao->trust); if (tau_max < 1.0) { tau = tr->gamma3_i; } else if (tau_max > tr->gamma4_i) { tau = tr->gamma4_i; } else { tau = tau_max; } } else if (PetscAbsScalar(kappa - 1.0) <= tr->mu2_i) { /* Good agreement */ max_radius = PetscMax(max_radius, tao->trust); if (tau_max < tr->gamma2_i) { tau = tr->gamma2_i; } else if (tau_max > tr->gamma3_i) { tau = tr->gamma3_i; } else { tau = tau_max; } } else { /* Not good agreement */ if (tau_min > 1.0) { tau = tr->gamma2_i; } else if (tau_max < tr->gamma1_i) { tau = tr->gamma1_i; } else if ((tau_min < tr->gamma1_i) && (tau_max >= 1.0)) { tau = tr->gamma1_i; } else if ((tau_1 >= tr->gamma1_i) && (tau_1 < 1.0) && ((tau_2 < tr->gamma1_i) || (tau_2 >= 1.0))) { tau = tau_1; } else if ((tau_2 >= tr->gamma1_i) && (tau_2 < 1.0) && ((tau_1 < tr->gamma1_i) || (tau_2 >= 1.0))) { tau = tau_2; } else { tau = tau_max; } } } tao->trust = tau * tao->trust; } if (fmin < f) { f = fmin; ierr = VecAXPY(tao->solution, sigma, tao->gradient);CHKERRQ(ierr); ierr = TaoComputeGradient(tao,tao->solution, tao->gradient);CHKERRQ(ierr); ierr = TaoGradientNorm(tao, tao->gradient,NORM_2,&gnorm);CHKERRQ(ierr); if (PetscIsInfOrNanReal(f) || PetscIsInfOrNanReal(gnorm)) SETERRQ(PETSC_COMM_SELF,1, "User provided compute function generated Inf or NaN"); needH = 1; ierr = TaoMonitor(tao, tao->niter, f, gnorm, 0.0, 1.0, &reason);CHKERRQ(ierr); if (reason != TAO_CONTINUE_ITERATING) { PetscFunctionReturn(0); } } } tao->trust = PetscMax(tao->trust, max_radius); /* Modify the radius if it is too large or small */ tao->trust = PetscMax(tao->trust, tr->min_radius); tao->trust = PetscMin(tao->trust, tr->max_radius); break; default: /* Norm of the first direction will initialize radius */ tao->trust = 0.0; break; } /* Set initial scaling for the BFGS preconditioner This step is done after computing the initial trust-region radius since the function value may have decreased */ if (NTR_PC_BFGS == tr->pc_type) { if (f != 0.0) { delta = 2.0 * PetscAbsScalar(f) / (gnorm*gnorm); } else { delta = 2.0 / (gnorm*gnorm); } ierr = MatLMVMSetDelta(tr->M,delta);CHKERRQ(ierr); } /* Have not converged; continue with Newton method */ while (reason == TAO_CONTINUE_ITERATING) { ++tao->niter; tao->ksp_its=0; /* Compute the Hessian */ if (needH) { ierr = TaoComputeHessian(tao,tao->solution,tao->hessian,tao->hessian_pre);CHKERRQ(ierr); needH = 0; } if (NTR_PC_BFGS == tr->pc_type) { if (BFGS_SCALE_AHESS == tr->bfgs_scale_type) { /* Obtain diagonal for the bfgs preconditioner */ ierr = MatGetDiagonal(tao->hessian, tr->Diag);CHKERRQ(ierr); ierr = VecAbs(tr->Diag);CHKERRQ(ierr); ierr = VecReciprocal(tr->Diag);CHKERRQ(ierr); ierr = MatLMVMSetScale(tr->M,tr->Diag);CHKERRQ(ierr); } /* Update the limited memory preconditioner */ ierr = MatLMVMUpdate(tr->M, tao->solution, tao->gradient);CHKERRQ(ierr); ++bfgsUpdates; } while (reason == TAO_CONTINUE_ITERATING) { ierr = KSPSetOperators(tao->ksp, tao->hessian, tao->hessian_pre);CHKERRQ(ierr); /* Solve the trust region subproblem */ ierr = KSPCGSetRadius(tao->ksp,tao->trust);CHKERRQ(ierr); ierr = KSPSolve(tao->ksp, tao->gradient, tao->stepdirection);CHKERRQ(ierr); ierr = KSPGetIterationNumber(tao->ksp,&its);CHKERRQ(ierr); tao->ksp_its+=its; tao->ksp_tot_its+=its; ierr = KSPCGGetNormD(tao->ksp, &norm_d);CHKERRQ(ierr); if (0.0 == tao->trust) { /* Radius was uninitialized; use the norm of the direction */ if (norm_d > 0.0) { tao->trust = norm_d; /* Modify the radius if it is too large or small */ tao->trust = PetscMax(tao->trust, tr->min_radius); tao->trust = PetscMin(tao->trust, tr->max_radius); } else { /* The direction was bad; set radius to default value and re-solve the trust-region subproblem to get a direction */ tao->trust = tao->trust0; /* Modify the radius if it is too large or small */ tao->trust = PetscMax(tao->trust, tr->min_radius); tao->trust = PetscMin(tao->trust, tr->max_radius); ierr = KSPCGSetRadius(tao->ksp,tao->trust);CHKERRQ(ierr); ierr = KSPSolve(tao->ksp, tao->gradient, tao->stepdirection);CHKERRQ(ierr); ierr = KSPGetIterationNumber(tao->ksp,&its);CHKERRQ(ierr); tao->ksp_its+=its; tao->ksp_tot_its+=its; ierr = KSPCGGetNormD(tao->ksp, &norm_d);CHKERRQ(ierr); if (norm_d == 0.0) SETERRQ(PETSC_COMM_SELF,1, "Initial direction zero"); } } ierr = VecScale(tao->stepdirection, -1.0);CHKERRQ(ierr); ierr = KSPGetConvergedReason(tao->ksp, &ksp_reason);CHKERRQ(ierr); if ((KSP_DIVERGED_INDEFINITE_PC == ksp_reason) && (NTR_PC_BFGS == tr->pc_type) && (bfgsUpdates > 1)) { /* Preconditioner is numerically indefinite; reset the approximate if using BFGS preconditioning. */ if (f != 0.0) { delta = 2.0 * PetscAbsScalar(f) / (gnorm*gnorm); } else { delta = 2.0 / (gnorm*gnorm); } ierr = MatLMVMSetDelta(tr->M, delta);CHKERRQ(ierr); ierr = MatLMVMReset(tr->M);CHKERRQ(ierr); ierr = MatLMVMUpdate(tr->M, tao->solution, tao->gradient);CHKERRQ(ierr); bfgsUpdates = 1; } if (NTR_UPDATE_REDUCTION == tr->update_type) { /* Get predicted reduction */ ierr = KSPCGGetObjFcn(tao->ksp,&prered);CHKERRQ(ierr); if (prered >= 0.0) { /* The predicted reduction has the wrong sign. This cannot happen in infinite precision arithmetic. Step should be rejected! */ tao->trust = tr->alpha1 * PetscMin(tao->trust, norm_d); } else { /* Compute trial step and function value */ ierr = VecCopy(tao->solution,tr->W);CHKERRQ(ierr); ierr = VecAXPY(tr->W, 1.0, tao->stepdirection);CHKERRQ(ierr); ierr = TaoComputeObjective(tao, tr->W, &ftrial);CHKERRQ(ierr); if (PetscIsInfOrNanReal(ftrial)) { tao->trust = tr->alpha1 * PetscMin(tao->trust, norm_d); } else { /* Compute and actual reduction */ actred = f - ftrial; prered = -prered; if ((PetscAbsScalar(actred) <= tr->epsilon) && (PetscAbsScalar(prered) <= tr->epsilon)) { kappa = 1.0; } else { kappa = actred / prered; } /* Accept or reject the step and update radius */ if (kappa < tr->eta1) { /* Reject the step */ tao->trust = tr->alpha1 * PetscMin(tao->trust, norm_d); } else { /* Accept the step */ if (kappa < tr->eta2) { /* Marginal bad step */ tao->trust = tr->alpha2 * PetscMin(tao->trust, norm_d); } else if (kappa < tr->eta3) { /* Reasonable step */ tao->trust = tr->alpha3 * tao->trust; } else if (kappa < tr->eta4) { /* Good step */ tao->trust = PetscMax(tr->alpha4 * norm_d, tao->trust); } else { /* Very good step */ tao->trust = PetscMax(tr->alpha5 * norm_d, tao->trust); } break; } } } } else { /* Get predicted reduction */ ierr = KSPCGGetObjFcn(tao->ksp,&prered);CHKERRQ(ierr); if (prered >= 0.0) { /* The predicted reduction has the wrong sign. This cannot happen in infinite precision arithmetic. Step should be rejected! */ tao->trust = tr->gamma1 * PetscMin(tao->trust, norm_d); } else { ierr = VecCopy(tao->solution, tr->W);CHKERRQ(ierr); ierr = VecAXPY(tr->W, 1.0, tao->stepdirection);CHKERRQ(ierr); ierr = TaoComputeObjective(tao, tr->W, &ftrial);CHKERRQ(ierr); if (PetscIsInfOrNanReal(ftrial)) { tao->trust = tr->gamma1 * PetscMin(tao->trust, norm_d); } else { ierr = VecDot(tao->gradient, tao->stepdirection, &beta);CHKERRQ(ierr); actred = f - ftrial; prered = -prered; if ((PetscAbsScalar(actred) <= tr->epsilon) && (PetscAbsScalar(prered) <= tr->epsilon)) { kappa = 1.0; } else { kappa = actred / prered; } tau_1 = tr->theta * beta / (tr->theta * beta - (1.0 - tr->theta) * prered + actred); tau_2 = tr->theta * beta / (tr->theta * beta + (1.0 + tr->theta) * prered - actred); tau_min = PetscMin(tau_1, tau_2); tau_max = PetscMax(tau_1, tau_2); if (kappa >= 1.0 - tr->mu1) { /* Great agreement; accept step and update radius */ if (tau_max < 1.0) { tao->trust = PetscMax(tao->trust, tr->gamma3 * norm_d); } else if (tau_max > tr->gamma4) { tao->trust = PetscMax(tao->trust, tr->gamma4 * norm_d); } else { tao->trust = PetscMax(tao->trust, tau_max * norm_d); } break; } else if (kappa >= 1.0 - tr->mu2) { /* Good agreement */ if (tau_max < tr->gamma2) { tao->trust = tr->gamma2 * PetscMin(tao->trust, norm_d); } else if (tau_max > tr->gamma3) { tao->trust = PetscMax(tao->trust, tr->gamma3 * norm_d); } else if (tau_max < 1.0) { tao->trust = tau_max * PetscMin(tao->trust, norm_d); } else { tao->trust = PetscMax(tao->trust, tau_max * norm_d); } break; } else { /* Not good agreement */ if (tau_min > 1.0) { tao->trust = tr->gamma2 * PetscMin(tao->trust, norm_d); } else if (tau_max < tr->gamma1) { tao->trust = tr->gamma1 * PetscMin(tao->trust, norm_d); } else if ((tau_min < tr->gamma1) && (tau_max >= 1.0)) { tao->trust = tr->gamma1 * PetscMin(tao->trust, norm_d); } else if ((tau_1 >= tr->gamma1) && (tau_1 < 1.0) && ((tau_2 < tr->gamma1) || (tau_2 >= 1.0))) { tao->trust = tau_1 * PetscMin(tao->trust, norm_d); } else if ((tau_2 >= tr->gamma1) && (tau_2 < 1.0) && ((tau_1 < tr->gamma1) || (tau_2 >= 1.0))) { tao->trust = tau_2 * PetscMin(tao->trust, norm_d); } else { tao->trust = tau_max * PetscMin(tao->trust, norm_d); } } } } } /* The step computed was not good and the radius was decreased. Monitor the radius to terminate. */ ierr = TaoMonitor(tao, tao->niter, f, gnorm, 0.0, tao->trust, &reason);CHKERRQ(ierr); } /* The radius may have been increased; modify if it is too large */ tao->trust = PetscMin(tao->trust, tr->max_radius); if (reason == TAO_CONTINUE_ITERATING) { ierr = VecCopy(tr->W, tao->solution);CHKERRQ(ierr); f = ftrial; ierr = TaoComputeGradient(tao, tao->solution, tao->gradient);CHKERRQ(ierr); ierr = TaoGradientNorm(tao, tao->gradient,NORM_2,&gnorm);CHKERRQ(ierr); if (PetscIsInfOrNanReal(f) || PetscIsInfOrNanReal(gnorm)) SETERRQ(PETSC_COMM_SELF,1, "User provided compute function generated Inf or NaN"); needH = 1; ierr = TaoMonitor(tao, tao->niter, f, gnorm, 0.0, tao->trust, &reason);CHKERRQ(ierr); } } PetscFunctionReturn(0); }
PetscErrorCode TaoSolve_BNTR(Tao tao) { PetscErrorCode ierr; TAO_BNK *bnk = (TAO_BNK *)tao->data; KSPConvergedReason ksp_reason; PetscReal oldTrust, prered, actred, steplen, resnorm; PetscBool cgTerminate, needH = PETSC_TRUE, stepAccepted, shift = PETSC_FALSE; PetscInt stepType, nDiff; PetscFunctionBegin; /* Initialize the preconditioner, KSP solver and trust radius/line search */ tao->reason = TAO_CONTINUE_ITERATING; ierr = TaoBNKInitialize(tao, bnk->init_type, &needH);CHKERRQ(ierr); if (tao->reason != TAO_CONTINUE_ITERATING) PetscFunctionReturn(0); /* Have not converged; continue with Newton method */ while (tao->reason == TAO_CONTINUE_ITERATING) { /* Call general purpose update function */ if (tao->ops->update) { ierr = (*tao->ops->update)(tao, tao->niter, tao->user_update);CHKERRQ(ierr); } ++tao->niter; if (needH && bnk->inactive_idx) { /* Take BNCG steps (if enabled) to trade-off Hessian evaluations for more gradient evaluations */ ierr = TaoBNKTakeCGSteps(tao, &cgTerminate);CHKERRQ(ierr); if (cgTerminate) { tao->reason = bnk->bncg->reason; PetscFunctionReturn(0); } /* Compute the hessian and update the BFGS preconditioner at the new iterate */ ierr = (*bnk->computehessian)(tao);CHKERRQ(ierr); needH = PETSC_FALSE; } /* Store current solution before it changes */ bnk->fold = bnk->f; ierr = VecCopy(tao->solution, bnk->Xold);CHKERRQ(ierr); ierr = VecCopy(tao->gradient, bnk->Gold);CHKERRQ(ierr); ierr = VecCopy(bnk->unprojected_gradient, bnk->unprojected_gradient_old);CHKERRQ(ierr); /* Enter into trust region loops */ stepAccepted = PETSC_FALSE; while (!stepAccepted && tao->reason == TAO_CONTINUE_ITERATING) { tao->ksp_its=0; /* Use the common BNK kernel to compute the Newton step (for inactive variables only) */ ierr = (*bnk->computestep)(tao, shift, &ksp_reason, &stepType);CHKERRQ(ierr); /* Temporarily accept the step and project it into the bounds */ ierr = VecAXPY(tao->solution, 1.0, tao->stepdirection);CHKERRQ(ierr); ierr = TaoBoundSolution(tao->solution, tao->XL,tao->XU, 0.0, &nDiff, tao->solution);CHKERRQ(ierr); /* Check if the projection changed the step direction */ if (nDiff > 0) { /* Projection changed the step, so we have to recompute the step and the predicted reduction. Leave the trust radius unchanged. */ ierr = VecCopy(tao->solution, tao->stepdirection);CHKERRQ(ierr); ierr = VecAXPY(tao->stepdirection, -1.0, bnk->Xold);CHKERRQ(ierr); ierr = TaoBNKRecomputePred(tao, tao->stepdirection, &prered);CHKERRQ(ierr); } else { /* Step did not change, so we can just recover the pre-computed prediction */ ierr = KSPCGGetObjFcn(tao->ksp, &prered);CHKERRQ(ierr); } prered = -prered; /* Compute the actual reduction and update the trust radius */ ierr = TaoComputeObjective(tao, tao->solution, &bnk->f);CHKERRQ(ierr); if (PetscIsInfOrNanReal(bnk->f)) SETERRQ(PETSC_COMM_SELF,1, "User provided compute function generated Inf or NaN"); actred = bnk->fold - bnk->f; oldTrust = tao->trust; ierr = TaoBNKUpdateTrustRadius(tao, prered, actred, bnk->update_type, stepType, &stepAccepted);CHKERRQ(ierr); if (stepAccepted) { /* Step is good, evaluate the gradient and flip the need-Hessian switch */ steplen = 1.0; needH = PETSC_TRUE; ++bnk->newt; ierr = TaoComputeGradient(tao, tao->solution, bnk->unprojected_gradient);CHKERRQ(ierr); ierr = TaoBNKEstimateActiveSet(tao, bnk->as_type);CHKERRQ(ierr); ierr = VecCopy(bnk->unprojected_gradient, tao->gradient);CHKERRQ(ierr); ierr = VecISSet(tao->gradient, bnk->active_idx, 0.0);CHKERRQ(ierr); ierr = TaoGradientNorm(tao, tao->gradient, NORM_2, &bnk->gnorm);CHKERRQ(ierr); } else { /* Step is bad, revert old solution and re-solve with new radius*/ steplen = 0.0; needH = PETSC_FALSE; bnk->f = bnk->fold; ierr = VecCopy(bnk->Xold, tao->solution);CHKERRQ(ierr); ierr = VecCopy(bnk->Gold, tao->gradient);CHKERRQ(ierr); ierr = VecCopy(bnk->unprojected_gradient_old, bnk->unprojected_gradient);CHKERRQ(ierr); if (oldTrust == tao->trust) { /* Can't change the radius anymore so just terminate */ tao->reason = TAO_DIVERGED_TR_REDUCTION; } } /* Check for termination */ ierr = VecFischer(tao->solution, bnk->unprojected_gradient, tao->XL, tao->XU, bnk->W);CHKERRQ(ierr); ierr = VecNorm(bnk->W, NORM_2, &resnorm);CHKERRQ(ierr); if (PetscIsInfOrNanReal(resnorm)) SETERRQ(PETSC_COMM_SELF,1, "User provided compute function generated Inf or NaN"); ierr = TaoLogConvergenceHistory(tao, bnk->f, resnorm, 0.0, tao->ksp_its);CHKERRQ(ierr); ierr = TaoMonitor(tao, tao->niter, bnk->f, resnorm, 0.0, steplen);CHKERRQ(ierr); ierr = (*tao->ops->convergencetest)(tao, tao->cnvP);CHKERRQ(ierr); } } PetscFunctionReturn(0); }