inline void internal::HegstRLVar2( DistMatrix<F,MC,MR>& A, const DistMatrix<F,MC,MR>& L ) { #ifndef RELEASE PushCallStack("internal::HegstRLVar2"); if( A.Height() != A.Width() ) throw std::logic_error("A must be square"); if( L.Height() != L.Width() ) throw std::logic_error("Triangular matrices must be square"); if( A.Height() != L.Height() ) throw std::logic_error("A and L must be the same size"); #endif const Grid& g = A.Grid(); // Matrix views DistMatrix<F,MC,MR> ATL(g), ATR(g), A00(g), A01(g), A02(g), ABL(g), ABR(g), A10(g), A11(g), A12(g), A20(g), A21(g), A22(g); DistMatrix<F,MC,MR> LTL(g), LTR(g), L00(g), L01(g), L02(g), LBL(g), LBR(g), L10(g), L11(g), L12(g), L20(g), L21(g), L22(g); // Temporary distributions DistMatrix<F,MR, STAR> A10Adj_MR_STAR(g); DistMatrix<F,STAR,VR > A10_STAR_VR(g); DistMatrix<F,STAR,STAR> A11_STAR_STAR(g); DistMatrix<F,VC, STAR> A21_VC_STAR(g); DistMatrix<F,MR, STAR> F10Adj_MR_STAR(g); DistMatrix<F,MR, STAR> L10Adj_MR_STAR(g); DistMatrix<F,VC, STAR> L10Adj_VC_STAR(g); DistMatrix<F,STAR,MC > L10_STAR_MC(g); DistMatrix<F,STAR,STAR> L11_STAR_STAR(g); DistMatrix<F,MC, MR > X11(g); DistMatrix<F,MC, STAR> X11_MC_STAR(g); DistMatrix<F,MC, STAR> X21_MC_STAR(g); DistMatrix<F,MC, MR > Y10Adj(g); DistMatrix<F,MC, STAR> Y10Adj_MC_STAR(g); DistMatrix<F,MR, MC > Y10Adj_MR_MC(g); Matrix<F> Y10Local; PartitionDownDiagonal ( A, ATL, ATR, ABL, ABR, 0 ); LockedPartitionDownDiagonal ( L, LTL, LTR, LBL, LBR, 0 ); while( ATL.Height() < A.Height() ) { RepartitionDownDiagonal ( ATL, /**/ ATR, A00, /**/ A01, A02, /*************/ /******************/ /**/ A10, /**/ A11, A12, ABL, /**/ ABR, A20, /**/ A21, A22 ); LockedRepartitionDownDiagonal ( LTL, /**/ LTR, L00, /**/ L01, L02, /*************/ /******************/ /**/ L10, /**/ L11, L12, LBL, /**/ LBR, L20, /**/ L21, L22 ); A10Adj_MR_STAR.AlignWith( L10 ); F10Adj_MR_STAR.AlignWith( A00 ); L10Adj_MR_STAR.AlignWith( A00 ); L10Adj_VC_STAR.AlignWith( A00 ); L10_STAR_MC.AlignWith( A00 ); X11.AlignWith( A11 ); X11_MC_STAR.AlignWith( L10 ); X21_MC_STAR.AlignWith( A20 ); Y10Adj_MC_STAR.AlignWith( A00 ); Y10Adj_MR_MC.AlignWith( A10 ); //--------------------------------------------------------------------// // Y10 := L10 A00 L10Adj_MR_STAR.AdjointFrom( L10 ); L10Adj_VC_STAR = L10Adj_MR_STAR; L10_STAR_MC.AdjointFrom( L10Adj_VC_STAR ); Y10Adj_MC_STAR.ResizeTo( A10.Width(), A10.Height() ); F10Adj_MR_STAR.ResizeTo( A10.Width(), A10.Height() ); Zero( Y10Adj_MC_STAR ); Zero( F10Adj_MR_STAR ); internal::LocalSymmetricAccumulateRL ( ADJOINT, (F)1, A00, L10_STAR_MC, L10Adj_MR_STAR, Y10Adj_MC_STAR, F10Adj_MR_STAR ); Y10Adj.SumScatterFrom( Y10Adj_MC_STAR ); Y10Adj_MR_MC = Y10Adj; Y10Adj_MR_MC.SumScatterUpdate( (F)1, F10Adj_MR_STAR ); Adjoint( Y10Adj_MR_MC.LockedLocalMatrix(), Y10Local ); // X11 := A10 L10' X11_MC_STAR.ResizeTo( A11.Height(), A11.Width() ); internal::LocalGemm ( NORMAL, NORMAL, (F)1, A10, L10Adj_MR_STAR, (F)0, X11_MC_STAR ); // A10 := A10 - Y10 Axpy( (F)-1, Y10Local, A10.LocalMatrix() ); A10Adj_MR_STAR.AdjointFrom( A10 ); // A11 := A11 - (X11 + L10 A10') = A11 - (A10 L10' + L10 A10') internal::LocalGemm ( NORMAL, NORMAL, (F)1, L10, A10Adj_MR_STAR, (F)1, X11_MC_STAR ); X11.SumScatterFrom( X11_MC_STAR ); MakeTrapezoidal( LEFT, LOWER, 0, X11 ); Axpy( (F)-1, X11, A11 ); // A10 := inv(L11) A10 L11_STAR_STAR = L11; A10_STAR_VR.AdjointFrom( A10Adj_MR_STAR ); internal::LocalTrsm ( LEFT, LOWER, NORMAL, NON_UNIT, (F)1, L11_STAR_STAR, A10_STAR_VR ); A10 = A10_STAR_VR; // A11 := inv(L11) A11 inv(L11)' A11_STAR_STAR = A11; internal::LocalHegst( RIGHT, LOWER, A11_STAR_STAR, L11_STAR_STAR ); A11 = A11_STAR_STAR; // A21 := A21 - A20 L10' X21_MC_STAR.ResizeTo( A21.Height(), A21.Width() ); internal::LocalGemm ( NORMAL, NORMAL, (F)1, A20, L10Adj_MR_STAR, (F)0, X21_MC_STAR ); A21.SumScatterUpdate( (F)-1, X21_MC_STAR ); // A21 := A21 inv(L11)' A21_VC_STAR = A21; internal::LocalTrsm ( RIGHT, LOWER, ADJOINT, NON_UNIT, (F)1, L11_STAR_STAR, A21_VC_STAR ); A21 = A21_VC_STAR; //--------------------------------------------------------------------// A10Adj_MR_STAR.FreeAlignments(); F10Adj_MR_STAR.FreeAlignments(); L10Adj_MR_STAR.FreeAlignments(); L10Adj_VC_STAR.FreeAlignments(); L10_STAR_MC.FreeAlignments(); X11.FreeAlignments(); X11_MC_STAR.FreeAlignments(); X21_MC_STAR.FreeAlignments(); Y10Adj_MC_STAR.FreeAlignments(); Y10Adj_MR_MC.FreeAlignments(); SlidePartitionDownDiagonal ( ATL, /**/ ATR, A00, A01, /**/ A02, /**/ A10, A11, /**/ A12, /*************/ /******************/ ABL, /**/ ABR, A20, A21, /**/ A22 ); SlideLockedPartitionDownDiagonal ( LTL, /**/ LTR, L00, L01, /**/ L02, /**/ L10, L11, /**/ L12, /**********************************/ LBL, /**/ LBR, L20, L21, /**/ L22 ); } #ifndef RELEASE PopCallStack(); #endif }
inline void LocalTrmmAccumulateRUN ( Orientation orientation, UnitOrNonUnit diag, T alpha, const DistMatrix<T,MC, MR >& U, const DistMatrix<T,STAR,MC >& X_STAR_MC, DistMatrix<T,MR, STAR>& ZTrans_MR_STAR ) { #ifndef RELEASE CallStackEntry entry("internal::LocalTrmmAccumulateRUN"); if( U.Grid() != X_STAR_MC.Grid() || X_STAR_MC.Grid() != ZTrans_MR_STAR.Grid() ) throw std::logic_error ("{U,X,Z} must be distributed over the same grid"); if( U.Height() != U.Width() || U.Height() != X_STAR_MC.Width() || U.Height() != ZTrans_MR_STAR.Height() ) { std::ostringstream msg; msg << "Nonconformal LocalTrmmAccumulateRUN: \n" << " U ~ " << U.Height() << " x " << U.Width() << "\n" << " X[* ,MC] ~ " << X_STAR_MC.Height() << " x " << X_STAR_MC.Width() << "\n" << " Z^H/T[MR,* ] ~ " << ZTrans_MR_STAR.Height() << " x " << ZTrans_MR_STAR.Width() << "\n"; throw std::logic_error( msg.str().c_str() ); } if( X_STAR_MC.RowAlignment() != U.ColAlignment() || ZTrans_MR_STAR.ColAlignment() != U.RowAlignment() ) throw std::logic_error("Partial matrix distributions are misaligned"); #endif const Grid& g = U.Grid(); // Matrix views DistMatrix<T> UTL(g), UTR(g), U00(g), U01(g), U02(g), UBL(g), UBR(g), U10(g), U11(g), U12(g), U20(g), U21(g), U22(g); DistMatrix<T> D11(g); DistMatrix<T,STAR,MC> XL_STAR_MC(g), XR_STAR_MC(g), X0_STAR_MC(g), X1_STAR_MC(g), X2_STAR_MC(g); DistMatrix<T,MR,STAR> ZTTrans_MR_STAR(g), Z0Trans_MR_STAR(g), ZBTrans_MR_STAR(g), Z1Trans_MR_STAR(g), Z2Trans_MR_STAR(g); const int ratio = std::max( g.Height(), g.Width() ); PushBlocksizeStack( ratio*Blocksize() ); LockedPartitionDownDiagonal ( U, UTL, UTR, UBL, UBR, 0 ); LockedPartitionRight( X_STAR_MC, XL_STAR_MC, XR_STAR_MC, 0 ); PartitionDown ( ZTrans_MR_STAR, ZTTrans_MR_STAR, ZBTrans_MR_STAR, 0 ); while( UTL.Height() < U.Height() ) { LockedRepartitionDownDiagonal ( UTL, /**/ UTR, U00, /**/ U01, U02, /*************/ /******************/ /**/ U10, /**/ U11, U12, UBL, /**/ UBR, U20, /**/ U21, U22 ); LockedRepartitionRight ( XL_STAR_MC, /**/ XR_STAR_MC, X0_STAR_MC, /**/ X1_STAR_MC, X2_STAR_MC ); RepartitionDown ( ZTTrans_MR_STAR, Z0Trans_MR_STAR, /***************/ /***************/ Z1Trans_MR_STAR, ZBTrans_MR_STAR, Z2Trans_MR_STAR ); D11.AlignWith( U11 ); //--------------------------------------------------------------------// D11 = U11; MakeTriangular( UPPER, D11 ); if( diag == UNIT ) SetDiagonal( D11, T(1) ); LocalGemm ( orientation, orientation, alpha, D11, X1_STAR_MC, T(1), Z1Trans_MR_STAR ); LocalGemm ( orientation, orientation, alpha, U01, X0_STAR_MC, T(1), Z1Trans_MR_STAR ); //--------------------------------------------------------------------// D11.FreeAlignments(); SlideLockedPartitionDownDiagonal ( UTL, /**/ UTR, U00, U01, /**/ U02, /**/ U10, U11, /**/ U12, /*************/ /******************/ UBL, /**/ UBR, U20, U21, /**/ U22 ); SlideLockedPartitionRight ( XL_STAR_MC, /**/ XR_STAR_MC, X0_STAR_MC, X1_STAR_MC, /**/ X2_STAR_MC ); SlidePartitionDown ( ZTTrans_MR_STAR, Z0Trans_MR_STAR, Z1Trans_MR_STAR, /***************/ /***************/ ZBTrans_MR_STAR, Z2Trans_MR_STAR ); } PopBlocksizeStack(); }
inline void LocalTrmmAccumulateRLN ( Orientation orientation, UnitOrNonUnit diag, T alpha, const DistMatrix<T,MC, MR >& L, const DistMatrix<T,STAR,MC >& X_STAR_MC, DistMatrix<T,MR, STAR>& ZAdjOrTrans_MR_STAR ) { #ifndef RELEASE PushCallStack("internal::LocalTrmmAccumulateRLN"); if( L.Grid() != X_STAR_MC.Grid() || X_STAR_MC.Grid() != ZAdjOrTrans_MR_STAR.Grid() ) throw std::logic_error ("{L,X,Z} must be distributed over the same grid"); if( L.Height() != L.Width() || L.Height() != X_STAR_MC.Width() || L.Height() != ZAdjOrTrans_MR_STAR.Height() ) { std::ostringstream msg; msg << "Nonconformal LocalTrmmAccumulateRLN: \n" << " L ~ " << L.Height() << " x " << L.Width() << "\n" << " X[* ,MC] ~ " << X_STAR_MC.Height() << " x " << X_STAR_MC.Width() << "\n" << " Z^H/T[MR,* ] ~ " << ZAdjOrTrans_MR_STAR.Height() << " x " << ZAdjOrTrans_MR_STAR.Width() << "\n"; throw std::logic_error( msg.str().c_str() ); } if( X_STAR_MC.RowAlignment() != L.ColAlignment() || ZAdjOrTrans_MR_STAR.ColAlignment() != L.RowAlignment() ) throw std::logic_error("Partial matrix distributions are misaligned"); #endif const Grid& g = L.Grid(); // Matrix views DistMatrix<T> LTL(g), LTR(g), L00(g), L01(g), L02(g), LBL(g), LBR(g), L10(g), L11(g), L12(g), L20(g), L21(g), L22(g); DistMatrix<T> D11(g); DistMatrix<T,STAR,MC> XL_STAR_MC(g), XR_STAR_MC(g), X0_STAR_MC(g), X1_STAR_MC(g), X2_STAR_MC(g); DistMatrix<T,MR,STAR> ZTAdjOrTrans_MR_STAR(g), Z0AdjOrTrans_MR_STAR(g), ZBAdjOrTrans_MR_STAR(g), Z1AdjOrTrans_MR_STAR(g), Z2AdjOrTrans_MR_STAR(g); const int ratio = std::max( g.Height(), g.Width() ); PushBlocksizeStack( ratio*Blocksize() ); LockedPartitionDownDiagonal ( L, LTL, LTR, LBL, LBR, 0 ); LockedPartitionRight( X_STAR_MC, XL_STAR_MC, XR_STAR_MC, 0 ); PartitionDown ( ZAdjOrTrans_MR_STAR, ZTAdjOrTrans_MR_STAR, ZBAdjOrTrans_MR_STAR, 0 ); while( LTL.Height() < L.Height() ) { LockedRepartitionDownDiagonal ( LTL, /**/ LTR, L00, /**/ L01, L02, /*************/ /******************/ /**/ L10, /**/ L11, L12, LBL, /**/ LBR, L20, /**/ L21, L22 ); LockedRepartitionRight ( XL_STAR_MC, /**/ XR_STAR_MC, X0_STAR_MC, /**/ X1_STAR_MC, X2_STAR_MC ); RepartitionDown ( ZTAdjOrTrans_MR_STAR, Z0AdjOrTrans_MR_STAR, /*********************/ /*********************/ Z1AdjOrTrans_MR_STAR, ZBAdjOrTrans_MR_STAR, Z2AdjOrTrans_MR_STAR ); D11.AlignWith( L11 ); //--------------------------------------------------------------------// D11 = L11; MakeTrapezoidal( LEFT, LOWER, 0, D11 ); if( diag == UNIT ) SetDiagonalToOne( D11 ); LocalGemm ( orientation, orientation, alpha, D11, X1_STAR_MC, T(1), Z1AdjOrTrans_MR_STAR ); LocalGemm ( orientation, orientation, alpha, L21, X2_STAR_MC, T(1), Z1AdjOrTrans_MR_STAR ); //--------------------------------------------------------------------// D11.FreeAlignments(); SlideLockedPartitionDownDiagonal ( LTL, /**/ LTR, L00, L01, /**/ L02, /**/ L10, L11, /**/ L12, /*************/ /******************/ LBL, /**/ LBR, L20, L21, /**/ L22 ); SlideLockedPartitionRight ( XL_STAR_MC, /**/ XR_STAR_MC, X0_STAR_MC, X1_STAR_MC, /**/ X2_STAR_MC ); SlidePartitionDown ( ZTAdjOrTrans_MR_STAR, Z0AdjOrTrans_MR_STAR, Z1AdjOrTrans_MR_STAR, /********************/ /********************/ ZBAdjOrTrans_MR_STAR, Z2AdjOrTrans_MR_STAR ); } PopBlocksizeStack(); #ifndef RELEASE PopCallStack(); #endif }
inline void TwoSidedTrmmUVar5( UnitOrNonUnit diag, Matrix<F>& A, const Matrix<F>& U ) { #ifndef RELEASE CallStackEntry entry("internal::TwoSidedTrmmUVar5"); if( A.Height() != A.Width() ) LogicError("A must be square"); if( U.Height() != U.Width() ) LogicError("Triangular matrices must be square"); if( A.Height() != U.Height() ) LogicError("A and U must be the same size"); #endif // Matrix views Matrix<F> ATL, ATR, A00, A01, A02, ABL, ABR, A10, A11, A12, A20, A21, A22; Matrix<F> UTL, UTR, U00, U01, U02, UBL, UBR, U10, U11, U12, U20, U21, U22; // Temporary products Matrix<F> Y01; PartitionDownDiagonal ( A, ATL, ATR, ABL, ABR, 0 ); LockedPartitionDownDiagonal ( U, UTL, UTR, UBL, UBR, 0 ); while( ATL.Height() < A.Height() ) { RepartitionDownDiagonal ( ATL, /**/ ATR, A00, /**/ A01, A02, /*************/ /******************/ /**/ A10, /**/ A11, A12, ABL, /**/ ABR, A20, /**/ A21, A22 ); LockedRepartitionDownDiagonal ( UTL, /**/ UTR, U00, /**/ U01, U02, /*************/ /******************/ /**/ U10, /**/ U11, U12, UBL, /**/ UBR, U20, /**/ U21, U22 ); //--------------------------------------------------------------------// // Y01 := U01 A11 Zeros( Y01, A01.Height(), A01.Width() ); Hemm( RIGHT, UPPER, F(1), A11, U01, F(0), Y01 ); // A01 := U00 A01 Trmm( LEFT, UPPER, NORMAL, diag, F(1), U00, A01 ); // A01 := A01 + 1/2 Y01 Axpy( F(1)/F(2), Y01, A01 ); // A00 := A00 + (U01 A01' + A01 U01') Her2k( UPPER, NORMAL, F(1), U01, A01, F(1), A00 ); // A01 := A01 + 1/2 Y01 Axpy( F(1)/F(2), Y01, A01 ); // A01 := A01 U11' Trmm( RIGHT, UPPER, ADJOINT, diag, F(1), U11, A01 ); // A11 := U11 A11 U11' TwoSidedTrmmUUnb( diag, A11, U11 ); //--------------------------------------------------------------------// SlidePartitionDownDiagonal ( ATL, /**/ ATR, A00, A01, /**/ A02, /**/ A10, A11, /**/ A12, /*************/ /******************/ ABL, /**/ ABR, A20, A21, /**/ A22 ); SlideLockedPartitionDownDiagonal ( UTL, /**/ UTR, U00, U01, /**/ U02, /**/ U10, U11, /**/ U12, /*************/ /******************/ UBL, /**/ UBR, U20, U21, /**/ U22 ); } }
inline void TwoSidedTrsmLVar5 ( UnitOrNonUnit diag, DistMatrix<F>& A, const DistMatrix<F>& L ) { #ifndef RELEASE CallStackEntry entry("internal::TwoSidedTrsmLVar5"); if( A.Height() != A.Width() ) LogicError("A must be square"); if( L.Height() != L.Width() ) LogicError("Triangular matrices must be square"); if( A.Height() != L.Height() ) LogicError("A and L must be the same size"); #endif const Grid& g = A.Grid(); // Matrix views DistMatrix<F> ATL(g), ATR(g), A00(g), A01(g), A02(g), ABL(g), ABR(g), A10(g), A11(g), A12(g), A20(g), A21(g), A22(g); DistMatrix<F> LTL(g), LTR(g), L00(g), L01(g), L02(g), LBL(g), LBR(g), L10(g), L11(g), L12(g), L20(g), L21(g), L22(g); // Temporary distributions DistMatrix<F,STAR,STAR> A11_STAR_STAR(g); DistMatrix<F,MC, STAR> A21_MC_STAR(g); DistMatrix<F,VC, STAR> A21_VC_STAR(g); DistMatrix<F,VR, STAR> A21_VR_STAR(g); DistMatrix<F,STAR,MR > A21Adj_STAR_MR(g); DistMatrix<F,STAR,STAR> L11_STAR_STAR(g); DistMatrix<F,MC, STAR> L21_MC_STAR(g); DistMatrix<F,VC, STAR> L21_VC_STAR(g); DistMatrix<F,VR, STAR> L21_VR_STAR(g); DistMatrix<F,STAR,MR > L21Adj_STAR_MR(g); DistMatrix<F,VC, STAR> Y21_VC_STAR(g); DistMatrix<F> Y21(g); PartitionDownDiagonal ( A, ATL, ATR, ABL, ABR, 0 ); LockedPartitionDownDiagonal ( L, LTL, LTR, LBL, LBR, 0 ); while( ATL.Height() < A.Height() ) { RepartitionDownDiagonal ( ATL, /**/ ATR, A00, /**/ A01, A02, /*************/ /******************/ /**/ A10, /**/ A11, A12, ABL, /**/ ABR, A20, /**/ A21, A22 ); LockedRepartitionDownDiagonal ( LTL, /**/ LTR, L00, /**/ L01, L02, /*************/ /******************/ /**/ L10, /**/ L11, L12, LBL, /**/ LBR, L20, /**/ L21, L22 ); A21_MC_STAR.AlignWith( A22 ); A21_VC_STAR.AlignWith( A22 ); A21_VR_STAR.AlignWith( A22 ); A21Adj_STAR_MR.AlignWith( A22 ); L21_MC_STAR.AlignWith( A22 ); L21_VC_STAR.AlignWith( A22 ); L21_VR_STAR.AlignWith( A22 ); L21Adj_STAR_MR.AlignWith( A22 ); Y21.AlignWith( A21 ); Y21_VC_STAR.AlignWith( A22 ); //--------------------------------------------------------------------// // A11 := inv(L11) A11 inv(L11)' L11_STAR_STAR = L11; A11_STAR_STAR = A11; LocalTwoSidedTrsm( LOWER, diag, A11_STAR_STAR, L11_STAR_STAR ); A11 = A11_STAR_STAR; // Y21 := L21 A11 L21_VC_STAR = L21; Zeros( Y21_VC_STAR, A21.Height(), A21.Width() ); Hemm ( RIGHT, LOWER, F(1), A11_STAR_STAR.Matrix(), L21_VC_STAR.Matrix(), F(0), Y21_VC_STAR.Matrix() ); Y21 = Y21_VC_STAR; // A21 := A21 inv(L11)' A21_VC_STAR = A21; LocalTrsm ( RIGHT, LOWER, ADJOINT, diag, F(1), L11_STAR_STAR, A21_VC_STAR ); A21 = A21_VC_STAR; // A21 := A21 - 1/2 Y21 Axpy( F(-1)/F(2), Y21, A21 ); // A22 := A22 - (L21 A21' + A21 L21') A21_MC_STAR = A21; L21_MC_STAR = L21; A21_VC_STAR = A21_MC_STAR; A21_VR_STAR = A21_VC_STAR; L21_VR_STAR = L21_VC_STAR; A21Adj_STAR_MR.AdjointFrom( A21_VR_STAR ); L21Adj_STAR_MR.AdjointFrom( L21_VR_STAR ); LocalTrr2k ( LOWER, F(-1), L21_MC_STAR, A21Adj_STAR_MR, A21_MC_STAR, L21Adj_STAR_MR, F(1), A22 ); // A21 := A21 - 1/2 Y21 Axpy( F(-1)/F(2), Y21, A21 ); // A21 := inv(L22) A21 // // This is the bottleneck because A21 only has blocksize columns Trsm( LEFT, LOWER, NORMAL, diag, F(1), L22, A21 ); //--------------------------------------------------------------------// SlidePartitionDownDiagonal ( ATL, /**/ ATR, A00, A01, /**/ A02, /**/ A10, A11, /**/ A12, /*************/ /******************/ ABL, /**/ ABR, A20, A21, /**/ A22 ); SlideLockedPartitionDownDiagonal ( LTL, /**/ LTR, L00, L01, /**/ L02, /**/ L10, L11, /**/ L12, /**********************************/ LBL, /**/ LBR, L20, L21, /**/ L22 ); } }
inline void internal::TrsvLN ( UnitOrNonUnit diag, const DistMatrix<F,MC,MR>& L, DistMatrix<F,MC,MR>& x ) { #ifndef RELEASE PushCallStack("internal::TrsvLN"); if( L.Grid() != x.Grid() ) throw std::logic_error("{L,x} must be distributed over the same grid"); if( L.Height() != L.Width() ) throw std::logic_error("L must be square"); if( x.Width() != 1 && x.Height() != 1 ) throw std::logic_error("x must be a vector"); const int xLength = ( x.Width() == 1 ? x.Height() : x.Width() ); if( L.Width() != xLength ) throw std::logic_error("Nonconformal TrsvLN"); #endif const Grid& g = L.Grid(); if( x.Width() == 1 ) { // Matrix views DistMatrix<F,MC,MR> LTL(g), LTR(g), L00(g), L01(g), L02(g), LBL(g), LBR(g), L10(g), L11(g), L12(g), L20(g), L21(g), L22(g); DistMatrix<F,MC,MR> xT(g), x0(g), xB(g), x1(g), x2(g); // Temporary distributions DistMatrix<F,STAR,STAR> L11_STAR_STAR(g); DistMatrix<F,STAR,STAR> x1_STAR_STAR(g); DistMatrix<F,MR, STAR> x1_MR_STAR(g); DistMatrix<F,MC, STAR> z2_MC_STAR(g); // Start the algorithm LockedPartitionDownDiagonal ( L, LTL, LTR, LBL, LBR, 0 ); PartitionDown ( x, xT, xB, 0 ); while( xB.Height() > 0 ) { LockedRepartitionDownDiagonal ( LTL, /**/ LTR, L00, /**/ L01, L02, /*************/ /******************/ /**/ L10, /**/ L11, L12, LBL, /**/ LBR, L20, /**/ L21, L22 ); RepartitionDown ( xT, x0, /**/ /**/ x1, xB, x2 ); x1_MR_STAR.AlignWith( L21 ); z2_MC_STAR.AlignWith( L21 ); z2_MC_STAR.ResizeTo( x2.Height(), 1 ); //----------------------------------------------------------------// x1_STAR_STAR = x1; L11_STAR_STAR = L11; Trsv ( LOWER, NORMAL, diag, L11_STAR_STAR.LockedLocalMatrix(), x1_STAR_STAR.LocalMatrix() ); x1 = x1_STAR_STAR; x1_MR_STAR = x1_STAR_STAR; Gemv ( NORMAL, (F)-1, L21.LockedLocalMatrix(), x1_MR_STAR.LockedLocalMatrix(), (F)0, z2_MC_STAR.LocalMatrix() ); x2.SumScatterUpdate( (F)1, z2_MC_STAR ); //----------------------------------------------------------------// x1_MR_STAR.FreeAlignments(); z2_MC_STAR.FreeAlignments(); SlideLockedPartitionDownDiagonal ( LTL, /**/ LTR, L00, L01, /**/ L02, /**/ L10, L11, /**/ L12, /*************/ /******************/ LBL, /**/ LBR, L20, L21, /**/ L22 ); SlidePartitionDown ( xT, x0, x1, /**/ /**/ xB, x2 ); } } else { // Matrix views DistMatrix<F,MC,MR> LTL(g), LTR(g), L00(g), L01(g), L02(g), LBL(g), LBR(g), L10(g), L11(g), L12(g), L20(g), L21(g), L22(g); DistMatrix<F,MC,MR> xL(g), xR(g), x0(g), x1(g), x2(g); // Temporary distributions DistMatrix<F,STAR,STAR> L11_STAR_STAR(g); DistMatrix<F,STAR,STAR> x1_STAR_STAR(g); DistMatrix<F,STAR,MR > x1_STAR_MR(g); DistMatrix<F,STAR,MC > z2_STAR_MC(g); DistMatrix<F,MR, MC > z2_MR_MC(g); DistMatrix<F,MC, MR > z2(g); // Start the algorithm LockedPartitionDownDiagonal ( L, LTL, LTR, LBL, LBR, 0 ); PartitionRight( x, xL, xR, 0 ); while( xR.Width() > 0 ) { LockedRepartitionDownDiagonal ( LTL, /**/ LTR, L00, /**/ L01, L02, /*************/ /******************/ /**/ L10, /**/ L11, L12, LBL, /**/ LBR, L20, /**/ L21, L22 ); RepartitionRight ( xL, /**/ xR, x0, /**/ x1, x2 ); x1_STAR_MR.AlignWith( L21 ); z2_STAR_MC.AlignWith( L21 ); z2.AlignWith( x2 ); z2_STAR_MC.ResizeTo( 1, x2.Width() ); //----------------------------------------------------------------// x1_STAR_STAR = x1; L11_STAR_STAR = L11; Trsv ( LOWER, NORMAL, diag, L11_STAR_STAR.LockedLocalMatrix(), x1_STAR_STAR.LocalMatrix() ); x1 = x1_STAR_STAR; x1_STAR_MR = x1_STAR_STAR; Gemv ( NORMAL, (F)-1, L21.LockedLocalMatrix(), x1_STAR_MR.LockedLocalMatrix(), (F)0, z2_STAR_MC.LocalMatrix() ); z2_MR_MC.SumScatterFrom( z2_STAR_MC ); z2 = z2_MR_MC; Axpy( (F)1, z2, x2 ); //----------------------------------------------------------------// x1_STAR_MR.FreeAlignments(); z2_STAR_MC.FreeAlignments(); z2.FreeAlignments(); SlideLockedPartitionDownDiagonal ( LTL, /**/ LTR, L00, L01, /**/ L02, /**/ L10, L11, /**/ L12, /*************/ /******************/ LBL, /**/ LBR, L20, L21, /**/ L22 ); SlidePartitionRight ( xL, /**/ xR, x0, x1, /**/ x2 ); } } #ifndef RELEASE PopCallStack(); #endif }
inline void LocalSymmetricAccumulateRU ( Orientation orientation, T alpha, const DistMatrix<T,MC, MR >& A, const DistMatrix<T,STAR,MC >& B_STAR_MC, const DistMatrix<T,MR, STAR>& BAdjOrTrans_MR_STAR, DistMatrix<T,MC, STAR>& ZAdjOrTrans_MC_STAR, DistMatrix<T,MR, STAR>& ZAdjOrTrans_MR_STAR ) { #ifndef RELEASE PushCallStack("internal::LocalSymmetricAccumulateRU"); if( A.Grid() != B_STAR_MC.Grid() || B_STAR_MC.Grid() != BAdjOrTrans_MR_STAR.Grid() || BAdjOrTrans_MR_STAR.Grid() != ZAdjOrTrans_MC_STAR.Grid() || ZAdjOrTrans_MC_STAR.Grid() != ZAdjOrTrans_MR_STAR.Grid() ) throw std::logic_error ("{A,B,C} must be distributed over the same grid"); if( A.Height() != A.Width() || A.Height() != B_STAR_MC.Width() || A.Height() != BAdjOrTrans_MR_STAR.Height() || A.Height() != ZAdjOrTrans_MC_STAR.Height() || A.Height() != ZAdjOrTrans_MR_STAR.Height() || B_STAR_MC.Height() != BAdjOrTrans_MR_STAR.Width() || BAdjOrTrans_MR_STAR.Width() != ZAdjOrTrans_MC_STAR.Width() || ZAdjOrTrans_MC_STAR.Width() != ZAdjOrTrans_MR_STAR.Width() ) { std::ostringstream msg; msg << "Nonconformal LocalSymmetricAccumulateRU: \n" << " A ~ " << A.Height() << " x " << A.Width() << "\n" << " B[* ,MC] ~ " << B_STAR_MC.Height() << " x " << B_STAR_MC.Width() << "\n" << " B^H/T[MR,* ] ~ " << BAdjOrTrans_MR_STAR.Height() << " x " << BAdjOrTrans_MR_STAR.Width() << "\n" << " Z^H/T[MC,* ] ~ " << ZAdjOrTrans_MC_STAR.Height() << " x " << ZAdjOrTrans_MC_STAR.Width() << "\n" << " Z^H/T[MR,* ] ~ " << ZAdjOrTrans_MR_STAR.Height() << " x " << ZAdjOrTrans_MR_STAR.Width() << "\n"; throw std::logic_error( msg.str().c_str() ); } if( B_STAR_MC.RowAlignment() != A.ColAlignment() || BAdjOrTrans_MR_STAR.ColAlignment() != A.RowAlignment() || ZAdjOrTrans_MC_STAR.ColAlignment() != A.ColAlignment() || ZAdjOrTrans_MR_STAR.ColAlignment() != A.RowAlignment() ) throw std::logic_error("Partial matrix distributions are misaligned"); #endif const Grid& g = A.Grid(); // Matrix views DistMatrix<T> ATL(g), ATR(g), A00(g), A01(g), A02(g), ABL(g), ABR(g), A10(g), A11(g), A12(g), A20(g), A21(g), A22(g); DistMatrix<T> D11(g); DistMatrix<T,STAR,MC> BL_STAR_MC(g), BR_STAR_MC(g), B0_STAR_MC(g), B1_STAR_MC(g), B2_STAR_MC(g); DistMatrix<T,MR,STAR> BTAdjOrTrans_MR_STAR(g), B0AdjOrTrans_MR_STAR(g), BBAdjOrTrans_MR_STAR(g), B1AdjOrTrans_MR_STAR(g), B2AdjOrTrans_MR_STAR(g); DistMatrix<T,MC,STAR> ZTAdjOrTrans_MC_STAR(g), Z0AdjOrTrans_MC_STAR(g), ZBAdjOrTrans_MC_STAR(g), Z1AdjOrTrans_MC_STAR(g), Z2AdjOrTrans_MC_STAR(g); DistMatrix<T,MR,STAR> ZBAdjOrTrans_MR_STAR(g), Z0AdjOrTrans_MR_STAR(g), ZTAdjOrTrans_MR_STAR(g), Z1AdjOrTrans_MR_STAR(g), Z2AdjOrTrans_MR_STAR(g); const int ratio = std::max( g.Height(), g.Width() ); PushBlocksizeStack( ratio*Blocksize() ); LockedPartitionDownDiagonal ( A, ATL, ATR, ABL, ABR, 0 ); LockedPartitionRight( B_STAR_MC, BL_STAR_MC, BR_STAR_MC, 0 ); LockedPartitionDown ( BAdjOrTrans_MR_STAR, BTAdjOrTrans_MR_STAR, BBAdjOrTrans_MR_STAR, 0 ); PartitionDown ( ZAdjOrTrans_MC_STAR, ZTAdjOrTrans_MC_STAR, ZBAdjOrTrans_MC_STAR, 0 ); PartitionDown ( ZAdjOrTrans_MR_STAR, ZTAdjOrTrans_MR_STAR, ZBAdjOrTrans_MR_STAR, 0 ); while( ATL.Height() < A.Height() ) { LockedRepartitionDownDiagonal ( ATL, /**/ ATR, A00, /**/ A01, A02, /*************/ /******************/ /**/ A10, /**/ A11, A12, ABL, /**/ ABR, A20, /**/ A21, A22 ); LockedRepartitionRight ( BL_STAR_MC, /**/ BR_STAR_MC, B0_STAR_MC, /**/ B1_STAR_MC, B2_STAR_MC ); LockedRepartitionDown ( BTAdjOrTrans_MR_STAR, B0AdjOrTrans_MR_STAR, /********************/ /********************/ B1AdjOrTrans_MR_STAR, BBAdjOrTrans_MR_STAR, B2AdjOrTrans_MR_STAR ); RepartitionDown ( ZTAdjOrTrans_MC_STAR, Z0AdjOrTrans_MC_STAR, /********************/ /********************/ Z1AdjOrTrans_MC_STAR, ZBAdjOrTrans_MC_STAR, Z2AdjOrTrans_MC_STAR ); RepartitionDown ( ZTAdjOrTrans_MR_STAR, Z0AdjOrTrans_MR_STAR, /********************/ /********************/ Z1AdjOrTrans_MR_STAR, ZBAdjOrTrans_MR_STAR, Z2AdjOrTrans_MR_STAR ); D11.AlignWith( A11 ); //--------------------------------------------------------------------// D11 = A11; MakeTrapezoidal( LEFT, UPPER, 0, D11 ); LocalGemm ( orientation, orientation, alpha, D11, B1_STAR_MC, T(1), Z1AdjOrTrans_MR_STAR ); MakeTrapezoidal( LEFT, UPPER, 1, D11 ); LocalGemm ( NORMAL, NORMAL, alpha, D11, B1AdjOrTrans_MR_STAR, T(1), Z1AdjOrTrans_MC_STAR ); LocalGemm ( orientation, orientation, alpha, A12, B1_STAR_MC, T(1), Z2AdjOrTrans_MR_STAR ); LocalGemm ( NORMAL, NORMAL, alpha, A12, B2AdjOrTrans_MR_STAR, T(1), Z1AdjOrTrans_MC_STAR ); //--------------------------------------------------------------------// D11.FreeAlignments(); SlideLockedPartitionDownDiagonal ( ATL, /**/ ATR, A00, A01, /**/ A02, /**/ A10, A11, /**/ A12, /*************/ /******************/ ABL, /**/ ABR, A20, A21, /**/ A22 ); SlideLockedPartitionRight ( BL_STAR_MC, /**/ BR_STAR_MC, B0_STAR_MC, B1_STAR_MC, /**/ B2_STAR_MC ); SlideLockedPartitionDown ( BTAdjOrTrans_MR_STAR, B0AdjOrTrans_MR_STAR, B1AdjOrTrans_MR_STAR, /********************/ /********************/ BBAdjOrTrans_MR_STAR, B2AdjOrTrans_MR_STAR ); SlidePartitionDown ( ZTAdjOrTrans_MC_STAR, Z0AdjOrTrans_MC_STAR, Z1AdjOrTrans_MC_STAR, /********************/ /********************/ ZBAdjOrTrans_MC_STAR, Z2AdjOrTrans_MC_STAR ); SlidePartitionDown ( ZTAdjOrTrans_MR_STAR, Z0AdjOrTrans_MR_STAR, Z1AdjOrTrans_MR_STAR, /********************/ /********************/ ZBAdjOrTrans_MR_STAR, Z2AdjOrTrans_MR_STAR ); } PopBlocksizeStack(); #ifndef RELEASE PopCallStack(); #endif }
inline void internal::TrmmLUNC ( UnitOrNonUnit diag, T alpha, const DistMatrix<T,MC,MR>& U, DistMatrix<T,MC,MR>& X ) { #ifndef RELEASE PushCallStack("internal::TrmmLUNC"); if( U.Grid() != X.Grid() ) throw std::logic_error ("U and X must be distributed over the same grid"); if( U.Height() != U.Width() || U.Width() != X.Height() ) { std::ostringstream msg; msg << "Nonconformal TrmmLUN: \n" << " U ~ " << U.Height() << " x " << U.Width() << "\n" << " X ~ " << X.Height() << " x " << X.Width() << "\n"; throw std::logic_error( msg.str().c_str() ); } #endif const Grid& g = U.Grid(); // Matrix views DistMatrix<T,MC,MR> UTL(g), UTR(g), U00(g), U01(g), U02(g), UBL(g), UBR(g), U10(g), U11(g), U12(g), U20(g), U21(g), U22(g); DistMatrix<T,MC,MR> XT(g), X0(g), XB(g), X1(g), X2(g); // Temporary distributions DistMatrix<T,STAR,STAR> U11_STAR_STAR(g); DistMatrix<T,STAR,MC > U12_STAR_MC(g); DistMatrix<T,STAR,VR > X1_STAR_VR(g); DistMatrix<T,MR, STAR> D1Trans_MR_STAR(g); DistMatrix<T,MR, MC > D1Trans_MR_MC(g); DistMatrix<T,MC, MR > D1(g); // Start the algorithm Scal( alpha, X ); LockedPartitionDownDiagonal ( U, UTL, UTR, UBL, UBR, 0 ); PartitionDown ( X, XT, XB, 0 ); while( XB.Height() > 0 ) { LockedRepartitionDownDiagonal ( UTL, /**/ UTR, U00, /**/ U01, U02, /*************/ /******************/ /**/ U10, /**/ U11, U12, UBL, /**/ UBR, U20, /**/ U21, U22 ); RepartitionDown ( XT, X0, /**/ /**/ X1, XB, X2 ); U12_STAR_MC.AlignWith( X2 ); D1Trans_MR_STAR.AlignWith( X1 ); D1Trans_MR_MC.AlignWith( X1 ); D1.AlignWith( X1 ); D1Trans_MR_STAR.ResizeTo( X1.Width(), X1.Height() ); D1.ResizeTo( X1.Height(), X1.Width() ); //--------------------------------------------------------------------// X1_STAR_VR = X1; U11_STAR_STAR = U11; internal::LocalTrmm ( LEFT, UPPER, NORMAL, diag, (T)1, U11_STAR_STAR, X1_STAR_VR ); X1 = X1_STAR_VR; U12_STAR_MC = U12; internal::LocalGemm ( TRANSPOSE, TRANSPOSE, (T)1, X2, U12_STAR_MC, (T)0, D1Trans_MR_STAR ); D1Trans_MR_MC.SumScatterFrom( D1Trans_MR_STAR ); Transpose( D1Trans_MR_MC.LocalMatrix(), D1.LocalMatrix() ); Axpy( (T)1, D1, X1 ); //--------------------------------------------------------------------// D1.FreeAlignments(); D1Trans_MR_MC.FreeAlignments(); D1Trans_MR_STAR.FreeAlignments(); U12_STAR_MC.FreeAlignments(); SlideLockedPartitionDownDiagonal ( UTL, /**/ UTR, U00, U01, /**/ U02, /**/ U10, U11, /**/ U12, /*************/ /******************/ UBL, /**/ UBR, U20, U21, /**/ U22 ); SlidePartitionDown ( XT, X0, X1, /**/ /**/ XB, X2 ); } #ifndef RELEASE PopCallStack(); #endif }
inline void internal::LocalTrmmAccumulateLUN ( Orientation orientation, UnitOrNonUnit diag, T alpha, const DistMatrix<T,MC, MR >& U, const DistMatrix<T,STAR,MR >& XAdjOrTrans_STAR_MR, DistMatrix<T,MC, STAR>& Z_MC_STAR ) { #ifndef RELEASE PushCallStack("internal::LocalTrmmAccumulateLUN"); if( U.Grid() != XAdjOrTrans_STAR_MR.Grid() || XAdjOrTrans_STAR_MR.Grid() != Z_MC_STAR.Grid() ) throw std::logic_error ("{U,X,Z} must be distributed over the same grid"); if( U.Height() != U.Width() || U.Height() != XAdjOrTrans_STAR_MR.Width() || U.Height() != Z_MC_STAR.Height() || XAdjOrTrans_STAR_MR.Height() != Z_MC_STAR.Width() ) { std::ostringstream msg; msg << "Nonconformal LocalTrmmAccumulateLUN: \n" << " U ~ " << U.Height() << " x " << U.Width() << "\n" << " X^H/T[* ,MR] ~ " << XAdjOrTrans_STAR_MR.Height() << " x " << XAdjOrTrans_STAR_MR.Width() << "\n" << " Z[MC,* ] ~ " << Z_MC_STAR.Height() << " x " << Z_MC_STAR.Width() << "\n"; throw std::logic_error( msg.str().c_str() ); } if( XAdjOrTrans_STAR_MR.RowAlignment() != U.RowAlignment() || Z_MC_STAR.ColAlignment() != U.ColAlignment() ) throw std::logic_error("Partial matrix distributions are misaligned"); #endif const Grid& g = U.Grid(); // Matrix views DistMatrix<T,MC,MR> UTL(g), UTR(g), U00(g), U01(g), U02(g), UBL(g), UBR(g), U10(g), U11(g), U12(g), U20(g), U21(g), U22(g); DistMatrix<T,MC,MR> D11(g); DistMatrix<T,STAR,MR> XLAdjOrTrans_STAR_MR(g), XRAdjOrTrans_STAR_MR(g), X0AdjOrTrans_STAR_MR(g), X1AdjOrTrans_STAR_MR(g), X2AdjOrTrans_STAR_MR(g); DistMatrix<T,MC,STAR> ZT_MC_STAR(g), Z0_MC_STAR(g), ZB_MC_STAR(g), Z1_MC_STAR(g), Z2_MC_STAR(g); const int ratio = std::max( g.Height(), g.Width() ); PushBlocksizeStack( ratio*Blocksize() ); LockedPartitionDownDiagonal ( U, UTL, UTR, UBL, UBR, 0 ); LockedPartitionRight ( XAdjOrTrans_STAR_MR, XLAdjOrTrans_STAR_MR, XRAdjOrTrans_STAR_MR, 0 ); PartitionDown ( Z_MC_STAR, ZT_MC_STAR, ZB_MC_STAR, 0 ); while( UTL.Height() < U.Height() ) { LockedRepartitionDownDiagonal ( UTL, /**/ UTR, U00, /**/ U01, U02, /*************/ /******************/ /**/ U10, /**/ U11, U12, UBL, /**/ UBR, U20, /**/ U21, U22 ); LockedRepartitionRight ( XLAdjOrTrans_STAR_MR, /**/ XRAdjOrTrans_STAR_MR, X0AdjOrTrans_STAR_MR, /**/ X1AdjOrTrans_STAR_MR, X2AdjOrTrans_STAR_MR ); RepartitionDown ( ZT_MC_STAR, Z0_MC_STAR, /**********/ /**********/ Z1_MC_STAR, ZB_MC_STAR, Z2_MC_STAR ); D11.AlignWith( U11 ); //--------------------------------------------------------------------// D11 = U11; MakeTrapezoidal( LEFT, UPPER, 0, D11 ); if( diag == UNIT ) SetDiagonalToOne( D11 ); internal::LocalGemm ( NORMAL, orientation, alpha, D11, X1AdjOrTrans_STAR_MR, (T)1, Z1_MC_STAR ); internal::LocalGemm ( NORMAL, orientation, alpha, U01, X1AdjOrTrans_STAR_MR, (T)1, Z0_MC_STAR ); //--------------------------------------------------------------------// D11.FreeAlignments(); SlideLockedPartitionDownDiagonal ( UTL, /**/ UTR, U00, U01, /**/ U02, /**/ U10, U11, /**/ U12, /*************/ /******************/ UBL, /**/ UBR, U20, U21, /**/ U22 ); SlideLockedPartitionRight ( XLAdjOrTrans_STAR_MR, /**/ XRAdjOrTrans_STAR_MR, X0AdjOrTrans_STAR_MR, X1AdjOrTrans_STAR_MR, /**/ X2AdjOrTrans_STAR_MR ); SlidePartitionDown ( ZT_MC_STAR, Z0_MC_STAR, Z1_MC_STAR, /**********/ /**********/ ZB_MC_STAR, Z2_MC_STAR ); } PopBlocksizeStack(); #ifndef RELEASE PopCallStack(); #endif }
inline void TwoSidedTrmmLVar2( UnitOrNonUnit diag, Matrix<F>& A, const Matrix<F>& L ) { #ifndef RELEASE PushCallStack("internal::TwoSidedTrmmLVar2"); if( A.Height() != A.Width() ) throw std::logic_error( "A must be square." ); if( L.Height() != L.Width() ) throw std::logic_error( "Triangular matrices must be square." ); if( A.Height() != L.Height() ) throw std::logic_error( "A and L must be the same size." ); #endif // Matrix views Matrix<F> ATL, ATR, A00, A01, A02, ABL, ABR, A10, A11, A12, A20, A21, A22; Matrix<F> LTL, LTR, L00, L01, L02, LBL, LBR, L10, L11, L12, L20, L21, L22; // Temporary products Matrix<F> Y21; PartitionDownDiagonal ( A, ATL, ATR, ABL, ABR, 0 ); LockedPartitionDownDiagonal ( L, LTL, LTR, LBL, LBR, 0 ); while( ATL.Height() < A.Height() ) { RepartitionDownDiagonal ( ATL, /**/ ATR, A00, /**/ A01, A02, /*************/ /******************/ /**/ A10, /**/ A11, A12, ABL, /**/ ABR, A20, /**/ A21, A22 ); LockedRepartitionDownDiagonal ( LTL, /**/ LTR, L00, /**/ L01, L02, /*************/ /******************/ /**/ L10, /**/ L11, L12, LBL, /**/ LBR, L20, /**/ L21, L22 ); //--------------------------------------------------------------------// // A10 := L11' A10 Trmm( LEFT, LOWER, ADJOINT, diag, F(1), L11, A10 ); // A10 := A10 + L21' A20 Gemm( ADJOINT, NORMAL, F(1), L21, A20, F(1), A10 ); // Y21 := A22 L21 Zeros( A21.Height(), A21.Width(), Y21 ); Hemm( LEFT, LOWER, F(1), A22, L21, F(0), Y21 ); // A21 := A21 L11 Trmm( RIGHT, LOWER, NORMAL, diag, F(1), L11, A21 ); // A21 := A21 + 1/2 Y21 Axpy( F(1)/F(2), Y21, A21 ); // A11 := L11' A11 L11 TwoSidedTrmmLUnb( diag, A11, L11 ); // A11 := A11 + (A21' L21 + L21' A21) Her2k( LOWER, ADJOINT, F(1), A21, L21, F(1), A11 ); // A21 := A21 + 1/2 Y21 Axpy( F(1)/F(2), Y21, A21 ); //--------------------------------------------------------------------// SlidePartitionDownDiagonal ( ATL, /**/ ATR, A00, A01, /**/ A02, /**/ A10, A11, /**/ A12, /*************/ /******************/ ABL, /**/ ABR, A20, A21, /**/ A22 ); SlideLockedPartitionDownDiagonal ( LTL, /**/ LTR, L00, L01, /**/ L02, /**/ L10, L11, /**/ L12, /*************/ /******************/ LBL, /**/ LBR, L20, L21, /**/ L22 ); } #ifndef RELEASE PopCallStack(); #endif }
inline void TwoSidedTrsmUVar2 ( UnitOrNonUnit diag, DistMatrix<F>& A, const DistMatrix<F>& U ) { #ifndef RELEASE CallStackEntry entry("internal::TwoSidedTrsmUVar2"); if( A.Height() != A.Width() ) LogicError("A must be square"); if( U.Height() != U.Width() ) LogicError("Triangular matrices must be square"); if( A.Height() != U.Height() ) LogicError("A and U must be the same size"); #endif const Grid& g = A.Grid(); // Matrix views DistMatrix<F> ATL(g), ATR(g), A00(g), A01(g), A02(g), ABL(g), ABR(g), A10(g), A11(g), A12(g), A20(g), A21(g), A22(g); DistMatrix<F> UTL(g), UTR(g), U00(g), U01(g), U02(g), UBL(g), UBR(g), U10(g), U11(g), U12(g), U20(g), U21(g), U22(g); // Temporary distributions DistMatrix<F,MC, STAR> A01_MC_STAR(g); DistMatrix<F,VC, STAR> A01_VC_STAR(g); DistMatrix<F,STAR,STAR> A11_STAR_STAR(g); DistMatrix<F,STAR,VR > A12_STAR_VR(g); DistMatrix<F,MC, STAR> F01_MC_STAR(g); DistMatrix<F,MC, STAR> U01_MC_STAR(g); DistMatrix<F,VR, STAR> U01_VR_STAR(g); DistMatrix<F,STAR,MR > U01Adj_STAR_MR(g); DistMatrix<F,STAR,STAR> U11_STAR_STAR(g); DistMatrix<F,STAR,MR > X11_STAR_MR(g); DistMatrix<F,MR, STAR> X12Adj_MR_STAR(g); DistMatrix<F,MR, MC > X12Adj_MR_MC(g); DistMatrix<F,MR, MC > Y01_MR_MC(g); DistMatrix<F,MR, STAR> Y01_MR_STAR(g); DistMatrix<F> X11(g); DistMatrix<F> Y01(g); Matrix<F> X12Local; PartitionDownDiagonal ( A, ATL, ATR, ABL, ABR, 0 ); LockedPartitionDownDiagonal ( U, UTL, UTR, UBL, UBR, 0 ); while( ATL.Height() < A.Height() ) { RepartitionDownDiagonal ( ATL, /**/ ATR, A00, /**/ A01, A02, /*************/ /******************/ /**/ A10, /**/ A11, A12, ABL, /**/ ABR, A20, /**/ A21, A22 ); LockedRepartitionDownDiagonal ( UTL, /**/ UTR, U00, /**/ U01, U02, /*************/ /******************/ /**/ U10, /**/ U11, U12, UBL, /**/ UBR, U20, /**/ U21, U22 ); A01_MC_STAR.AlignWith( U01 ); Y01.AlignWith( A01 ); Y01_MR_STAR.AlignWith( A00 ); U01_MC_STAR.AlignWith( A00 ); U01_VR_STAR.AlignWith( A00 ); U01Adj_STAR_MR.AlignWith( A00 ); X11_STAR_MR.AlignWith( U01 ); X11.AlignWith( A11 ); X12Adj_MR_STAR.AlignWith( A02 ); X12Adj_MR_MC.AlignWith( A12 ); F01_MC_STAR.AlignWith( A00 ); //--------------------------------------------------------------------// // Y01 := A00 U01 U01_MC_STAR = U01; U01_VR_STAR = U01_MC_STAR; U01Adj_STAR_MR.AdjointFrom( U01_VR_STAR ); Zeros( Y01_MR_STAR, A01.Height(), A01.Width() ); Zeros( F01_MC_STAR, A01.Height(), A01.Width() ); LocalSymmetricAccumulateLU ( ADJOINT, F(1), A00, U01_MC_STAR, U01Adj_STAR_MR, F01_MC_STAR, Y01_MR_STAR ); Y01_MR_MC.SumScatterFrom( Y01_MR_STAR ); Y01 = Y01_MR_MC; Y01.SumScatterUpdate( F(1), F01_MC_STAR ); // X11 := U01' A01 LocalGemm( ADJOINT, NORMAL, F(1), U01_MC_STAR, A01, X11_STAR_MR ); // A01 := A01 - Y01 Axpy( F(-1), Y01, A01 ); A01_MC_STAR = A01; // A11 := A11 - triu(X11 + A01' U01) = A11 - (U01 A01 + A01' U01) LocalGemm( ADJOINT, NORMAL, F(1), A01_MC_STAR, U01, F(1), X11_STAR_MR ); X11.SumScatterFrom( X11_STAR_MR ); MakeTriangular( UPPER, X11 ); Axpy( F(-1), X11, A11 ); // A01 := A01 inv(U11) U11_STAR_STAR = U11; A01_VC_STAR = A01_MC_STAR; LocalTrsm ( RIGHT, UPPER, NORMAL, diag, F(1), U11_STAR_STAR, A01_VC_STAR ); A01 = A01_VC_STAR; // A11 := inv(U11)' A11 inv(U11) A11_STAR_STAR = A11; LocalTwoSidedTrsm( UPPER, diag, A11_STAR_STAR, U11_STAR_STAR ); A11 = A11_STAR_STAR; // A12 := A12 - A02' U01 LocalGemm( ADJOINT, NORMAL, F(1), A02, U01_MC_STAR, X12Adj_MR_STAR ); X12Adj_MR_MC.SumScatterFrom( X12Adj_MR_STAR ); Adjoint( X12Adj_MR_MC.LockedMatrix(), X12Local ); Axpy( F(-1), X12Local, A12.Matrix() ); // A12 := inv(U11)' A12 A12_STAR_VR = A12; LocalTrsm ( LEFT, UPPER, ADJOINT, diag, F(1), U11_STAR_STAR, A12_STAR_VR ); A12 = A12_STAR_VR; //--------------------------------------------------------------------// SlidePartitionDownDiagonal ( ATL, /**/ ATR, A00, A01, /**/ A02, /**/ A10, A11, /**/ A12, /*************/ /******************/ ABL, /**/ ABR, A20, A21, /**/ A22 ); SlideLockedPartitionDownDiagonal ( UTL, /**/ UTR, U00, U01, /**/ U02, /**/ U10, U11, /**/ U12, /*************/ /******************/ UBL, /**/ UBR, U20, U21, /**/ U22 ); } }
inline void TwoSidedTrmmLVar2 ( UnitOrNonUnit diag, DistMatrix<F>& A, const DistMatrix<F>& L ) { #ifndef RELEASE PushCallStack("internal::TwoSidedTrmmLVar2"); if( A.Height() != A.Width() ) throw std::logic_error( "A must be square." ); if( L.Height() != L.Width() ) throw std::logic_error( "Triangular matrices must be square." ); if( A.Height() != L.Height() ) throw std::logic_error( "A and L must be the same size." ); #endif const Grid& g = A.Grid(); // Matrix views DistMatrix<F> ATL(g), ATR(g), A00(g), A01(g), A02(g), ABL(g), ABR(g), A10(g), A11(g), A12(g), A20(g), A21(g), A22(g); DistMatrix<F> LTL(g), LTR(g), L00(g), L01(g), L02(g), LBL(g), LBR(g), L10(g), L11(g), L12(g), L20(g), L21(g), L22(g); // Temporary distributions DistMatrix<F,STAR,VR > A10_STAR_VR(g); DistMatrix<F,STAR,STAR> A11_STAR_STAR(g); DistMatrix<F,VC, STAR> A21_VC_STAR(g); DistMatrix<F,STAR,STAR> L11_STAR_STAR(g); DistMatrix<F,MC, STAR> L21_MC_STAR(g); DistMatrix<F,STAR,MR > L21Adj_STAR_MR(g); DistMatrix<F,VC, STAR> L21_VC_STAR(g); DistMatrix<F,VR, STAR> L21_VR_STAR(g); DistMatrix<F,STAR,MR > X10_STAR_MR(g); DistMatrix<F,STAR,STAR> X11_STAR_STAR(g); DistMatrix<F,MC, STAR> Z21_MC_STAR(g); DistMatrix<F,MR, STAR> Z21_MR_STAR(g); DistMatrix<F,MR, MC > Z21_MR_MC(g); DistMatrix<F> Y21(g); PartitionDownDiagonal ( A, ATL, ATR, ABL, ABR, 0 ); LockedPartitionDownDiagonal ( L, LTL, LTR, LBL, LBR, 0 ); while( ATL.Height() < A.Height() ) { RepartitionDownDiagonal ( ATL, /**/ ATR, A00, /**/ A01, A02, /*************/ /******************/ /**/ A10, /**/ A11, A12, ABL, /**/ ABR, A20, /**/ A21, A22 ); LockedRepartitionDownDiagonal ( LTL, /**/ LTR, L00, /**/ L01, L02, /*************/ /******************/ /**/ L10, /**/ L11, L12, LBL, /**/ LBR, L20, /**/ L21, L22 ); A21_VC_STAR.AlignWith( A22 ); L21_MC_STAR.AlignWith( A20 ); L21_VC_STAR.AlignWith( A22 ); L21_VR_STAR.AlignWith( A22 ); L21Adj_STAR_MR.AlignWith( A22 ); X10_STAR_MR.AlignWith( A10 ); Y21.AlignWith( A21 ); Z21_MC_STAR.AlignWith( A22 ); Z21_MR_STAR.AlignWith( A22 ); //--------------------------------------------------------------------// // A10 := L11' A10 L11_STAR_STAR = L11; A10_STAR_VR = A10; LocalTrmm ( LEFT, LOWER, ADJOINT, diag, F(1), L11_STAR_STAR, A10_STAR_VR ); A10 = A10_STAR_VR; // A10 := A10 + L21' A20 L21_MC_STAR = L21; X10_STAR_MR.ResizeTo( A10.Height(), A10.Width() ); LocalGemm( ADJOINT, NORMAL, F(1), L21_MC_STAR, A20, F(0), X10_STAR_MR ); A10.SumScatterUpdate( F(1), X10_STAR_MR ); // Y21 := A22 L21 L21_VC_STAR = L21_MC_STAR; L21_VR_STAR = L21_VC_STAR; L21Adj_STAR_MR.AdjointFrom( L21_VR_STAR ); Z21_MC_STAR.ResizeTo( A21.Height(), A21.Width() ); Z21_MR_STAR.ResizeTo( A21.Height(), A21.Width() ); Zero( Z21_MC_STAR ); Zero( Z21_MR_STAR ); LocalSymmetricAccumulateLL ( ADJOINT, F(1), A22, L21_MC_STAR, L21Adj_STAR_MR, Z21_MC_STAR, Z21_MR_STAR ); Z21_MR_MC.SumScatterFrom( Z21_MR_STAR ); Y21 = Z21_MR_MC; Y21.SumScatterUpdate( F(1), Z21_MC_STAR ); // A21 := A21 L11 A21_VC_STAR = A21; LocalTrmm ( RIGHT, LOWER, NORMAL, diag, F(1), L11_STAR_STAR, A21_VC_STAR ); A21 = A21_VC_STAR; // A21 := A21 + 1/2 Y21 Axpy( F(1)/F(2), Y21, A21 ); // A11 := L11' A11 L11 A11_STAR_STAR = A11; LocalTwoSidedTrmm( LOWER, diag, A11_STAR_STAR, L11_STAR_STAR ); A11 = A11_STAR_STAR; // A11 := A11 + (A21' L21 + L21' A21) A21_VC_STAR = A21; X11_STAR_STAR.ResizeTo( A11.Height(), A11.Width() ); Her2k ( LOWER, ADJOINT, F(1), A21_VC_STAR.LocalMatrix(), L21_VC_STAR.LocalMatrix(), F(0), X11_STAR_STAR.LocalMatrix() ); A11.SumScatterUpdate( F(1), X11_STAR_STAR ); // A21 := A21 + 1/2 Y21 Axpy( F(1)/F(2), Y21, A21 ); //--------------------------------------------------------------------// A21_VC_STAR.FreeAlignments(); L21_MC_STAR.FreeAlignments(); L21_VC_STAR.FreeAlignments(); L21_VR_STAR.FreeAlignments(); L21Adj_STAR_MR.FreeAlignments(); X10_STAR_MR.FreeAlignments(); Y21.FreeAlignments(); Z21_MC_STAR.FreeAlignments(); Z21_MR_STAR.FreeAlignments(); SlidePartitionDownDiagonal ( ATL, /**/ ATR, A00, A01, /**/ A02, /**/ A10, A11, /**/ A12, /*************/ /******************/ ABL, /**/ ABR, A20, A21, /**/ A22 ); SlideLockedPartitionDownDiagonal ( LTL, /**/ LTR, L00, L01, /**/ L02, /**/ L10, L11, /**/ L12, /*************/ /******************/ LBL, /**/ LBR, L20, L21, /**/ L22 ); } #ifndef RELEASE PopCallStack(); #endif }
inline void TwoSidedTrsmLVar2 ( UnitOrNonUnit diag, DistMatrix<F>& A, const DistMatrix<F>& L ) { #ifndef RELEASE CallStackEntry entry("internal::TwoSidedTrsmLVar2"); if( A.Height() != A.Width() ) LogicError("A must be square"); if( L.Height() != L.Width() ) LogicError("Triangular matrices must be square"); if( A.Height() != L.Height() ) LogicError("A and L must be the same size"); #endif const Grid& g = A.Grid(); // Matrix views DistMatrix<F> ATL(g), ATR(g), A00(g), A01(g), A02(g), ABL(g), ABR(g), A10(g), A11(g), A12(g), A20(g), A21(g), A22(g); DistMatrix<F> LTL(g), LTR(g), L00(g), L01(g), L02(g), LBL(g), LBR(g), L10(g), L11(g), L12(g), L20(g), L21(g), L22(g); // Temporary distributions DistMatrix<F,MR, STAR> A10Adj_MR_STAR(g); DistMatrix<F,STAR,VR > A10_STAR_VR(g); DistMatrix<F,STAR,STAR> A11_STAR_STAR(g); DistMatrix<F,VC, STAR> A21_VC_STAR(g); DistMatrix<F,MR, STAR> F10Adj_MR_STAR(g); DistMatrix<F,MR, STAR> L10Adj_MR_STAR(g); DistMatrix<F,VC, STAR> L10Adj_VC_STAR(g); DistMatrix<F,STAR,MC > L10_STAR_MC(g); DistMatrix<F,STAR,STAR> L11_STAR_STAR(g); DistMatrix<F,MC, STAR> X11_MC_STAR(g); DistMatrix<F,MC, STAR> X21_MC_STAR(g); DistMatrix<F,MC, STAR> Y10Adj_MC_STAR(g); DistMatrix<F,MR, MC > Y10Adj_MR_MC(g); DistMatrix<F> X11(g); DistMatrix<F> Y10Adj(g); Matrix<F> Y10Local; PartitionDownDiagonal ( A, ATL, ATR, ABL, ABR, 0 ); LockedPartitionDownDiagonal ( L, LTL, LTR, LBL, LBR, 0 ); while( ATL.Height() < A.Height() ) { RepartitionDownDiagonal ( ATL, /**/ ATR, A00, /**/ A01, A02, /*************/ /******************/ /**/ A10, /**/ A11, A12, ABL, /**/ ABR, A20, /**/ A21, A22 ); LockedRepartitionDownDiagonal ( LTL, /**/ LTR, L00, /**/ L01, L02, /*************/ /******************/ /**/ L10, /**/ L11, L12, LBL, /**/ LBR, L20, /**/ L21, L22 ); A10Adj_MR_STAR.AlignWith( L10 ); F10Adj_MR_STAR.AlignWith( A00 ); L10Adj_MR_STAR.AlignWith( A00 ); L10Adj_VC_STAR.AlignWith( A00 ); L10_STAR_MC.AlignWith( A00 ); X11.AlignWith( A11 ); X11_MC_STAR.AlignWith( L10 ); X21_MC_STAR.AlignWith( A20 ); Y10Adj_MC_STAR.AlignWith( A00 ); Y10Adj_MR_MC.AlignWith( A10 ); //--------------------------------------------------------------------// // Y10 := L10 A00 L10Adj_MR_STAR.AdjointFrom( L10 ); L10Adj_VC_STAR = L10Adj_MR_STAR; L10_STAR_MC.AdjointFrom( L10Adj_VC_STAR ); Zeros( Y10Adj_MC_STAR, A10.Width(), A10.Height() ); Zeros( F10Adj_MR_STAR, A10.Width(), A10.Height() ); LocalSymmetricAccumulateRL ( ADJOINT, F(1), A00, L10_STAR_MC, L10Adj_MR_STAR, Y10Adj_MC_STAR, F10Adj_MR_STAR ); Y10Adj.SumScatterFrom( Y10Adj_MC_STAR ); Y10Adj_MR_MC = Y10Adj; Y10Adj_MR_MC.SumScatterUpdate( F(1), F10Adj_MR_STAR ); Adjoint( Y10Adj_MR_MC.LockedMatrix(), Y10Local ); // X11 := A10 L10' LocalGemm( NORMAL, NORMAL, F(1), A10, L10Adj_MR_STAR, X11_MC_STAR ); // A10 := A10 - Y10 Axpy( F(-1), Y10Local, A10.Matrix() ); A10Adj_MR_STAR.AdjointFrom( A10 ); // A11 := A11 - (X11 + L10 A10') = A11 - (A10 L10' + L10 A10') LocalGemm ( NORMAL, NORMAL, F(1), L10, A10Adj_MR_STAR, F(1), X11_MC_STAR ); X11.SumScatterFrom( X11_MC_STAR ); MakeTriangular( LOWER, X11 ); Axpy( F(-1), X11, A11 ); // A10 := inv(L11) A10 L11_STAR_STAR = L11; A10_STAR_VR.AdjointFrom( A10Adj_MR_STAR ); LocalTrsm ( LEFT, LOWER, NORMAL, diag, F(1), L11_STAR_STAR, A10_STAR_VR ); A10 = A10_STAR_VR; // A11 := inv(L11) A11 inv(L11)' A11_STAR_STAR = A11; LocalTwoSidedTrsm( LOWER, diag, A11_STAR_STAR, L11_STAR_STAR ); A11 = A11_STAR_STAR; // A21 := A21 - A20 L10' LocalGemm( NORMAL, NORMAL, F(1), A20, L10Adj_MR_STAR, X21_MC_STAR ); A21.SumScatterUpdate( F(-1), X21_MC_STAR ); // A21 := A21 inv(L11)' A21_VC_STAR = A21; LocalTrsm ( RIGHT, LOWER, ADJOINT, diag, F(1), L11_STAR_STAR, A21_VC_STAR ); A21 = A21_VC_STAR; //--------------------------------------------------------------------// SlidePartitionDownDiagonal ( ATL, /**/ ATR, A00, A01, /**/ A02, /**/ A10, A11, /**/ A12, /*************/ /******************/ ABL, /**/ ABR, A20, A21, /**/ A22 ); SlideLockedPartitionDownDiagonal ( LTL, /**/ LTR, L00, L01, /**/ L02, /**/ L10, L11, /**/ L12, /**********************************/ LBL, /**/ LBR, L20, L21, /**/ L22 ); } }
inline void TwoSidedTrsmUVar5 ( UnitOrNonUnit diag, DistMatrix<F>& A, const DistMatrix<F>& U ) { #ifndef RELEASE CallStackEntry entry("internal::TwoSidedTrsmUVar5"); if( A.Height() != A.Width() ) LogicError("A must be square"); if( U.Height() != U.Width() ) LogicError("Triangular matrices must be square"); if( A.Height() != U.Height() ) LogicError("A and U must be the same size"); #endif const Grid& g = A.Grid(); // Matrix views DistMatrix<F> ATL(g), ATR(g), A00(g), A01(g), A02(g), ABL(g), ABR(g), A10(g), A11(g), A12(g), A20(g), A21(g), A22(g); DistMatrix<F> UTL(g), UTR(g), U00(g), U01(g), U02(g), UBL(g), UBR(g), U10(g), U11(g), U12(g), U20(g), U21(g), U22(g); // Temporary distributions DistMatrix<F,STAR,STAR> A11_STAR_STAR(g); DistMatrix<F,STAR,MC > A12_STAR_MC(g); DistMatrix<F,STAR,MR > A12_STAR_MR(g); DistMatrix<F,STAR,VC > A12_STAR_VC(g); DistMatrix<F,STAR,VR > A12_STAR_VR(g); DistMatrix<F,STAR,STAR> U11_STAR_STAR(g); DistMatrix<F,STAR,MC > U12_STAR_MC(g); DistMatrix<F,STAR,MR > U12_STAR_MR(g); DistMatrix<F,STAR,VC > U12_STAR_VC(g); DistMatrix<F,STAR,VR > U12_STAR_VR(g); DistMatrix<F,STAR,VR > Y12_STAR_VR(g); DistMatrix<F> Y12(g); PartitionDownDiagonal ( A, ATL, ATR, ABL, ABR, 0 ); LockedPartitionDownDiagonal ( U, UTL, UTR, UBL, UBR, 0 ); while( ATL.Height() < A.Height() ) { RepartitionDownDiagonal ( ATL, /**/ ATR, A00, /**/ A01, A02, /*************/ /******************/ /**/ A10, /**/ A11, A12, ABL, /**/ ABR, A20, /**/ A21, A22 ); LockedRepartitionDownDiagonal ( UTL, /**/ UTR, U00, /**/ U01, U02, /*************/ /******************/ /**/ U10, /**/ U11, U12, UBL, /**/ UBR, U20, /**/ U21, U22 ); A12_STAR_MC.AlignWith( A22 ); A12_STAR_MR.AlignWith( A22 ); A12_STAR_VC.AlignWith( A22 ); A12_STAR_VR.AlignWith( A22 ); U12_STAR_MC.AlignWith( A22 ); U12_STAR_MR.AlignWith( A22 ); U12_STAR_VC.AlignWith( A22 ); U12_STAR_VR.AlignWith( A22 ); Y12.AlignWith( A12 ); Y12_STAR_VR.AlignWith( A12 ); //--------------------------------------------------------------------// // A11 := inv(U11)' A11 inv(U11) U11_STAR_STAR = U11; A11_STAR_STAR = A11; LocalTwoSidedTrsm( UPPER, diag, A11_STAR_STAR, U11_STAR_STAR ); A11 = A11_STAR_STAR; // Y12 := A11 U12 U12_STAR_VR = U12; Zeros( Y12_STAR_VR, A12.Height(), A12.Width() ); Hemm ( LEFT, UPPER, F(1), A11_STAR_STAR.Matrix(), U12_STAR_VR.Matrix(), F(0), Y12_STAR_VR.Matrix() ); Y12 = Y12_STAR_VR; // A12 := inv(U11)' A12 A12_STAR_VR = A12; LocalTrsm ( LEFT, UPPER, ADJOINT, diag, F(1), U11_STAR_STAR, A12_STAR_VR ); A12 = A12_STAR_VR; // A12 := A12 - 1/2 Y12 Axpy( F(-1)/F(2), Y12, A12 ); // A22 := A22 - (A12' U12 + U12' A12) A12_STAR_VR = A12; A12_STAR_VC = A12_STAR_VR; U12_STAR_VC = U12_STAR_VR; A12_STAR_MC = A12_STAR_VC; U12_STAR_MC = U12_STAR_VC; A12_STAR_MR = A12_STAR_VR; U12_STAR_MR = U12_STAR_VR; LocalTrr2k ( UPPER, ADJOINT, ADJOINT, F(-1), U12_STAR_MC, A12_STAR_MR, A12_STAR_MC, U12_STAR_MR, F(1), A22 ); // A12 := A12 - 1/2 Y12 Axpy( F(-1)/F(2), Y12, A12 ); // A12 := A12 inv(U22) // // This is the bottleneck because A12 only has blocksize rows Trsm( RIGHT, UPPER, NORMAL, diag, F(1), U22, A12 ); //--------------------------------------------------------------------// SlidePartitionDownDiagonal ( ATL, /**/ ATR, A00, A01, /**/ A02, /**/ A10, A11, /**/ A12, /*************/ /******************/ ABL, /**/ ABR, A20, A21, /**/ A22 ); SlideLockedPartitionDownDiagonal ( UTL, /**/ UTR, U00, U01, /**/ U02, /**/ U10, U11, /**/ U12, /*************/ /******************/ UBL, /**/ UBR, U20, U21, /**/ U22 ); } }
inline void TrtrsmLLN ( UnitOrNonUnit diag, F alpha, const DistMatrix<F>& L, DistMatrix<F>& X, bool checkIfSingular ) { #ifndef RELEASE CallStackEntry entry("internal::TrtrsmLLN"); #endif const Grid& g = L.Grid(); // Matrix views DistMatrix<F> LTL(g), LTR(g), L00(g), L01(g), L02(g), LBL(g), LBR(g), L10(g), L11(g), L12(g), L20(g), L21(g), L22(g); DistMatrix<F> XTL(g), XTR(g), X00(g), X01(g), X02(g), XBL(g), XBR(g), X10(g), X11(g), X12(g), X20(g), X21(g), X22(g); // Temporary distributions DistMatrix<F,STAR,STAR> L11_STAR_STAR(g); DistMatrix<F,MC, STAR> L21_MC_STAR(g); DistMatrix<F,STAR,MR > X10_STAR_MR(g); DistMatrix<F,STAR,VR > X10_STAR_VR(g); DistMatrix<F,STAR,MR > X11_STAR_MR(g); DistMatrix<F,STAR,STAR> X11_STAR_STAR(g); // Start the algorithm ScaleTrapezoid( alpha, LOWER, X ); LockedPartitionDownDiagonal ( L, LTL, LTR, LBL, LBR, 0 ); PartitionDownDiagonal ( X, XTL, XTR, XBL, XBR, 0 ); while( XBR.Height() > 0 ) { LockedRepartitionDownDiagonal ( LTL, /**/ LTR, L00, /**/ L01, L02, /*************/ /******************/ /**/ L10, /**/ L11, L12, LBL, /**/ LBR, L20, /**/ L21, L22 ); RepartitionDownDiagonal ( XTL, /**/ XTR, X00, /**/ X01, X02, /*************/ /******************/ /**/ X10, /**/ X11, X12, XBL, /**/ XBR, X20, /**/ X21, X22 ); L21_MC_STAR.AlignWith( X20 ); X10_STAR_MR.AlignWith( X20 ); X11_STAR_MR.AlignWith( X21 ); //--------------------------------------------------------------------// L11_STAR_STAR = L11; X11_STAR_STAR = X11; X10_STAR_VR = X10; LocalTrsm ( LEFT, LOWER, NORMAL, diag, F(1), L11_STAR_STAR, X10_STAR_VR, checkIfSingular ); LocalTrtrsm ( LEFT, LOWER, NORMAL, diag, F(1), L11_STAR_STAR, X11_STAR_STAR, checkIfSingular ); X11 = X11_STAR_STAR; X11_STAR_MR = X11_STAR_STAR; MakeTriangular( LOWER, X11_STAR_MR ); X10_STAR_MR = X10_STAR_VR; X10 = X10_STAR_MR; L21_MC_STAR = L21; LocalGemm ( NORMAL, NORMAL, F(-1), L21_MC_STAR, X10_STAR_MR, F(1), X20 ); LocalGemm ( NORMAL, NORMAL, F(-1), L21_MC_STAR, X11_STAR_MR, F(1), X21 ); //--------------------------------------------------------------------// SlideLockedPartitionDownDiagonal ( LTL, /**/ LTR, L00, L01, /**/ L02, /**/ L10, L11, /**/ L12, /*************/ /******************/ LBL, /**/ LBR, L20, L21, /**/ L22 ); SlidePartitionDownDiagonal ( XTL, /**/ XTR, X00, X01, /**/ X02, /**/ X10, X11, /**/ X12, /*************/ /******************/ XBL, /**/ XBR, X20, X21, /**/ X22 ); } }
inline void TwoSidedTrsmUVar1 ( UnitOrNonUnit diag, DistMatrix<F>& A, const DistMatrix<F>& U ) { #ifndef RELEASE PushCallStack("internal::TwoSidedTrsmUVar1"); if( A.Height() != A.Width() ) throw std::logic_error("A must be square"); if( U.Height() != U.Width() ) throw std::logic_error("Triangular matrices must be square"); if( A.Height() != U.Height() ) throw std::logic_error("A and U must be the same size"); #endif const Grid& g = A.Grid(); // Matrix views DistMatrix<F> ATL(g), ATR(g), A00(g), A01(g), A02(g), ABL(g), ABR(g), A10(g), A11(g), A12(g), A20(g), A21(g), A22(g); DistMatrix<F> UTL(g), UTR(g), U00(g), U01(g), U02(g), UBL(g), UBR(g), U10(g), U11(g), U12(g), U20(g), U21(g), U22(g); // Temporary distributions DistMatrix<F,STAR,STAR> A11_STAR_STAR(g); DistMatrix<F,VC, STAR> A01_VC_STAR(g); DistMatrix<F,STAR,STAR> U11_STAR_STAR(g); DistMatrix<F,MC, STAR> U01_MC_STAR(g); DistMatrix<F,VC, STAR> U01_VC_STAR(g); DistMatrix<F,VR, STAR> U01_VR_STAR(g); DistMatrix<F,STAR,MR > U01Adj_STAR_MR(g); DistMatrix<F,STAR,STAR> X11_STAR_STAR(g); DistMatrix<F,MR, MC > Z01_MR_MC(g); DistMatrix<F,MC, STAR> Z01_MC_STAR(g); DistMatrix<F,MR, STAR> Z01_MR_STAR(g); DistMatrix<F> Y01(g); PartitionDownDiagonal ( A, ATL, ATR, ABL, ABR, 0 ); LockedPartitionDownDiagonal ( U, UTL, UTR, UBL, UBR, 0 ); while( ATL.Height() < A.Height() ) { RepartitionDownDiagonal ( ATL, /**/ ATR, A00, /**/ A01, A02, /*************/ /******************/ /**/ A10, /**/ A11, A12, ABL, /**/ ABR, A20, /**/ A21, A22 ); LockedRepartitionDownDiagonal ( UTL, /**/ UTR, U00, /**/ U01, U02, /*************/ /******************/ /**/ U10, /**/ U11, U12, UBL, /**/ UBR, U20, /**/ U21, U22 ); A01_VC_STAR.AlignWith( A01 ); U01_MC_STAR.AlignWith( A00 ); U01_VR_STAR.AlignWith( A00 ); U01_VC_STAR.AlignWith( A00 ); U01Adj_STAR_MR.AlignWith( A00 ); Y01.AlignWith( A01 ); Z01_MR_MC.AlignWith( A01 ); Z01_MC_STAR.AlignWith( A00 ); Z01_MR_STAR.AlignWith( A00 ); //--------------------------------------------------------------------// // Y01 := A00 U01 U01_MC_STAR = U01; U01_VR_STAR = U01_MC_STAR; U01Adj_STAR_MR.AdjointFrom( U01_VR_STAR ); Z01_MC_STAR.ResizeTo( A01.Height(), A01.Width() ); Z01_MR_STAR.ResizeTo( A01.Height(), A01.Width() ); Zero( Z01_MC_STAR ); Zero( Z01_MR_STAR ); LocalSymmetricAccumulateLU ( ADJOINT, F(1), A00, U01_MC_STAR, U01Adj_STAR_MR, Z01_MC_STAR, Z01_MR_STAR ); Z01_MR_MC.SumScatterFrom( Z01_MR_STAR ); Y01 = Z01_MR_MC; Y01.SumScatterUpdate( F(1), Z01_MC_STAR ); // A01 := inv(U00)' A01 // // This is the bottleneck because A01 only has blocksize columns Trsm( LEFT, UPPER, ADJOINT, diag, F(1), U00, A01 ); // A01 := A01 - 1/2 Y01 Axpy( F(-1)/F(2), Y01, A01 ); // A11 := A11 - (U01' A01 + A01' U01) A01_VC_STAR = A01; U01_VC_STAR = U01_MC_STAR; X11_STAR_STAR.ResizeTo( A11.Height(), A11.Width() ); Her2k ( UPPER, ADJOINT, F(-1), A01_VC_STAR.LocalMatrix(), U01_VC_STAR.LocalMatrix(), F(0), X11_STAR_STAR.LocalMatrix() ); A11.SumScatterUpdate( F(1), X11_STAR_STAR ); // A11 := inv(U11)' A11 inv(U11) A11_STAR_STAR = A11; U11_STAR_STAR = U11; LocalTwoSidedTrsm( UPPER, diag, A11_STAR_STAR, U11_STAR_STAR ); A11 = A11_STAR_STAR; // A01 := A01 - 1/2 Y01 Axpy( F(-1)/F(2), Y01, A01 ); // A01 := A01 inv(U11) A01_VC_STAR = A01; LocalTrsm ( RIGHT, UPPER, NORMAL, diag, F(1), U11_STAR_STAR, A01_VC_STAR ); A01 = A01_VC_STAR; //--------------------------------------------------------------------// A01_VC_STAR.FreeAlignments(); U01_MC_STAR.FreeAlignments(); U01_VR_STAR.FreeAlignments(); U01_VC_STAR.FreeAlignments(); U01Adj_STAR_MR.FreeAlignments(); Y01.FreeAlignments(); Z01_MR_MC.FreeAlignments(); Z01_MC_STAR.FreeAlignments(); Z01_MR_STAR.FreeAlignments(); SlidePartitionDownDiagonal ( ATL, /**/ ATR, A00, A01, /**/ A02, /**/ A10, A11, /**/ A12, /*************/ /******************/ ABL, /**/ ABR, A20, A21, /**/ A22 ); SlideLockedPartitionDownDiagonal ( UTL, /**/ UTR, U00, U01, /**/ U02, /**/ U10, U11, /**/ U12, /*************/ /******************/ UBL, /**/ UBR, U20, U21, /**/ U22 ); } #ifndef RELEASE PopCallStack(); #endif }
inline void TrtrsmLLN ( UnitOrNonUnit diag, F alpha, const Matrix<F>& L, Matrix<F>& X, bool checkIfSingular=true ) { #ifndef RELEASE CallStackEntry entry("internal::TrtrsmLLN"); #endif // Matrix views Matrix<F> LTL, LTR, L00, L01, L02, LBL, LBR, L10, L11, L12, L20, L21, L22; Matrix<F> XTL, XTR, X00, X01, X02, XBL, XBR, X10, X11, X12, X20, X21, X22; Matrix<F> Z11; // Start the algorithm ScaleTrapezoid( alpha, LOWER, X ); LockedPartitionDownDiagonal ( L, LTL, LTR, LBL, LBR, 0 ); PartitionDownDiagonal ( X, XTL, XTR, XBL, XBR, 0 ); while( XBR.Height() > 0 ) { LockedRepartitionDownDiagonal ( LTL, /**/ LTR, L00, /**/ L01, L02, /*************/ /******************/ /**/ L10, /**/ L11, L12, LBL, /**/ LBR, L20, /**/ L21, L22 ); RepartitionDownDiagonal ( XTL, /**/ XTR, X00, /**/ X01, X02, /*************/ /******************/ /**/ X10, /**/ X11, X12, XBL, /**/ XBR, X20, /**/ X21, X22 ); //--------------------------------------------------------------------// Trsm( LEFT, LOWER, NORMAL, diag, F(1), L11, X10, checkIfSingular ); TrtrsmLLNUnb( diag, F(1), L11, X11 ); Gemm( NORMAL, NORMAL, F(-1), L21, X10, F(1), X20 ); Z11 = X11; MakeTriangular( LOWER, Z11 ); Gemm( NORMAL, NORMAL, F(-1), L21, Z11, F(1), X21 ); //--------------------------------------------------------------------// SlideLockedPartitionDownDiagonal ( LTL, /**/ LTR, L00, L01, /**/ L02, /**/ L10, L11, /**/ L12, /*************/ /******************/ LBL, /**/ LBR, L20, L21, /**/ L22 ); SlidePartitionDownDiagonal ( XTL, /**/ XTR, X00, X01, /**/ X02, /**/ X10, X11, /**/ X12, /*************/ /******************/ XBL, /**/ XBR, X20, X21, /**/ X22 ); } }
inline void TwoSidedTrsmUVar1( UnitOrNonUnit diag, Matrix<F>& A, const Matrix<F>& U ) { #ifndef RELEASE PushCallStack("internal::TwoSidedTrsmUVar1"); if( A.Height() != A.Width() ) throw std::logic_error("A must be square"); if( U.Height() != U.Width() ) throw std::logic_error("Triangular matrices must be square"); if( A.Height() != U.Height() ) throw std::logic_error("A and U must be the same size"); #endif // Matrix views Matrix<F> ATL, ATR, A00, A01, A02, ABL, ABR, A10, A11, A12, A20, A21, A22; Matrix<F> UTL, UTR, U00, U01, U02, UBL, UBR, U10, U11, U12, U20, U21, U22; // Temporary products Matrix<F> Y01; PartitionDownDiagonal ( A, ATL, ATR, ABL, ABR, 0 ); LockedPartitionDownDiagonal ( U, UTL, UTR, UBL, UBR, 0 ); while( ATL.Height() < A.Height() ) { RepartitionDownDiagonal ( ATL, /**/ ATR, A00, /**/ A01, A02, /*************/ /******************/ /**/ A10, /**/ A11, A12, ABL, /**/ ABR, A20, /**/ A21, A22 ); LockedRepartitionDownDiagonal ( UTL, /**/ UTR, U00, /**/ U01, U02, /*************/ /******************/ /**/ U10, /**/ U11, U12, UBL, /**/ UBR, U20, /**/ U21, U22 ); //--------------------------------------------------------------------// // Y01 := A00 U01 Zeros( A01.Height(), A01.Width(), Y01 ); Hemm( LEFT, UPPER, F(1), A00, U01, F(0), Y01 ); // A01 := inv(U00)' A01 Trsm( LEFT, UPPER, ADJOINT, diag, F(1), U00, A01 ); // A01 := A01 - 1/2 Y01 Axpy( F(-1)/F(2), Y01, A01 ); // A11 := A11 - (U01' A01 + A01' U01) Her2k( UPPER, ADJOINT, F(-1), U01, A01, F(1), A11 ); // A11 := inv(U11)' A11 inv(U11) TwoSidedTrsmUUnb( diag, A11, U11 ); // A01 := A01 - 1/2 Y01 Axpy( F(-1)/F(2), Y01, A01 ); // A01 := A01 inv(U11) Trsm( RIGHT, UPPER, NORMAL, diag, F(1), U11, A01 ); //--------------------------------------------------------------------// SlidePartitionDownDiagonal ( ATL, /**/ ATR, A00, A01, /**/ A02, /**/ A10, A11, /**/ A12, /*************/ /******************/ ABL, /**/ ABR, A20, A21, /**/ A22 ); SlideLockedPartitionDownDiagonal ( UTL, /**/ UTR, U00, U01, /**/ U02, /**/ U10, U11, /**/ U12, /*************/ /******************/ UBL, /**/ UBR, U20, U21, /**/ U22 ); } #ifndef RELEASE PopCallStack(); #endif }
inline void HemmRUC ( T alpha, const DistMatrix<T>& A, const DistMatrix<T>& B, T beta, DistMatrix<T>& C ) { #ifndef RELEASE PushCallStack("internal::HemmRUC"); if( A.Grid() != B.Grid() || B.Grid() != C.Grid() ) throw std::logic_error("{A,B,C} must be distributed on the same grid"); #endif const Grid& g = A.Grid(); // Matrix views DistMatrix<T> ATL(g), ATR(g), A00(g), A01(g), A02(g), AColPan(g), ABL(g), ABR(g), A10(g), A11(g), A12(g), ARowPan(g), A20(g), A21(g), A22(g); DistMatrix<T> BL(g), BR(g), B0(g), B1(g), B2(g); DistMatrix<T> CL(g), CR(g), C0(g), C1(g), C2(g), CLeft(g), CRight(g); // Temporary distributions DistMatrix<T,MC,STAR> B1_MC_STAR(g); DistMatrix<T,VR, STAR> AColPan_VR_STAR(g); DistMatrix<T,STAR,MR > AColPanAdj_STAR_MR(g); DistMatrix<T,MR, STAR> ARowPanAdj_MR_STAR(g); B1_MC_STAR.AlignWith( C ); // Start the algorithm Scale( beta, C ); LockedPartitionDownDiagonal ( A, ATL, ATR, ABL, ABR, 0 ); LockedPartitionRight( B, BL, BR, 0 ); PartitionRight( C, CL, CR, 0 ); while( CR.Width() > 0 ) { LockedRepartitionDownDiagonal ( ATL, /**/ ATR, A00, /**/ A01, A02, /*************/ /******************/ /**/ A10, /**/ A11, A12, ABL, /**/ ABR, A20, /**/ A21, A22 ); LockedRepartitionRight ( BL, /**/ BR, B0, /**/ B1, B2 ); RepartitionRight ( CL, /**/ CR, C0, /**/ C1, C2 ); ARowPan.LockedView1x2( A11, A12 ); AColPan.LockedView2x1 ( A01, A11 ); CLeft.View1x2( C0, C1 ); CRight.View1x2( C1, C2 ); AColPan_VR_STAR.AlignWith( CLeft ); AColPanAdj_STAR_MR.AlignWith( CLeft ); ARowPanAdj_MR_STAR.AlignWith( CRight ); //--------------------------------------------------------------------// B1_MC_STAR = B1; AColPan_VR_STAR = AColPan; AColPanAdj_STAR_MR.AdjointFrom( AColPan_VR_STAR ); ARowPanAdj_MR_STAR.AdjointFrom( ARowPan ); MakeTrapezoidal( LEFT, LOWER, 0, ARowPanAdj_MR_STAR ); MakeTrapezoidal( RIGHT, LOWER, -1, AColPanAdj_STAR_MR ); LocalGemm ( NORMAL, ADJOINT, alpha, B1_MC_STAR, ARowPanAdj_MR_STAR, T(1), CRight ); LocalGemm ( NORMAL, NORMAL, alpha, B1_MC_STAR, AColPanAdj_STAR_MR, T(1), CLeft ); //--------------------------------------------------------------------// AColPan_VR_STAR.FreeAlignments(); AColPanAdj_STAR_MR.FreeAlignments(); ARowPanAdj_MR_STAR.FreeAlignments(); SlideLockedPartitionDownDiagonal ( ATL, /**/ ATR, A00, A01, /**/ A02, /**/ A10, A11, /**/ A12, /*************/ /******************/ ABL, /**/ ABR, A20, A21, /**/ A22 ); SlideLockedPartitionRight ( BL, /**/ BR, B0, B1, /**/ B2 ); SlidePartitionRight ( CL, /**/ CR, C0, C1, /**/ C2 ); } #ifndef RELEASE PopCallStack(); #endif }
inline void internal::HegstLUVar2( DistMatrix<F,MC,MR>& A, const DistMatrix<F,MC,MR>& U ) { #ifndef RELEASE PushCallStack("internal::HegstLUVar2"); if( A.Height() != A.Width() ) throw std::logic_error("A must be square"); if( U.Height() != U.Width() ) throw std::logic_error("Triangular matrices must be square"); if( A.Height() != U.Height() ) throw std::logic_error("A and U must be the same size"); #endif const Grid& g = A.Grid(); // Matrix views DistMatrix<F,MC,MR> ATL(g), ATR(g), A00(g), A01(g), A02(g), ABL(g), ABR(g), A10(g), A11(g), A12(g), A20(g), A21(g), A22(g); DistMatrix<F,MC,MR> UTL(g), UTR(g), U00(g), U01(g), U02(g), UBL(g), UBR(g), U10(g), U11(g), U12(g), U20(g), U21(g), U22(g); // Temporary distributions DistMatrix<F,VC, STAR> A01_VC_STAR(g); DistMatrix<F,STAR,STAR> A11_STAR_STAR(g); DistMatrix<F,STAR,VR > A12_STAR_VR(g); DistMatrix<F,STAR,STAR> U11_STAR_STAR(g); DistMatrix<F,STAR,MC > U12_STAR_MC(g); DistMatrix<F,STAR,VR > U12_STAR_VR(g); DistMatrix<F,MR, STAR> U12Adj_MR_STAR(g); DistMatrix<F,VC, STAR> U12Adj_VC_STAR(g); DistMatrix<F,MC, STAR> X01_MC_STAR(g); DistMatrix<F,STAR,STAR> X11_STAR_STAR(g); DistMatrix<F,MC, MR > Y12(g); DistMatrix<F,MC, MR > Z12Adj(g); DistMatrix<F,MR, MC > Z12Adj_MR_MC(g); DistMatrix<F,MC, STAR> Z12Adj_MC_STAR(g); DistMatrix<F,MR, STAR> Z12Adj_MR_STAR(g); PartitionDownDiagonal ( A, ATL, ATR, ABL, ABR, 0 ); LockedPartitionDownDiagonal ( U, UTL, UTR, UBL, UBR, 0 ); while( ATL.Height() < A.Height() ) { RepartitionDownDiagonal ( ATL, /**/ ATR, A00, /**/ A01, A02, /*************/ /******************/ /**/ A10, /**/ A11, A12, ABL, /**/ ABR, A20, /**/ A21, A22 ); LockedRepartitionDownDiagonal ( UTL, /**/ UTR, U00, /**/ U01, U02, /*************/ /******************/ /**/ U10, /**/ U11, U12, UBL, /**/ UBR, U20, /**/ U21, U22 ); A12_STAR_VR.AlignWith( A12 ); U12_STAR_MC.AlignWith( A22 ); U12_STAR_VR.AlignWith( A12 ); U12Adj_MR_STAR.AlignWith( A22 ); U12Adj_VC_STAR.AlignWith( A22 ); X01_MC_STAR.AlignWith( A01 ); Y12.AlignWith( A12 ); Z12Adj.AlignWith( A12 ); Z12Adj_MR_MC.AlignWith( A12 ); Z12Adj_MC_STAR.AlignWith( A22 ); Z12Adj_MR_STAR.AlignWith( A22 ); //--------------------------------------------------------------------// // A01 := A01 U11' U11_STAR_STAR = U11; A01_VC_STAR = A01; internal::LocalTrmm ( RIGHT, UPPER, ADJOINT, NON_UNIT, (F)1, U11_STAR_STAR, A01_VC_STAR ); A01 = A01_VC_STAR; // A01 := A01 + A02 U12' U12Adj_MR_STAR.AdjointFrom( U12 ); X01_MC_STAR.ResizeTo( A01.Height(), A01.Width() ); internal::LocalGemm ( NORMAL, NORMAL, (F)1, A02, U12Adj_MR_STAR, (F)0, X01_MC_STAR ); A01.SumScatterUpdate( (F)1, X01_MC_STAR ); // Y12 := U12 A22 U12Adj_VC_STAR = U12Adj_MR_STAR; U12_STAR_MC.AdjointFrom( U12Adj_VC_STAR ); Z12Adj_MC_STAR.ResizeTo( A12.Width(), A12.Height() ); Z12Adj_MR_STAR.ResizeTo( A12.Width(), A12.Height() ); Zero( Z12Adj_MC_STAR ); Zero( Z12Adj_MR_STAR ); internal::LocalSymmetricAccumulateRU ( ADJOINT, (F)1, A22, U12_STAR_MC, U12Adj_MR_STAR, Z12Adj_MC_STAR, Z12Adj_MR_STAR ); Z12Adj.SumScatterFrom( Z12Adj_MC_STAR ); Z12Adj_MR_MC = Z12Adj; Z12Adj_MR_MC.SumScatterUpdate( (F)1, Z12Adj_MR_STAR ); Y12.ResizeTo( A12.Height(), A12.Width() ); Adjoint( Z12Adj_MR_MC.LockedLocalMatrix(), Y12.LocalMatrix() ); // A12 := U11 A12 A12_STAR_VR = A12; U11_STAR_STAR = U11; internal::LocalTrmm ( LEFT, UPPER, NORMAL, NON_UNIT, (F)1, U11_STAR_STAR, A12_STAR_VR ); A12 = A12_STAR_VR; // A12 := A12 + 1/2 Y12 Axpy( (F)0.5, Y12, A12 ); // A11 := U11 A11 U11' A11_STAR_STAR = A11; internal::LocalHegst( LEFT, UPPER, A11_STAR_STAR, U11_STAR_STAR ); A11 = A11_STAR_STAR; // A11 := A11 + (A12 U12' + U12 A12') A12_STAR_VR = A12; U12_STAR_VR = U12; X11_STAR_STAR.ResizeTo( A11.Height(), A11.Width() ); Her2k ( UPPER, NORMAL, (F)1, A12_STAR_VR.LocalMatrix(), U12_STAR_VR.LocalMatrix(), (F)0, X11_STAR_STAR.LocalMatrix() ); A11.SumScatterUpdate( (F)1, X11_STAR_STAR ); // A12 := A12 + 1/2 Y12 Axpy( (F)0.5, Y12, A12 ); //--------------------------------------------------------------------// A12_STAR_VR.FreeAlignments(); U12_STAR_MC.FreeAlignments(); U12_STAR_VR.FreeAlignments(); U12Adj_MR_STAR.FreeAlignments(); U12Adj_VC_STAR.FreeAlignments(); X01_MC_STAR.FreeAlignments(); Y12.FreeAlignments(); Z12Adj.FreeAlignments(); Z12Adj_MR_MC.FreeAlignments(); Z12Adj_MC_STAR.FreeAlignments(); Z12Adj_MR_STAR.FreeAlignments(); SlidePartitionDownDiagonal ( ATL, /**/ ATR, A00, A01, /**/ A02, /**/ A10, A11, /**/ A12, /*************/ /******************/ ABL, /**/ ABR, A20, A21, /**/ A22 ); SlideLockedPartitionDownDiagonal ( UTL, /**/ UTR, U00, U01, /**/ U02, /**/ U10, U11, /**/ U12, /*************/ /******************/ UBL, /**/ UBR, U20, U21, /**/ U22 ); } #ifndef RELEASE PopCallStack(); #endif }
inline void TwoSidedTrmmUVar5 ( UnitOrNonUnit diag, DistMatrix<F>& A, const DistMatrix<F>& U ) { #ifndef RELEASE CallStackEntry entry("internal::TwoSidedTrmmUVar5"); if( A.Height() != A.Width() ) LogicError("A must be square"); if( U.Height() != U.Width() ) LogicError("Triangular matrices must be square"); if( A.Height() != U.Height() ) LogicError("A and U must be the same size"); #endif const Grid& g = A.Grid(); // Matrix views DistMatrix<F> ATL(g), ATR(g), A00(g), A01(g), A02(g), ABL(g), ABR(g), A10(g), A11(g), A12(g), A20(g), A21(g), A22(g); DistMatrix<F> UTL(g), UTR(g), U00(g), U01(g), U02(g), UBL(g), UBR(g), U10(g), U11(g), U12(g), U20(g), U21(g), U22(g); // Temporary distributions DistMatrix<F,STAR,STAR> A11_STAR_STAR(g); DistMatrix<F,MC, STAR> A01_MC_STAR(g); DistMatrix<F,MR, STAR> A01_MR_STAR(g); DistMatrix<F,VC, STAR> A01_VC_STAR(g); DistMatrix<F,STAR,STAR> U11_STAR_STAR(g); DistMatrix<F,MC, STAR> U01_MC_STAR(g); DistMatrix<F,MR, STAR> U01_MR_STAR(g); DistMatrix<F,VC, STAR> U01_VC_STAR(g); DistMatrix<F,VC, STAR> Y01_VC_STAR(g); DistMatrix<F> Y01(g); PartitionDownDiagonal ( A, ATL, ATR, ABL, ABR, 0 ); LockedPartitionDownDiagonal ( U, UTL, UTR, UBL, UBR, 0 ); while( ATL.Height() < A.Height() ) { RepartitionDownDiagonal ( ATL, /**/ ATR, A00, /**/ A01, A02, /*************/ /******************/ /**/ A10, /**/ A11, A12, ABL, /**/ ABR, A20, /**/ A21, A22 ); LockedRepartitionDownDiagonal ( UTL, /**/ UTR, U00, /**/ U01, U02, /*************/ /******************/ /**/ U10, /**/ U11, U12, UBL, /**/ UBR, U20, /**/ U21, U22 ); A01_MC_STAR.AlignWith( A00 ); A01_MR_STAR.AlignWith( A00 ); A01_VC_STAR.AlignWith( A00 ); U01_MC_STAR.AlignWith( A00 ); U01_MR_STAR.AlignWith( A00 ); U01_VC_STAR.AlignWith( A00 ); Y01.AlignWith( A01 ); Y01_VC_STAR.AlignWith( A01 ); //--------------------------------------------------------------------// // Y01 := U01 A11 A11_STAR_STAR = A11; U01_VC_STAR = U01; Zeros( Y01_VC_STAR, A01.Height(), A01.Width() ); Hemm ( RIGHT, UPPER, F(1), A11_STAR_STAR.Matrix(), U01_VC_STAR.Matrix(), F(0), Y01_VC_STAR.Matrix() ); Y01 = Y01_VC_STAR; // A01 := U00 A01 Trmm( LEFT, UPPER, NORMAL, diag, F(1), U00, A01 ); // A01 := A01 + 1/2 Y01 Axpy( F(1)/F(2), Y01, A01 ); // A00 := A00 + (U01 A01' + A01 U01') A01_MC_STAR = A01; U01_MC_STAR = U01; A01_VC_STAR = A01_MC_STAR; A01_MR_STAR = A01_VC_STAR; U01_MR_STAR = U01_MC_STAR; LocalTrr2k ( UPPER, ADJOINT, ADJOINT, F(1), U01_MC_STAR, A01_MR_STAR, A01_MC_STAR, U01_MR_STAR, F(1), A00 ); // A01 := A01 + 1/2 Y01 Axpy( F(1)/F(2), Y01_VC_STAR, A01_VC_STAR ); // A01 := A01 U11' U11_STAR_STAR = U11; LocalTrmm ( RIGHT, UPPER, ADJOINT, diag, F(1), U11_STAR_STAR, A01_VC_STAR ); A01 = A01_VC_STAR; // A11 := U11 A11 U11' LocalTwoSidedTrmm( UPPER, diag, A11_STAR_STAR, U11_STAR_STAR ); A11 = A11_STAR_STAR; //--------------------------------------------------------------------// SlidePartitionDownDiagonal ( ATL, /**/ ATR, A00, A01, /**/ A02, /**/ A10, A11, /**/ A12, /*************/ /******************/ ABL, /**/ ABR, A20, A21, /**/ A22 ); SlideLockedPartitionDownDiagonal ( UTL, /**/ UTR, U00, U01, /**/ U02, /**/ U10, U11, /**/ U12, /*************/ /******************/ UBL, /**/ UBR, U20, U21, /**/ U22 ); } }
inline void ApplyPackedReflectorsRLHF ( Conjugation conjugation, int offset, const Matrix<Complex<R> >& H, const Matrix<Complex<R> >& t, Matrix<Complex<R> >& A ) { #ifndef RELEASE PushCallStack("internal::ApplyPackedReflectorsRLHF"); if( offset > 0 || offset < -H.Width() ) throw std::logic_error("Transforms out of bounds"); if( H.Width() != A.Width() ) throw std::logic_error ("Width of transforms must equal width of target matrix"); if( t.Height() != H.DiagonalLength( offset ) ) throw std::logic_error("t must be the same length as H's offset diag"); #endif typedef Complex<R> C; Matrix<C> HTL, HTR, H00, H01, H02, HPan, HPanCopy, HBL, HBR, H10, H11, H12, H20, H21, H22; Matrix<C> ALeft; Matrix<C> tT, t0, tB, t1, t2; Matrix<C> SInv, Z; LockedPartitionDownDiagonal ( H, HTL, HTR, HBL, HBR, 0 ); LockedPartitionDown ( t, tT, tB, 0 ); while( HTL.Height() < H.Height() && HTL.Width() < H.Width() ) { LockedRepartitionDownDiagonal ( HTL, /**/ HTR, H00, /**/ H01, H02, /*************/ /******************/ /**/ H10, /**/ H11, H12, HBL, /**/ HBR, H20, /**/ H21, H22 ); const int HPanWidth = H10.Width() + H11.Width(); const int HPanOffset = std::min( H11.Height(), std::max(-offset-H00.Height(),0) ); const int HPanHeight = H11.Height()-HPanOffset; HPan.LockedView( H, H00.Height()+HPanOffset, 0, HPanHeight, HPanWidth ); LockedRepartitionDown ( tT, t0, /**/ /**/ t1, tB, t2, HPanHeight ); ALeft.View( A, 0, 0, A.Height(), HPanWidth ); Zeros( ALeft.Height(), HPan.Height(), Z ); Zeros( HPan.Height(), HPan.Height(), SInv ); //--------------------------------------------------------------------// HPanCopy = HPan; MakeTrapezoidal( RIGHT, LOWER, offset, HPanCopy ); SetDiagonalToOne( RIGHT, offset, HPanCopy ); Herk( UPPER, NORMAL, C(1), HPanCopy, C(0), SInv ); FixDiagonal( conjugation, t1, SInv ); Gemm( NORMAL, ADJOINT, C(1), ALeft, HPanCopy, C(0), Z ); Trsm( RIGHT, UPPER, NORMAL, NON_UNIT, C(1), SInv, Z ); Gemm( NORMAL, NORMAL, C(-1), Z, HPanCopy, C(1), ALeft ); //--------------------------------------------------------------------// SlideLockedPartitionDownDiagonal ( HTL, /**/ HTR, H00, H01, /**/ H02, /**/ H10, H11, /**/ H12, /*************/ /******************/ HBL, /**/ HBR, H20, H21, /**/ H22 ); SlideLockedPartitionDown ( tT, t0, t1, /**/ /**/ tB, t2 ); } #ifndef RELEASE PopCallStack(); #endif }
inline void internal::HegstRLVar3( DistMatrix<F,MC,MR>& A, const DistMatrix<F,MC,MR>& L ) { #ifndef RELEASE PushCallStack("internal::HegstRLVar4"); if( A.Height() != A.Width() ) throw std::logic_error("A must be square"); if( L.Height() != L.Width() ) throw std::logic_error("Triangular matrices must be square"); if( A.Height() != L.Height() ) throw std::logic_error("A and L must be the same size"); #endif const Grid& g = A.Grid(); // Matrix views DistMatrix<F,MC,MR> ATL(g), ATR(g), A00(g), A01(g), A02(g), ABL(g), ABR(g), A10(g), A11(g), A12(g), A20(g), A21(g), A22(g); DistMatrix<F,MC,MR> YTL(g), YTR(g), Y00(g), Y01(g), Y02(g), YBL(g), YBR(g), Y10(g), Y11(g), Y12(g), Y20(g), Y21(g), Y22(g); DistMatrix<F,MC,MR> LTL(g), LTR(g), L00(g), L01(g), L02(g), LBL(g), LBR(g), L10(g), L11(g), L12(g), L20(g), L21(g), L22(g); // Temporary distributions DistMatrix<F,STAR,MR > A11_STAR_MR(g); DistMatrix<F,STAR,STAR> A11_STAR_STAR(g); DistMatrix<F,VC, STAR> A21_VC_STAR(g); DistMatrix<F,STAR,VR > A10_STAR_VR(g); DistMatrix<F,STAR,MR > A10_STAR_MR(g); DistMatrix<F,STAR,STAR> L11_STAR_STAR(g); DistMatrix<F,STAR,VR > L10_STAR_VR(g); DistMatrix<F,STAR,MR > L10_STAR_MR(g); DistMatrix<F,MC, STAR> L21_MC_STAR(g); DistMatrix<F,STAR,STAR> X11_STAR_STAR(g); DistMatrix<F,MC, STAR> X21_MC_STAR(g); DistMatrix<F,MC, STAR> Z21_MC_STAR(g); // We will use an entire extra matrix as temporary storage. If this is not // acceptable, use HegstRLVar4 instead. DistMatrix<F,MC,MR> Y(g); Y.AlignWith( A ); Y.ResizeTo( A.Height(), A.Width() ); Zero( Y ); PartitionDownDiagonal ( A, ATL, ATR, ABL, ABR, 0 ); PartitionDownDiagonal ( Y, YTL, YTR, YBL, YBR, 0 ); LockedPartitionDownDiagonal ( L, LTL, LTR, LBL, LBR, 0 ); while( ATL.Height() < A.Height() ) { RepartitionDownDiagonal ( ATL, /**/ ATR, A00, /**/ A01, A02, /*************/ /******************/ /**/ A10, /**/ A11, A12, ABL, /**/ ABR, A20, /**/ A21, A22 ); RepartitionDownDiagonal ( YTL, /**/ YTR, Y00, /**/ Y01, Y02, /*************/ /******************/ /**/ Y10, /**/ Y11, Y12, YBL, /**/ YBR, Y20, /**/ Y21, Y22 ); LockedRepartitionDownDiagonal ( LTL, /**/ LTR, L00, /**/ L01, L02, /*************/ /******************/ /**/ L10, /**/ L11, L12, LBL, /**/ LBR, L20, /**/ L21, L22 ); A11_STAR_MR.AlignWith( Y21 ); A21_VC_STAR.AlignWith( A21 ); A10_STAR_VR.AlignWith( A10 ); A10_STAR_MR.AlignWith( A10 ); L10_STAR_VR.AlignWith( A10 ); L10_STAR_MR.AlignWith( A10 ); L21_MC_STAR.AlignWith( Y21 ); X21_MC_STAR.AlignWith( A20 ); Z21_MC_STAR.AlignWith( L20 ); //--------------------------------------------------------------------// // A10 := A10 - 1/2 Y10 Axpy( (F)-0.5, Y10, A10 ); // A11 := A11 - (A10 L10' + L10 A10') A10_STAR_VR = A10; L10_STAR_VR = L10; X11_STAR_STAR.ResizeTo( A11.Height(), A11.Width() ); Her2k ( LOWER, NORMAL, (F)1, A10_STAR_VR.LocalMatrix(), L10_STAR_VR.LocalMatrix(), (F)0, X11_STAR_STAR.LocalMatrix() ); MakeTrapezoidal( LEFT, LOWER, 0, X11_STAR_STAR ); A11.SumScatterUpdate( (F)-1, X11_STAR_STAR ); // A11 := inv(L11) A11 inv(L11)' A11_STAR_STAR = A11; L11_STAR_STAR = L11; internal::LocalHegst( RIGHT, LOWER, A11_STAR_STAR, L11_STAR_STAR ); A11 = A11_STAR_STAR; // A21 := A21 - A20 L10' L10_STAR_MR = L10_STAR_VR; X21_MC_STAR.ResizeTo( A21.Height(), A21.Width() ); internal::LocalGemm ( NORMAL, ADJOINT, (F)1, A20, L10_STAR_MR, (F)0, X21_MC_STAR ); A21.SumScatterUpdate( (F)-1, X21_MC_STAR ); // A21 := A21 inv(L11)' A21_VC_STAR = A21; internal::LocalTrsm ( RIGHT, LOWER, ADJOINT, NON_UNIT, (F)1, L11_STAR_STAR, A21_VC_STAR ); A21 = A21_VC_STAR; // A10 := A10 - 1/2 Y10 Axpy( (F)-0.5, Y10, A10 ); // A10 := inv(L11) A10 A10_STAR_VR = A10; internal::LocalTrsm ( LEFT, LOWER, NORMAL, NON_UNIT, (F)1, L11_STAR_STAR, A10_STAR_VR ); // Y20 := Y20 + L21 A10 A10_STAR_MR = A10_STAR_VR; A10 = A10_STAR_MR; L21_MC_STAR = L21; internal::LocalGemm ( NORMAL, NORMAL, (F)1, L21_MC_STAR, A10_STAR_MR, (F)1, Y20 ); // Y21 := L21 A11 // // Symmetrize A11[* ,* ] by copying the lower triangle into the upper // so that we can call a local gemm instead of worrying about // reproducing a hemm with nonsymmetric local matrices. { const int height = A11_STAR_STAR.LocalHeight(); const int ldim = A11_STAR_STAR.LocalLDim(); F* A11Buffer = A11_STAR_STAR.LocalBuffer(); for( int i=1; i<height; ++i ) for( int j=0; j<i; ++j ) A11Buffer[j+i*ldim] = Conj(A11Buffer[i+j*ldim]); } A11_STAR_MR = A11_STAR_STAR; internal::LocalGemm ( NORMAL, NORMAL, (F)1, L21_MC_STAR, A11_STAR_MR, (F)0, Y21 ); // Y21 := Y21 + L20 A10' Z21_MC_STAR.ResizeTo( A21.Height(), A21.Width() ); internal::LocalGemm ( NORMAL, ADJOINT, (F)1, L20, A10_STAR_MR, (F)0, Z21_MC_STAR ); Y21.SumScatterUpdate( (F)1, Z21_MC_STAR ); //--------------------------------------------------------------------// A11_STAR_MR.FreeAlignments(); A21_VC_STAR.FreeAlignments(); A10_STAR_VR.FreeAlignments(); A10_STAR_MR.FreeAlignments(); L10_STAR_VR.FreeAlignments(); L10_STAR_MR.FreeAlignments(); L21_MC_STAR.FreeAlignments(); X21_MC_STAR.FreeAlignments(); Z21_MC_STAR.FreeAlignments(); SlidePartitionDownDiagonal ( ATL, /**/ ATR, A00, A01, /**/ A02, /**/ A10, A11, /**/ A12, /*************/ /******************/ ABL, /**/ ABR, A20, A21, /**/ A22 ); SlidePartitionDownDiagonal ( YTL, /**/ YTR, Y00, Y01, /**/ Y02, /**/ Y10, Y11, /**/ Y12, /*************/ /******************/ YBL, /**/ YBR, Y20, Y21, /**/ Y22 ); SlideLockedPartitionDownDiagonal ( LTL, /**/ LTR, L00, L01, /**/ L02, /**/ L10, L11, /**/ L12, /**********************************/ LBL, /**/ LBR, L20, L21, /**/ L22 ); } #ifndef RELEASE PopCallStack(); #endif }
inline void ApplyPackedReflectorsRLHF ( Conjugation conjugation, int offset, const DistMatrix<Complex<R> >& H, const DistMatrix<Complex<R>,MD,STAR>& t, DistMatrix<Complex<R> >& A ) { #ifndef RELEASE PushCallStack("internal::ApplyPackedReflectorsRLHF"); if( H.Grid() != t.Grid() || t.Grid() != A.Grid() ) throw std::logic_error ("{H,t,A} must be distributed over the same grid"); if( offset > 0 || offset < -H.Width() ) throw std::logic_error("Transforms out of bounds"); if( H.Width() != A.Width() ) throw std::logic_error ("Width of transforms must equal width of target matrix"); if( t.Height() != H.DiagonalLength( offset ) ) throw std::logic_error("t must be the same length as H's offset diag"); if( !t.AlignedWithDiagonal( H, offset ) ) throw std::logic_error("t must be aligned with H's 'offset' diagonal"); #endif typedef Complex<R> C; const Grid& g = H.Grid(); DistMatrix<C> HTL(g), HTR(g), H00(g), H01(g), H02(g), HPan(g), HPanCopy(g), HBL(g), HBR(g), H10(g), H11(g), H12(g), H20(g), H21(g), H22(g); DistMatrix<C> ALeft(g); DistMatrix<C,MD,STAR> tT(g), t0(g), tB(g), t1(g), t2(g); DistMatrix<C,STAR,VR > HPan_STAR_VR(g); DistMatrix<C,STAR,MR > HPan_STAR_MR(g); DistMatrix<C,STAR,STAR> t1_STAR_STAR(g); DistMatrix<C,STAR,STAR> SInv_STAR_STAR(g); DistMatrix<C,STAR,MC > ZAdj_STAR_MC(g); DistMatrix<C,STAR,VC > ZAdj_STAR_VC(g); LockedPartitionDownDiagonal ( H, HTL, HTR, HBL, HBR, 0 ); LockedPartitionDown ( t, tT, tB, 0 ); while( HTL.Height() < H.Height() && HTL.Width() < H.Width() ) { LockedRepartitionDownDiagonal ( HTL, /**/ HTR, H00, /**/ H01, H02, /*************/ /******************/ /**/ H10, /**/ H11, H12, HBL, /**/ HBR, H20, /**/ H21, H22 ); const int HPanWidth = H10.Width() + H11.Width(); const int HPanOffset = std::min( H11.Height(), std::max(-offset-H00.Height(),0) ); const int HPanHeight = H11.Height()-HPanOffset; HPan.LockedView( H, H00.Height()+HPanOffset, 0, HPanHeight, HPanWidth ); LockedRepartitionDown ( tT, t0, /**/ /**/ t1, tB, t2, HPanHeight ); ALeft.View( A, 0, 0, A.Height(), HPanWidth ); HPan_STAR_MR.AlignWith( ALeft ); ZAdj_STAR_MC.AlignWith( ALeft ); ZAdj_STAR_VC.AlignWith( ALeft ); Zeros( HPan.Height(), ALeft.Height(), ZAdj_STAR_MC ); Zeros( HPan.Height(), HPan.Height(), SInv_STAR_STAR ); //--------------------------------------------------------------------// HPanCopy = HPan; MakeTrapezoidal( RIGHT, LOWER, offset, HPanCopy ); SetDiagonalToOne( RIGHT, offset, HPanCopy ); HPan_STAR_VR = HPanCopy; Herk ( UPPER, NORMAL, C(1), HPan_STAR_VR.LockedLocalMatrix(), C(0), SInv_STAR_STAR.LocalMatrix() ); SInv_STAR_STAR.SumOverGrid(); t1_STAR_STAR = t1; FixDiagonal( conjugation, t1_STAR_STAR, SInv_STAR_STAR ); HPan_STAR_MR = HPan_STAR_VR; LocalGemm ( NORMAL, ADJOINT, C(1), HPan_STAR_MR, ALeft, C(0), ZAdj_STAR_MC ); ZAdj_STAR_VC.SumScatterFrom( ZAdj_STAR_MC ); LocalTrsm ( LEFT, UPPER, ADJOINT, NON_UNIT, C(1), SInv_STAR_STAR, ZAdj_STAR_VC ); ZAdj_STAR_MC = ZAdj_STAR_VC; LocalGemm ( ADJOINT, NORMAL, C(-1), ZAdj_STAR_MC, HPan_STAR_MR, C(1), ALeft ); //--------------------------------------------------------------------// HPan_STAR_MR.FreeAlignments(); ZAdj_STAR_MC.FreeAlignments(); ZAdj_STAR_VC.FreeAlignments(); SlideLockedPartitionDownDiagonal ( HTL, /**/ HTR, H00, H01, /**/ H02, /**/ H10, H11, /**/ H12, /*************/ /******************/ HBL, /**/ HBR, H20, H21, /**/ H22 ); SlideLockedPartitionDown ( tT, t0, t1, /**/ /**/ tB, t2 ); } #ifndef RELEASE PopCallStack(); #endif }
inline void TwoSidedTrsmLVar5( UnitOrNonUnit diag, Matrix<F>& A, const Matrix<F>& L ) { #ifndef RELEASE CallStackEntry entry("internal::TwoSidedTrsmLVar5"); if( A.Height() != A.Width() ) LogicError("A must be square"); if( L.Height() != L.Width() ) LogicError("Triangular matrices must be square"); if( A.Height() != L.Height() ) LogicError("A and L must be the same size"); #endif // Matrix views Matrix<F> ATL, ATR, A00, A01, A02, ABL, ABR, A10, A11, A12, A20, A21, A22; Matrix<F> LTL, LTR, L00, L01, L02, LBL, LBR, L10, L11, L12, L20, L21, L22; // Temporary products Matrix<F> Y21; PartitionDownDiagonal ( A, ATL, ATR, ABL, ABR, 0 ); LockedPartitionDownDiagonal ( L, LTL, LTR, LBL, LBR, 0 ); while( ATL.Height() < A.Height() ) { RepartitionDownDiagonal ( ATL, /**/ ATR, A00, /**/ A01, A02, /*************/ /******************/ /**/ A10, /**/ A11, A12, ABL, /**/ ABR, A20, /**/ A21, A22 ); LockedRepartitionDownDiagonal ( LTL, /**/ LTR, L00, /**/ L01, L02, /*************/ /******************/ /**/ L10, /**/ L11, L12, LBL, /**/ LBR, L20, /**/ L21, L22 ); //--------------------------------------------------------------------// // A11 := inv(L11) A11 inv(L11)' TwoSidedTrsmLUnb( diag, A11, L11 ); // Y21 := L21 A11 Zeros( Y21, A21.Height(), A21.Width() ); Hemm( RIGHT, LOWER, F(1), A11, L21, F(0), Y21 ); // A21 := A21 inv(L11)' Trsm( RIGHT, LOWER, ADJOINT, diag, F(1), L11, A21 ); // A21 := A21 - 1/2 Y21 Axpy( F(-1)/F(2), Y21, A21 ); // A22 := A22 - (L21 A21' + A21 L21') Her2k( LOWER, NORMAL, F(-1), L21, A21, F(1), A22 ); // A21 := A21 - 1/2 Y21 Axpy( F(-1)/F(2), Y21, A21 ); // A21 := inv(L22) A21 Trsm( LEFT, LOWER, NORMAL, diag, F(1), L22, A21 ); //--------------------------------------------------------------------// SlidePartitionDownDiagonal ( ATL, /**/ ATR, A00, A01, /**/ A02, /**/ A10, A11, /**/ A12, /*************/ /******************/ ABL, /**/ ABR, A20, A21, /**/ A22 ); SlideLockedPartitionDownDiagonal ( LTL, /**/ LTR, L00, L01, /**/ L02, /**/ L10, L11, /**/ L12, /**********************************/ LBL, /**/ LBR, L20, L21, /**/ L22 ); } }
inline void ApplyPackedReflectorsRLHF ( int offset, const Matrix<R>& H, Matrix<R>& A ) { #ifndef RELEASE PushCallStack("internal::ApplyPackedReflectorsRLHF"); if( offset > 0 || offset < -H.Width() ) throw std::logic_error("Transforms out of bounds"); if( H.Width() != A.Width() ) throw std::logic_error ("Width of transforms must equal width of target matrix"); #endif Matrix<R> HTL, HTR, H00, H01, H02, HPan, HPanCopy, HBL, HBR, H10, H11, H12, H20, H21, H22; Matrix<R> ALeft; Matrix<R> SInv, Z; LockedPartitionDownDiagonal ( H, HTL, HTR, HBL, HBR, 0 ); while( HTL.Height() < H.Height() && HTL.Width() < H.Width() ) { LockedRepartitionDownDiagonal ( HTL, /**/ HTR, H00, /**/ H01, H02, /*************/ /******************/ /**/ H10, /**/ H11, H12, HBL, /**/ HBR, H20, /**/ H21, H22 ); const int HPanWidth = H10.Width() + H11.Width(); const int HPanOffset = std::min( H11.Height(), std::max(-offset-H00.Height(),0) ); const int HPanHeight = H11.Height()-HPanOffset; HPan.LockedView( H, H00.Height()+HPanOffset, 0, HPanHeight, HPanWidth ); ALeft.View( A, 0, 0, A.Height(), HPanWidth ); Zeros( ALeft.Height(), HPan.Height(), Z ); Zeros( HPan.Height(), HPan.Height(), SInv ); //--------------------------------------------------------------------// HPanCopy = HPan; MakeTrapezoidal( RIGHT, LOWER, offset, HPanCopy ); SetDiagonalToOne( RIGHT, offset, HPanCopy ); Syrk( UPPER, NORMAL, R(1), HPanCopy, R(0), SInv ); HalveMainDiagonal( SInv ); Gemm( NORMAL, TRANSPOSE, R(1), ALeft, HPanCopy, R(0), Z ); Trsm( RIGHT, UPPER, NORMAL, NON_UNIT, R(1), SInv, Z ); Gemm( NORMAL, NORMAL, R(-1), Z, HPanCopy, R(1), ALeft ); //--------------------------------------------------------------------// SlideLockedPartitionDownDiagonal ( HTL, /**/ HTR, H00, H01, /**/ H02, /**/ H10, H11, /**/ H12, /*************/ /******************/ HBL, /**/ HBR, H20, H21, /**/ H22 ); } #ifndef RELEASE PopCallStack(); #endif }
inline void SymmLLC ( T alpha, const DistMatrix<T,MC,MR>& A, const DistMatrix<T,MC,MR>& B, T beta, DistMatrix<T,MC,MR>& C ) { #ifndef RELEASE PushCallStack("internal::SymmLLC"); if( A.Grid() != B.Grid() || B.Grid() != C.Grid() ) throw std::logic_error ("{A,B,C} must be distributed over the same grid"); #endif const Grid& g = A.Grid(); // Matrix views DistMatrix<T,MC,MR> ATL(g), ATR(g), A00(g), A01(g), A02(g), AColPan(g), ABL(g), ABR(g), A10(g), A11(g), A12(g), ARowPan(g), A20(g), A21(g), A22(g); DistMatrix<T,MC,MR> BT(g), B0(g), BB(g), B1(g), B2(g); DistMatrix<T,MC,MR> CT(g), C0(g), CAbove(g), CB(g), C1(g), CBelow(g), C2(g); // Temporary distributions DistMatrix<T,MC, STAR> AColPan_MC_STAR(g); DistMatrix<T,STAR,MC > ARowPan_STAR_MC(g); DistMatrix<T,MR, STAR> B1Trans_MR_STAR(g); B1Trans_MR_STAR.AlignWith( C ); // Start the algorithm Scale( beta, C ); LockedPartitionDownDiagonal ( A, ATL, ATR, ABL, ABR, 0 ); LockedPartitionDown ( B, BT, BB, 0 ); PartitionDown ( C, CT, CB, 0 ); while( CB.Height() > 0 ) { LockedRepartitionDownDiagonal ( ATL, /**/ ATR, A00, /**/ A01, A02, /*************/ /******************/ /**/ A10, /**/ A11, A12, ABL, /**/ ABR, A20, /**/ A21, A22 ); LockedRepartitionDown ( BT, B0, /**/ /**/ B1, BB, B2 ); RepartitionDown ( CT, C0, /**/ /**/ C1, CB, C2 ); ARowPan.LockedView1x2( A10, A11 ); AColPan.LockedView2x1 ( A11, A21 ); CAbove.View2x1 ( C0, C1 ); CBelow.View2x1 ( C1, C2 ); AColPan_MC_STAR.AlignWith( CBelow ); ARowPan_STAR_MC.AlignWith( CAbove ); //--------------------------------------------------------------------// AColPan_MC_STAR = AColPan; ARowPan_STAR_MC = ARowPan; MakeTrapezoidal( LEFT, LOWER, 0, AColPan_MC_STAR ); MakeTrapezoidal( RIGHT, LOWER, -1, ARowPan_STAR_MC ); B1Trans_MR_STAR.TransposeFrom( B1 ); LocalGemm ( NORMAL, TRANSPOSE, alpha, AColPan_MC_STAR, B1Trans_MR_STAR, T(1), CBelow ); LocalGemm ( TRANSPOSE, TRANSPOSE, alpha, ARowPan_STAR_MC, B1Trans_MR_STAR, T(1), CAbove ); //--------------------------------------------------------------------// AColPan_MC_STAR.FreeAlignments(); ARowPan_STAR_MC.FreeAlignments(); SlideLockedPartitionDownDiagonal ( ATL, /**/ ATR, A00, A01, /**/ A02, /**/ A10, A11, /**/ A12, /*************/ /******************/ ABL, /**/ ABR, A20, A21, /**/ A22 ); SlideLockedPartitionDown ( BT, B0, B1, /**/ /**/ BB, B2 ); SlidePartitionDown ( CT, C0, C1, /**/ /**/ CB, C2 ); } #ifndef RELEASE PopCallStack(); #endif }
inline void ApplyPackedReflectorsRLHF ( int offset, const DistMatrix<R>& H, DistMatrix<R>& A ) { #ifndef RELEASE PushCallStack("internal::ApplyPackedReflectorsRLHF"); if( H.Grid() != A.Grid() ) throw std::logic_error("{H,A} must be distributed over the same grid"); if( offset > 0 || offset < -H.Width() ) throw std::logic_error("Transforms out of bounds"); if( H.Width() != A.Width() ) throw std::logic_error ("Width of transforms must equal width of target matrix"); #endif const Grid& g = H.Grid(); DistMatrix<R> HTL(g), HTR(g), H00(g), H01(g), H02(g), HPan(g), HPanCopy(g), HBL(g), HBR(g), H10(g), H11(g), H12(g), H20(g), H21(g), H22(g); DistMatrix<R> ALeft(g); DistMatrix<R,STAR,VR > HPan_STAR_VR(g); DistMatrix<R,STAR,MR > HPan_STAR_MR(g); DistMatrix<R,STAR,STAR> SInv_STAR_STAR(g); DistMatrix<R,STAR,MC > ZTrans_STAR_MC(g); DistMatrix<R,STAR,VC > ZTrans_STAR_VC(g); LockedPartitionDownDiagonal ( H, HTL, HTR, HBL, HBR, 0 ); while( HTL.Height() < H.Height() && HTL.Width() < H.Width() ) { LockedRepartitionDownDiagonal ( HTL, /**/ HTR, H00, /**/ H01, H02, /*************/ /******************/ /**/ H10, /**/ H11, H12, HBL, /**/ HBR, H20, /**/ H21, H22 ); const int HPanWidth = H10.Width() + H11.Width(); const int HPanOffset = std::min( H11.Height(), std::max(-offset-H00.Height(),0) ); const int HPanHeight = H11.Height()-HPanOffset; HPan.LockedView( H, H00.Height()+HPanOffset, 0, HPanHeight, HPanWidth ); ALeft.View( A, 0, 0, A.Height(), HPanWidth ); HPan_STAR_MR.AlignWith( ALeft ); ZTrans_STAR_MC.AlignWith( ALeft ); ZTrans_STAR_VC.AlignWith( ALeft ); Zeros( HPan.Height(), ALeft.Height(), ZTrans_STAR_MC ); Zeros( HPan.Height(), HPan.Height(), SInv_STAR_STAR ); //--------------------------------------------------------------------// HPanCopy = HPan; MakeTrapezoidal( RIGHT, LOWER, offset, HPanCopy ); SetDiagonalToOne( RIGHT, offset, HPanCopy ); HPan_STAR_VR = HPanCopy; Syrk ( UPPER, NORMAL, R(1), HPan_STAR_VR.LockedLocalMatrix(), R(0), SInv_STAR_STAR.LocalMatrix() ); SInv_STAR_STAR.SumOverGrid(); HalveMainDiagonal( SInv_STAR_STAR ); HPan_STAR_MR = HPan_STAR_VR; LocalGemm ( NORMAL, TRANSPOSE, R(1), HPan_STAR_MR, ALeft, R(0), ZTrans_STAR_MC ); ZTrans_STAR_VC.SumScatterFrom( ZTrans_STAR_MC ); LocalTrsm ( LEFT, UPPER, TRANSPOSE, NON_UNIT, R(1), SInv_STAR_STAR, ZTrans_STAR_VC ); ZTrans_STAR_MC = ZTrans_STAR_VC; LocalGemm ( TRANSPOSE, NORMAL, R(-1), ZTrans_STAR_MC, HPan_STAR_MR, R(1), ALeft ); //--------------------------------------------------------------------// HPan_STAR_MR.FreeAlignments(); ZTrans_STAR_MC.FreeAlignments(); ZTrans_STAR_VC.FreeAlignments(); SlideLockedPartitionDownDiagonal ( HTL, /**/ HTR, H00, H01, /**/ H02, /**/ H10, H11, /**/ H12, /*************/ /******************/ HBL, /**/ HBR, H20, H21, /**/ H22 ); } #ifndef RELEASE PopCallStack(); #endif }
inline void TrmmRLNCOld ( UnitOrNonUnit diag, T alpha, const DistMatrix<T>& L, DistMatrix<T>& X ) { #ifndef RELEASE PushCallStack("internal::TrmmRLNCOld"); if( L.Grid() != X.Grid() ) throw std::logic_error ("L and X must be distributed over the same grid"); if( L.Height() != L.Width() || X.Width() != L.Height() ) { std::ostringstream msg; msg << "Nonconformal TrmmRLNC: \n" << " L ~ " << L.Height() << " x " << L.Width() << "\n" << " X ~ " << X.Height() << " x " << X.Width() << "\n"; throw std::logic_error( msg.str().c_str() ); } #endif const Grid& g = L.Grid(); // Matrix views DistMatrix<T> LTL(g), LTR(g), L00(g), L01(g), L02(g), LBL(g), LBR(g), L10(g), L11(g), L12(g), L20(g), L21(g), L22(g); DistMatrix<T> XL(g), XR(g), X0(g), X1(g), X2(g); // Temporary distributions DistMatrix<T,STAR,STAR> L11_STAR_STAR(g); DistMatrix<T,MR, STAR> L21_MR_STAR(g); DistMatrix<T,VC, STAR> X1_VC_STAR(g); DistMatrix<T,MC, STAR> D1_MC_STAR(g); // Start the algorithm Scale( alpha, X ); LockedPartitionDownDiagonal ( L, LTL, LTR, LBL, LBR, 0 ); PartitionRight( X, XL, XR, 0 ); while( XR.Width() > 0 ) { LockedRepartitionDownDiagonal ( LTL, /**/ LTR, L00, /**/ L01, L02, /*************/ /******************/ /**/ L10, /**/ L11, L12, LBL, /**/ LBR, L20, /**/ L21, L22 ); RepartitionRight ( XL, /**/ XR, X0, /**/ X1, X2 ); L21_MR_STAR.AlignWith( X2 ); D1_MC_STAR.AlignWith( X1 ); Zeros( X1.Height(), X1.Width(), D1_MC_STAR ); //--------------------------------------------------------------------// X1_VC_STAR = X1; L11_STAR_STAR = L11; LocalTrmm ( RIGHT, LOWER, NORMAL, diag, T(1), L11_STAR_STAR, X1_VC_STAR ); X1 = X1_VC_STAR; L21_MR_STAR = L21; LocalGemm( NORMAL, NORMAL, T(1), X2, L21_MR_STAR, T(0), D1_MC_STAR ); X1.SumScatterUpdate( T(1), D1_MC_STAR ); //--------------------------------------------------------------------// L21_MR_STAR.FreeAlignments(); D1_MC_STAR.FreeAlignments(); SlideLockedPartitionDownDiagonal ( LTL, /**/ LTR, L00, L01, /**/ L02, /**/ L10, L11, /**/ L12, /*************/ /******************/ LBL, /**/ LBR, L20, L21, /**/ L22 ); SlidePartitionRight ( XL, /**/ XR, X0, X1, /**/ X2 ); } #ifndef RELEASE PopCallStack(); #endif }
inline void TwoSidedTrmmLVar4 ( UnitOrNonUnit diag, DistMatrix<F>& A, const DistMatrix<F>& L ) { #ifndef RELEASE PushCallStack("internal::TwoSidedTrmmLVar4"); if( A.Height() != A.Width() ) throw std::logic_error("A must be square"); if( L.Height() != L.Width() ) throw std::logic_error("Triangular matrices must be square"); if( A.Height() != L.Height() ) throw std::logic_error("A and L must be the same size"); #endif const Grid& g = A.Grid(); // Matrix views DistMatrix<F> ATL(g), ATR(g), A00(g), A01(g), A02(g), ABL(g), ABR(g), A10(g), A11(g), A12(g), A20(g), A21(g), A22(g); DistMatrix<F> LTL(g), LTR(g), L00(g), L01(g), L02(g), LBL(g), LBR(g), L10(g), L11(g), L12(g), L20(g), L21(g), L22(g); // Temporary distributions DistMatrix<F,STAR,VR > A10_STAR_VR(g); DistMatrix<F,STAR,MR > A10_STAR_MR(g); DistMatrix<F,STAR,MC > A10_STAR_MC(g); DistMatrix<F,STAR,STAR> A11_STAR_STAR(g); DistMatrix<F,VC, STAR> A21_VC_STAR(g); DistMatrix<F,MC, STAR> A21_MC_STAR(g); DistMatrix<F,STAR,VR > L10_STAR_VR(g); DistMatrix<F,MR, STAR> L10Adj_MR_STAR(g); DistMatrix<F,STAR,MC > L10_STAR_MC(g); DistMatrix<F,STAR,STAR> L11_STAR_STAR(g); DistMatrix<F,STAR,VR > Y10_STAR_VR(g); PartitionDownDiagonal ( A, ATL, ATR, ABL, ABR, 0 ); LockedPartitionDownDiagonal ( L, LTL, LTR, LBL, LBR, 0 ); while( ATL.Height() < A.Height() ) { RepartitionDownDiagonal ( ATL, /**/ ATR, A00, /**/ A01, A02, /*************/ /******************/ /**/ A10, /**/ A11, A12, ABL, /**/ ABR, A20, /**/ A21, A22 ); LockedRepartitionDownDiagonal ( LTL, /**/ LTR, L00, /**/ L01, L02, /*************/ /******************/ /**/ L10, /**/ L11, L12, LBL, /**/ LBR, L20, /**/ L21, L22 ); A10_STAR_VR.AlignWith( A00 ); A10_STAR_MR.AlignWith( A00 ); A10_STAR_MC.AlignWith( A00 ); A21_MC_STAR.AlignWith( A20 ); L10_STAR_VR.AlignWith( A00 ); L10Adj_MR_STAR.AlignWith( A00 ); L10_STAR_MC.AlignWith( A00 ); Y10_STAR_VR.AlignWith( A10 ); //--------------------------------------------------------------------// // Y10 := A11 L10 A11_STAR_STAR = A11; L10Adj_MR_STAR.AdjointFrom( L10 ); L10_STAR_VR.AdjointFrom( L10Adj_MR_STAR ); Y10_STAR_VR.ResizeTo( A10.Height(), A10.Width() ); Zero( Y10_STAR_VR ); Hemm ( LEFT, LOWER, F(1), A11_STAR_STAR.LockedLocalMatrix(), L10_STAR_VR.LockedLocalMatrix(), F(0), Y10_STAR_VR.LocalMatrix() ); // A10 := A10 + 1/2 Y10 A10_STAR_VR = A10; Axpy( F(1)/F(2), Y10_STAR_VR, A10_STAR_VR ); // A00 := A00 + (A10' L10 + L10' A10) A10_STAR_MR = A10_STAR_VR; A10_STAR_MC = A10_STAR_VR; L10_STAR_MC = L10_STAR_VR; LocalTrr2k ( LOWER, ADJOINT, ADJOINT, ADJOINT, F(1), A10_STAR_MC, L10Adj_MR_STAR, L10_STAR_MC, A10_STAR_MR, F(1), A00 ); // A10 := A10 + 1/2 Y10 Axpy( F(1)/F(2), Y10_STAR_VR, A10_STAR_VR ); // A10 := L11' A10 L11_STAR_STAR = L11; LocalTrmm ( LEFT, LOWER, ADJOINT, diag, F(1), L11_STAR_STAR, A10_STAR_VR ); A10 = A10_STAR_VR; // A20 := A20 + A21 L10 A21_MC_STAR = A21; LocalGemm ( NORMAL, ADJOINT, F(1), A21_MC_STAR, L10Adj_MR_STAR, F(1), A20 ); // A11 := L11' A11 L11 LocalTwoSidedTrmm( LOWER, diag, A11_STAR_STAR, L11_STAR_STAR ); A11 = A11_STAR_STAR; // A21 := A21 L11 A21_VC_STAR = A21_MC_STAR; LocalTrmm ( RIGHT, LOWER, NORMAL, diag, F(1), L11_STAR_STAR, A21_VC_STAR ); A21 = A21_VC_STAR; //--------------------------------------------------------------------// A10_STAR_VR.FreeAlignments(); A10_STAR_MR.FreeAlignments(); A10_STAR_MC.FreeAlignments(); A21_MC_STAR.FreeAlignments(); L10_STAR_VR.FreeAlignments(); L10Adj_MR_STAR.FreeAlignments(); L10_STAR_MC.FreeAlignments(); Y10_STAR_VR.FreeAlignments(); SlidePartitionDownDiagonal ( ATL, /**/ ATR, A00, A01, /**/ A02, /**/ A10, A11, /**/ A12, /*************/ /******************/ ABL, /**/ ABR, A20, A21, /**/ A22 ); SlideLockedPartitionDownDiagonal ( LTL, /**/ LTR, L00, L01, /**/ L02, /**/ L10, L11, /**/ L12, /*************/ /******************/ LBL, /**/ LBR, L20, L21, /**/ L22 ); } #ifndef RELEASE PopCallStack(); #endif }