static void safety_check_button(void *arg) { /* * Debounce the safety button, change state if it has been held for long enough. * * Ignore the button if FMU has not said it's OK to arm yet. */ if (BUTTON_SAFETY && system_state.arm_ok) { if (arm_counter < ARM_COUNTER_THRESHOLD) { arm_counter++; } else if (arm_counter == ARM_COUNTER_THRESHOLD) { /* change our armed state and notify the FMU */ system_state.armed = !system_state.armed; arm_counter++; system_state.fmu_report_due = true; } } else { arm_counter = 0; } /* when armed, toggle the LED; when safe, leave it on */ if (system_state.armed) { safety_led_state = !safety_led_state; } else { safety_led_state = true; } LED_SAFETY(safety_led_state); }
int user_start(int argc, char *argv[]) { /* run C++ ctors before we go any further */ up_cxxinitialize(); /* reset all to zero */ memset(&system_state, 0, sizeof(system_state)); /* default to 50 Hz PWM outputs */ system_state.servo_rate = 50; /* configure the high-resolution time/callout interface */ hrt_init(); /* print some startup info */ lib_lowprintf("\nPX4IO: starting\n"); /* default all the LEDs to off while we start */ LED_AMBER(false); LED_BLUE(false); LED_SAFETY(false); /* turn on servo power */ POWER_SERVO(true); /* start the safety switch handler */ safety_init(); /* configure the first 8 PWM outputs (i.e. all of them) */ up_pwm_servo_init(0xff); /* start the flight control signal handler */ task_create("FCon", SCHED_PRIORITY_DEFAULT, 1024, (main_t)controls_main, NULL); struct mallinfo minfo = mallinfo(); lib_lowprintf("free %u largest %u\n", minfo.mxordblk, minfo.fordblks); /* we're done here, go run the communications loop */ comms_main(); }
static void safety_check_button(void *arg) { /* * Debounce the safety button, change state if it has been held for long enough. * */ safety_button_pressed = BUTTON_SAFETY; /* * Keep pressed for a while to arm. * * Note that the counting sequence has to be same length * for arming / disarming in order to end up as proper * state machine, keep ARM_COUNTER_THRESHOLD the same * length in all cases of the if/else struct below. */ if (safety_button_pressed && !(r_status_flags & PX4IO_P_STATUS_FLAGS_SAFETY_OFF) && (r_setup_arming & PX4IO_P_SETUP_ARMING_IO_ARM_OK)) { if (counter < ARM_COUNTER_THRESHOLD) { counter++; } else if (counter == ARM_COUNTER_THRESHOLD) { /* switch to armed state */ r_status_flags |= PX4IO_P_STATUS_FLAGS_SAFETY_OFF; counter++; } } else if (safety_button_pressed && (r_status_flags & PX4IO_P_STATUS_FLAGS_SAFETY_OFF)) { if (counter < ARM_COUNTER_THRESHOLD) { counter++; } else if (counter == ARM_COUNTER_THRESHOLD) { /* change to disarmed state and notify the FMU */ r_status_flags &= ~PX4IO_P_STATUS_FLAGS_SAFETY_OFF; counter++; } } else { counter = 0; } /* Select the appropriate LED flash pattern depending on the current IO/FMU arm state */ uint16_t pattern = LED_PATTERN_FMU_REFUSE_TO_ARM; if (r_status_flags & PX4IO_P_STATUS_FLAGS_SAFETY_OFF) { if (r_setup_arming & PX4IO_P_SETUP_ARMING_FMU_ARMED) { pattern = LED_PATTERN_IO_FMU_ARMED; } else { pattern = LED_PATTERN_IO_ARMED; } } else if (r_setup_arming & PX4IO_P_SETUP_ARMING_FMU_ARMED) { pattern = LED_PATTERN_FMU_ARMED; } else if (r_setup_arming & PX4IO_P_SETUP_ARMING_IO_ARM_OK) { pattern = LED_PATTERN_FMU_OK_TO_ARM; } /* Turn the LED on if we have a 1 at the current bit position */ LED_SAFETY(pattern & (1 << blink_counter++)); if (blink_counter > 15) { blink_counter = 0; } }
int user_start(int argc, char *argv[]) { /* run C++ ctors before we go any further */ up_cxxinitialize(); /* reset all to zero */ memset(&system_state, 0, sizeof(system_state)); /* configure the high-resolution time/callout interface */ hrt_init(); /* calculate our fw CRC so FMU can decide if we need to update */ calculate_fw_crc(); /* * Poll at 1ms intervals for received bytes that have not triggered * a DMA event. */ #ifdef CONFIG_ARCH_DMA hrt_call_every(&serial_dma_call, 1000, 1000, (hrt_callout)stm32_serial_dma_poll, NULL); #endif /* print some startup info */ lowsyslog("\nPX4IO: starting\n"); /* default all the LEDs to off while we start */ LED_AMBER(false); LED_BLUE(false); LED_SAFETY(false); #ifdef GPIO_LED4 LED_RING(false); #endif /* turn on servo power (if supported) */ #ifdef POWER_SERVO POWER_SERVO(true); #endif /* turn off S.Bus out (if supported) */ #ifdef ENABLE_SBUS_OUT ENABLE_SBUS_OUT(false); #endif /* start the safety switch handler */ safety_init(); /* configure the first 8 PWM outputs (i.e. all of them) */ up_pwm_servo_init(0xff); /* initialise the control inputs */ controls_init(); /* set up the ADC */ adc_init(); /* start the FMU interface */ interface_init(); /* add a performance counter for mixing */ perf_counter_t mixer_perf = perf_alloc(PC_ELAPSED, "mix"); /* add a performance counter for controls */ perf_counter_t controls_perf = perf_alloc(PC_ELAPSED, "controls"); /* and one for measuring the loop rate */ perf_counter_t loop_perf = perf_alloc(PC_INTERVAL, "loop"); struct mallinfo minfo = mallinfo(); lowsyslog("MEM: free %u, largest %u\n", minfo.mxordblk, minfo.fordblks); /* initialize PWM limit lib */ pwm_limit_init(&pwm_limit); /* * P O L I C E L I G H T S * * Not enough memory, lock down. * * We might need to allocate mixers later, and this will * ensure that a developer doing a change will notice * that he just burned the remaining RAM with static * allocations. We don't want him to be able to * get past that point. This needs to be clearly * documented in the dev guide. * */ if (minfo.mxordblk < 600) { lowsyslog("ERR: not enough MEM"); bool phase = false; while (true) { if (phase) { LED_AMBER(true); LED_BLUE(false); } else { LED_AMBER(false); LED_BLUE(true); } up_udelay(250000); phase = !phase; } } /* Start the failsafe led init */ failsafe_led_init(); /* * Run everything in a tight loop. */ uint64_t last_debug_time = 0; uint64_t last_heartbeat_time = 0; for (;;) { /* track the rate at which the loop is running */ perf_count(loop_perf); /* kick the mixer */ perf_begin(mixer_perf); mixer_tick(); perf_end(mixer_perf); /* kick the control inputs */ perf_begin(controls_perf); controls_tick(); perf_end(controls_perf); if ((hrt_absolute_time() - last_heartbeat_time) > 250 * 1000) { last_heartbeat_time = hrt_absolute_time(); heartbeat_blink(); } ring_blink(); check_reboot(); /* check for debug activity (default: none) */ show_debug_messages(); /* post debug state at ~1Hz - this is via an auxiliary serial port * DEFAULTS TO OFF! */ if (hrt_absolute_time() - last_debug_time > (1000 * 1000)) { isr_debug(1, "d:%u s=0x%x a=0x%x f=0x%x m=%u", (unsigned)r_page_setup[PX4IO_P_SETUP_SET_DEBUG], (unsigned)r_status_flags, (unsigned)r_setup_arming, (unsigned)r_setup_features, (unsigned)mallinfo().mxordblk); last_debug_time = hrt_absolute_time(); } } }
int user_start(int argc, char *argv[]) { /* run C++ ctors before we go any further */ up_cxxinitialize(); /* reset all to zero */ memset(&system_state, 0, sizeof(system_state)); /* configure the high-resolution time/callout interface */ hrt_init(); /* * Poll at 1ms intervals for received bytes that have not triggered * a DMA event. */ #ifdef CONFIG_ARCH_DMA hrt_call_every(&serial_dma_call, 1000, 1000, (hrt_callout)stm32_serial_dma_poll, NULL); #endif /* print some startup info */ lowsyslog("\nPX4IO: starting\n"); /* default all the LEDs to off while we start */ LED_AMBER(false); LED_BLUE(false); LED_SAFETY(false); /* turn on servo power */ POWER_SERVO(true); /* start the safety switch handler */ safety_init(); /* configure the first 8 PWM outputs (i.e. all of them) */ up_pwm_servo_init(0xff); /* initialise the control inputs */ controls_init(); #ifdef CONFIG_STM32_I2C1 /* start the i2c handler */ i2c_init(); #endif /* add a performance counter for mixing */ perf_counter_t mixer_perf = perf_alloc(PC_ELAPSED, "mix"); /* add a performance counter for controls */ perf_counter_t controls_perf = perf_alloc(PC_ELAPSED, "controls"); /* and one for measuring the loop rate */ perf_counter_t loop_perf = perf_alloc(PC_INTERVAL, "loop"); struct mallinfo minfo = mallinfo(); lowsyslog("MEM: free %u, largest %u\n", minfo.mxordblk, minfo.fordblks); #if 0 /* not enough memory, lock down */ if (minfo.mxordblk < 500) { lowsyslog("ERR: not enough MEM"); bool phase = false; if (phase) { LED_AMBER(true); LED_BLUE(false); } else { LED_AMBER(false); LED_BLUE(true); } phase = !phase; usleep(300000); } #endif /* * Run everything in a tight loop. */ uint64_t last_debug_time = 0; for (;;) { /* track the rate at which the loop is running */ perf_count(loop_perf); /* kick the mixer */ perf_begin(mixer_perf); mixer_tick(); perf_end(mixer_perf); /* kick the control inputs */ perf_begin(controls_perf); controls_tick(); perf_end(controls_perf); /* check for debug activity */ show_debug_messages(); /* post debug state at ~1Hz */ if (hrt_absolute_time() - last_debug_time > (1000 * 1000)) { struct mallinfo minfo = mallinfo(); isr_debug(1, "d:%u s=0x%x a=0x%x f=0x%x r=%u m=%u", (unsigned)r_page_setup[PX4IO_P_SETUP_SET_DEBUG], (unsigned)r_status_flags, (unsigned)r_setup_arming, (unsigned)r_setup_features, (unsigned)i2c_loop_resets, (unsigned)minfo.mxordblk); last_debug_time = hrt_absolute_time(); } } }
int user_start(int argc, char *argv[]) { /* configure the first 8 PWM outputs (i.e. all of them) */ up_pwm_servo_init(0xff); #if defined(CONFIG_HAVE_CXX) && defined(CONFIG_HAVE_CXXINITIALIZE) /* run C++ ctors before we go any further */ up_cxxinitialize(); # if defined(CONFIG_EXAMPLES_NSH_CXXINITIALIZE) # error CONFIG_EXAMPLES_NSH_CXXINITIALIZE Must not be defined! Use CONFIG_HAVE_CXX and CONFIG_HAVE_CXXINITIALIZE. # endif #else # error platform is dependent on c++ both CONFIG_HAVE_CXX and CONFIG_HAVE_CXXINITIALIZE must be defined. #endif /* reset all to zero */ memset(&system_state, 0, sizeof(system_state)); /* configure the high-resolution time/callout interface */ hrt_init(); /* calculate our fw CRC so FMU can decide if we need to update */ calculate_fw_crc(); /* * Poll at 1ms intervals for received bytes that have not triggered * a DMA event. */ #ifdef CONFIG_ARCH_DMA hrt_call_every(&serial_dma_call, 1000, 1000, (hrt_callout)stm32_serial_dma_poll, NULL); #endif /* print some startup info */ syslog(LOG_INFO, "\nPX4IO: starting\n"); /* default all the LEDs to off while we start */ LED_AMBER(false); LED_BLUE(false); LED_SAFETY(false); #ifdef GPIO_LED4 LED_RING(false); #endif /* turn on servo power (if supported) */ #ifdef POWER_SERVO POWER_SERVO(true); #endif /* turn off S.Bus out (if supported) */ #ifdef ENABLE_SBUS_OUT ENABLE_SBUS_OUT(false); #endif /* start the safety switch handler */ safety_init(); /* initialise the control inputs */ controls_init(); /* set up the ADC */ adc_init(); /* start the FMU interface */ interface_init(); /* add a performance counter for mixing */ perf_counter_t mixer_perf = perf_alloc(PC_ELAPSED, "mix"); /* add a performance counter for controls */ perf_counter_t controls_perf = perf_alloc(PC_ELAPSED, "controls"); /* and one for measuring the loop rate */ perf_counter_t loop_perf = perf_alloc(PC_INTERVAL, "loop"); struct mallinfo minfo = mallinfo(); r_page_status[PX4IO_P_STATUS_FREEMEM] = minfo.mxordblk; syslog(LOG_INFO, "MEM: free %u, largest %u\n", minfo.mxordblk, minfo.fordblks); /* initialize PWM limit lib */ pwm_limit_init(&pwm_limit); /* * P O L I C E L I G H T S * * Not enough memory, lock down. * * We might need to allocate mixers later, and this will * ensure that a developer doing a change will notice * that he just burned the remaining RAM with static * allocations. We don't want him to be able to * get past that point. This needs to be clearly * documented in the dev guide. * */ if (minfo.mxordblk < 600) { syslog(LOG_ERR, "ERR: not enough MEM"); bool phase = false; while (true) { if (phase) { LED_AMBER(true); LED_BLUE(false); } else { LED_AMBER(false); LED_BLUE(true); } up_udelay(250000); phase = !phase; } } /* Start the failsafe led init */ failsafe_led_init(); /* * Run everything in a tight loop. */ uint64_t last_debug_time = 0; uint64_t last_heartbeat_time = 0; uint64_t last_loop_time = 0; for (;;) { dt = (hrt_absolute_time() - last_loop_time) / 1000000.0f; last_loop_time = hrt_absolute_time(); if (dt < 0.0001f) { dt = 0.0001f; } else if (dt > 0.02f) { dt = 0.02f; } /* track the rate at which the loop is running */ perf_count(loop_perf); /* kick the mixer */ perf_begin(mixer_perf); mixer_tick(); perf_end(mixer_perf); /* kick the control inputs */ perf_begin(controls_perf); controls_tick(); perf_end(controls_perf); /* some boards such as Pixhawk 2.1 made the unfortunate choice to combine the blue led channel with the IMU heater. We need a software hack to fix the hardware hack by allowing to disable the LED / heater. */ if (r_page_setup[PX4IO_P_SETUP_THERMAL] == PX4IO_THERMAL_IGNORE) { /* blink blue LED at 4Hz in normal operation. When in override blink 4x faster so the user can clearly see that override is happening. This helps when pre-flight testing the override system */ uint32_t heartbeat_period_us = 250 * 1000UL; if (r_status_flags & PX4IO_P_STATUS_FLAGS_OVERRIDE) { heartbeat_period_us /= 4; } if ((hrt_absolute_time() - last_heartbeat_time) > heartbeat_period_us) { last_heartbeat_time = hrt_absolute_time(); heartbeat_blink(); } } else if (r_page_setup[PX4IO_P_SETUP_THERMAL] < PX4IO_THERMAL_FULL) { /* switch resistive heater off */ LED_BLUE(false); } else { /* switch resistive heater hard on */ LED_BLUE(true); } update_mem_usage(); ring_blink(); check_reboot(); /* check for debug activity (default: none) */ show_debug_messages(); /* post debug state at ~1Hz - this is via an auxiliary serial port * DEFAULTS TO OFF! */ if (hrt_absolute_time() - last_debug_time > (1000 * 1000)) { isr_debug(1, "d:%u s=0x%x a=0x%x f=0x%x m=%u", (unsigned)r_page_setup[PX4IO_P_SETUP_SET_DEBUG], (unsigned)r_status_flags, (unsigned)r_setup_arming, (unsigned)r_setup_features, (unsigned)mallinfo().mxordblk); last_debug_time = hrt_absolute_time(); } } }