예제 #1
0
void MESH_Renumber(Mesh_ptr mesh, int renum_type, MType mtype) {
  MVertex_ptr mv, v0=NULL;
  MEdge_ptr me, e0=NULL;
  MFace_ptr mf, f0=NULL;
  MRegion_ptr mr, r0=NULL;
  int idx, idx2, idx3;
  int i, j;
  int done;
  MAttrib_ptr vidatt;
  List_ptr vlist;
  double xyz[3];
  double rval;
  int bandwidth, maxbandwidth1, maxbandwidth2;
  double avebandwidth1, avebandwidth2;
  void *pval;

  if (renum_type == 0) {
    if (mtype == MVERTEX || mtype == MALLTYPE) {
      int nv = 0;
      idx = 0; 
      while ((mv = MESH_Next_Vertex(mesh,&idx)))
	MV_Set_ID(mv,++nv);
    }
    
    if (mtype == MEDGE || mtype == MALLTYPE) {
      int ne = 0;
      idx = 0; 
      while ((me = MESH_Next_Edge(mesh,&idx)))
	ME_Set_ID(me,++ne);
    }
    
    if (mtype == MFACE || mtype == MALLTYPE) {
      int nf = 0;
      idx = 0; 
      while ((mf = MESH_Next_Face(mesh,&idx)))
	MF_Set_ID(mf,++nf);
    }
    
    if (mtype == MREGION || mtype == MALLTYPE) {
      int nr = 0;
      idx = 0; 
      while ((mr = MESH_Next_Region(mesh,&idx)))
	MR_Set_ID(mr,++nr);
    }
  }
  else if (renum_type == 1) {
    double minx, miny, minz;
    int minid, maxid;
    int *nadj, *newmap, *adj, *offset, nconn;
    int nalloc, depth, maxwidth;
        
#ifdef MSTK_USE_MARKERS
    int mkid = MSTK_GetMarker();
#else
    MAttrib_ptr mkatt = MAttrib_New(mesh, "mkatt", INT, MALLTYPE);
#endif

    if (mtype == MVERTEX || mtype == MALLTYPE) { 
      int nv = MESH_Num_Vertices(mesh);      
      
      /* Compute a graph of vertex connections across elements (faces
	 for surface meshes, regions for solid meshes */

      /* Start with the vertex in the lower leftmost corner */
      
      minx = miny = minz = 1.0e+12;
      v0 = NULL;
      idx = 0;
      while ((mv = MESH_Next_Vertex(mesh,&idx))) {
	MV_Coords(mv,xyz);
	if (xyz[0] <= minx && xyz[1] <= miny && xyz[2] <= minz) {
	  minx = xyz[0];
	  miny = xyz[1];
	  minz = xyz[2];
	  v0 = mv;
	}
      }


      nadj = (int *) malloc(nv*sizeof(int));
      nalloc = nv*5;
      adj = (int *) malloc(nalloc*sizeof(int));

      if (!MESH_Num_Regions(mesh)) {
        int nentries = 0;
        i = 0;
        idx = 0;
        while ((mv = MESH_Next_Vertex(mesh,&idx))) {
          List_ptr vfaces, adjvlist;
          MFace_ptr vf;
          MVertex_ptr adjv;

          adjvlist = List_New(0);
          vfaces = MV_Faces(mv);
          idx2 = 0;
          while ((vf = List_Next_Entry(vfaces,&idx2))) {
            List_ptr fverts = MF_Vertices(vf,1,0);
            idx3 = 0;
            while ((adjv = List_Next_Entry(fverts,&idx3))) {
              if (adjv != mv) {
                int vmarked;
#ifdef MSTK_USE_MARKERS
                vmarked = MEnt_IsMarked(adjv,mkid);
#else
                MEnt_Get_AttVal(adjv, mkatt, &vmarked, &rval, &pval);
#endif
                if (!vmarked) {
                  List_Add(adjvlist,adjv);
#ifdef MSTK_USE_MARKERS
                  MEnt_Mark(adjv,mkid);
#else
                  MEnt_Set_AttVal(adjv, mkatt, 1, 0.0, NULL);
#endif
                }
              }
            }
            List_Delete(fverts);
          }
          List_Delete(vfaces);
#ifdef MSTK_USE_MARKERS
          List_Unmark(adjvlist,mkid);
#endif

          nadj[i] = List_Num_Entries(adjvlist);
          
          if (nentries+nadj[i] > nalloc) {
            nalloc *= 2;
            adj = (int *) realloc(adj,nalloc*sizeof(int));
          }

          idx2 = 0;
          while ((adjv = List_Next_Entry(adjvlist,&idx2)))
            adj[nentries++] = MV_ID(adjv)-1;

          List_Delete(adjvlist);
          i++;
        }
      }
      else {
        int nentries = 0;
        i = 0;
        idx = 0;
        while ((mv = MESH_Next_Vertex(mesh,&idx))) {
          List_ptr vregions, adjvlist;
          MRegion_ptr vr;
          MVertex_ptr adjv;

          adjvlist = List_New(0);
          vregions = MV_Regions(mv);
          idx2 = 0;
          while ((vr = List_Next_Entry(vregions,&idx2))) {
            List_ptr rverts = MR_Vertices(vr);
            idx3 = 0;
            while ((adjv = List_Next_Entry(rverts,&idx3))) {
              if (adjv != mv) {
                int vmarked;
#ifdef MSTK_USE_MARKERS
                vmarked = MEnt_IsMarked(adjv,mkid);
#else
                MEnt_Get_AttVal(adjv, mkatt, &vmarked, &rval, &pval);
#endif
                if (!vmarked) {
                  List_Add(adjvlist,adjv);
#ifdef MSTK_USE_MARKERS
                  MEnt_Mark(adjv,mkid);
#else
                  MEnt_Set_AttVal(adjv, mkatt, 1, 0.0, NULL);
#endif
                }
              }
            }
            List_Delete(rverts);
          }
          List_Delete(vregions);
#ifdef MSTK_USE_MARKERS
          List_Unmark(adjvlist,mkid);
#endif

          nadj[i] = List_Num_Entries(adjvlist);

          if (nentries+nadj[i] > nalloc) {
            nalloc *= 2;
            adj = (int *) realloc(adj,nalloc*sizeof(int));
          }

          idx2 = 0;
          while ((adjv = List_Next_Entry(adjvlist,&idx2)))
            adj[nentries++] = MV_ID(adjv)-1;

          List_Delete(adjvlist);
          i++;
        }
      }

      /* Compute offsets into adj array */

      offset = (int *) malloc(nv*sizeof(int));
      offset[0] = 0;
      for (i = 1; i < nv; i++)
	offset[i] = offset[i-1] + nadj[i-1];

      /* Compute maximum bandwidth before renumbering */

      maxbandwidth1 = 0;
      avebandwidth1 = 0;
      for (i = 0; i < nv; i++) {
	int off = offset[i];
	int curid = i;
	for (j = 0; j < nadj[i]; j++) {
	  int adjid = adj[off+j];
	  int diff = abs(adjid-curid);
	  maxbandwidth1 = (diff > maxbandwidth1) ? diff : maxbandwidth1;
	  avebandwidth1 += diff;
	  nconn++;
	}
      }
      nconn = offset[nv-1]+nadj[nv-1];
      avebandwidth1 /= nconn;

      fprintf(stderr,
	      "Ave vertex ID difference on elements before renumbering: %-lf\n",
	      avebandwidth1);
      fprintf(stderr,
	      "Max vertex ID difference on elements before renumbering: %-d\n",
	      maxbandwidth1);
    
      fprintf(stderr,"\n");

      newmap = (int *) malloc(nv*sizeof(int));
      Graph_Renumber_GPS(nv, MV_ID(v0)-1, nadj, adj, newmap, &depth, &maxwidth);


      /* Compute bandwidth after renumbering */

      maxbandwidth2 = 0;
      avebandwidth2 = 0;
      for (i = 0; i < nv; i++) {
	int off = offset[i];
	int curid = newmap[i];
	for (j = 0; j < nadj[i]; j++) {
	  int adjid = newmap[adj[off+j]];
	  int diff = abs(adjid-curid);
	  maxbandwidth2 = (diff > maxbandwidth2) ? diff : maxbandwidth2;
	  avebandwidth2 += diff;
	  nconn++;
	}
      }
      nconn = offset[nv-1]+nadj[nv-1];
      avebandwidth2 /= nconn;


      if (maxbandwidth2 < maxbandwidth1 && avebandwidth2 < avebandwidth1) {

        /* Renumber */
      
        idx = 0; i = 0;
        while ((mv = MESH_Next_Vertex(mesh,&idx))) {
          MV_Set_ID(mv,newmap[i]+1);
          i++;
        }

        fprintf(stderr,
                "Ave vertex ID difference on elements after renumbering: %-lf\n",
                avebandwidth2);
        fprintf(stderr,
                "Max vertex ID difference on elements after renumbering: %-d\n",
                maxbandwidth2);    
      }
      else {
        nv = 0;
        idx = 0; 
        while ((mv = MESH_Next_Vertex(mesh,&idx)))
          MV_Set_ID(mv,++nv);

        fprintf(stderr,"Bandwidth did not improve. Keeping old numbering with gaps eliminated\n");
      }
      fprintf(stderr,"\n\n\n");
      
      free(nadj);
      free(adj);
      free(offset);
      free(newmap);

    }
 



    /* Reorder edges according to a breadth first algorithm applied to
       edges (differs from RCM in that it does not add adjacent nodes
       in ascending order of their valence) */

    if (mtype == MEDGE || mtype == MALLTYPE) {
      int ne = MESH_Num_Edges(mesh);
      MEdge_ptr ve;
      List_ptr elist;

      /************************* renumbering code ****************************/

      ne = MESH_Num_Edges(mesh);

      if (mtype == MALLTYPE) { 

	/* RCM algorithm already applied on the vertices. Use an edge
	   connected to the starting vertex as the first edge */

	List_ptr vedges = MV_Edges(v0);
	e0 = List_Entry(vedges,0);
	List_Delete(vedges);
      }
      else {
	/* Find the edge whose mid point is a minimum point */
	minx = miny = minz = 1.0e+12;
	e0 = NULL;
	idx = 0;
	while ((me = MESH_Next_Edge(mesh,&idx))) {
          double exyz[2][3];

	  MV_Coords(ME_Vertex(me,0),exyz[0]);
	  MV_Coords(ME_Vertex(me,1),exyz[1]);
	  xyz[0] = (exyz[0][0]+exyz[1][0])/2.0;
	  xyz[1] = (exyz[0][1]+exyz[1][1])/2.0;
	  xyz[2] = (exyz[0][2]+exyz[1][2])/2.0;
	  if (xyz[0] < minx && xyz[1] < miny && xyz[2] < minz) {
	    minx = xyz[0];
	    miny = xyz[1];
	    minz = xyz[2];
	    e0 = me;
	  }
	}
      }


      nadj = (int *) malloc(ne*sizeof(int));
      nalloc = ne*5;
      adj = (int *) malloc(nalloc*sizeof(int));

      if (!MESH_Num_Regions(mesh)) {
        int nentries = 0;
        i = 0;
        idx = 0;
        while ((me = MESH_Next_Edge(mesh,&idx))) {
          List_ptr efaces, adjelist;
          MFace_ptr ef;
          MEdge_ptr adje;

          adjelist = List_New(0);
          efaces = ME_Faces(me);
          idx2 = 0;
          while ((ef = List_Next_Entry(efaces,&idx2))) {
            List_ptr fedges = MF_Edges(ef,1,0);
            idx3 = 0;
            while ((adje = List_Next_Entry(fedges,&idx3))) {
              if (adje != me) {
                int emarked;
#ifdef MSTK_USE_MARKERS
                emarked = MEnt_IsMarked(adje,mkid);
#else
                MEnt_Get_AttVal(adje, mkatt, &emarked, &rval, &pval);
#endif
                if (!emarked) {
                  List_Add(adjelist,adje);
#ifdef MSTK_USE_MARKERS
                  MEnt_Mark(adje,mkid);
#else
                  MEnt_Set_AttVal(adje, mkatt, 1, 0.0, NULL);
#endif
                }
              }
            }
            List_Delete(fedges);
          }
          List_Delete(efaces);
#ifdef MSTK_USE_MARKERS
          List_Unmark(adjelist,mkid);
#endif

          nadj[i] = List_Num_Entries(adjelist);

          if (nentries+nadj[i] > nalloc) {
            nalloc *= 2;
            adj = (int *) realloc(adj,nalloc*sizeof(int));
          }

          idx2 = 0;
          while ((adje = List_Next_Entry(adjelist,&idx2)))
            adj[nentries++] = ME_ID(adje)-1;

          List_Delete(adjelist);
          i++;
        }
      }
      else {
        int nentries = 0;
        i = 0;
        idx = 0;
        while ((me = MESH_Next_Edge(mesh,&idx))) {
          List_ptr eregions, adjelist;
          MRegion_ptr er;
          MEdge_ptr adje;

          adjelist = List_New(0);
          eregions = ME_Regions(me);
          idx2 = 0;
          while ((er = List_Next_Entry(eregions,&idx2))) {
            List_ptr redges = MR_Edges(er);
            idx3 = 0;
            while ((adje = List_Next_Entry(redges,&idx3))) {
              if (adje != me) {
                int emarked;
#ifdef MSTK_USE_MARKERS
                emarked = MEnt_IsMarked(adje,mkid);
#else
                MEnt_Get_AttVal(adje, mkatt, &emarked, &rval, &pval);
#endif
                if (!emarked) {
                  List_Add(adjelist,adje);
#ifdef MSTK_USE_MARKERS
                  MEnt_Mark(adje,mkid);
#else
                  MEnt_Set_AttVal(adje, mkatt, 1, 0.0, NULL);
#endif
                }
              }
            }
            List_Delete(redges);
          }
          List_Delete(eregions);
#ifdef MSTK_USE_MARKERS
          List_Unmark(adjelist,mkid);
#endif
          
          nadj[i] = List_Num_Entries(adjelist);
          
          if (nentries+nadj[i] > nalloc) {
            nalloc *= 2;
            adj = (int *) realloc(adj,nalloc*sizeof(int));
          }
          
          idx2 = 0;
          while ((adje = List_Next_Entry(adjelist,&idx2)))
            adj[nentries++] = ME_ID(adje)-1;
          
          List_Delete(adjelist);
          i++;
        }
      }

      /* Compute offsets into adj array */

      offset = (int *) malloc(ne*sizeof(int));
      offset[0] = 0;
      for (i = 1; i < ne; i++)
        offset[i] = offset[i-1] + nadj[i-1];


      /* Compute maximum bandwidth before renumbering */

      maxbandwidth1 = 0;
      avebandwidth1 = 0;
      for (i = 0; i < ne; i++) {
        int off = offset[i];
        int curid = i;
        for (j = 0; j < nadj[i]; j++) {
          int adjid = adj[off+j];
          int diff = abs(adjid-curid);
          maxbandwidth1 = (diff > maxbandwidth1) ? diff : maxbandwidth1;
          avebandwidth1 += diff;
          nconn++;
        }
      }
      nconn = offset[ne-1]+nadj[ne-1];
      avebandwidth1 /= nconn;

      fprintf(stderr,
              "Ave edge ID difference on elements before renumbering: %-lf\n",
              avebandwidth1);
      fprintf(stderr,
              "Max edge ID difference on elements before renumbering: %-d\n",
              maxbandwidth1);
    
      fprintf(stderr,"\n");


      /* Call Graph Renumbering algorithm */

      newmap = (int *) malloc(ne*sizeof(int));
      Graph_Renumber_GPS(ne, ME_ID(e0)-1, nadj, adj, newmap, &depth, &maxwidth);


      /* Compute bandwidth after renumbering */

      maxbandwidth2 = 0;
      avebandwidth2 = 0;
      for (i = 0; i < ne; i++) {
        int off = offset[i];
        int curid = newmap[i];
        for (j = 0; j < nadj[i]; j++) {
          int adjid = newmap[adj[off+j]];
          int diff = abs(adjid-curid);
          maxbandwidth2 = (diff > maxbandwidth2) ? diff : maxbandwidth2;
          avebandwidth2 += diff;
          nconn++;
        }
      }
      nconn = offset[ne-1]+nadj[ne-1];
      avebandwidth2 /= nconn;

      if (maxbandwidth2 < maxbandwidth1 && avebandwidth2 < avebandwidth1) {
        /* Renumber */
      
        idx = 0; i = 0;
        while ((me = MESH_Next_Edge(mesh,&idx))) {
          ME_Set_ID(me,newmap[i]+1);
          i++;
        }

        fprintf(stderr,
                "Ave edge ID difference on elements after renumbering: %-lf\n",
                avebandwidth2);
        fprintf(stderr,
                "Max edge ID difference on elements after renumbering: %-d\n",
                maxbandwidth2);
        
      }
      else {
        ne = 0;
        idx = 0; 
        while ((me = MESH_Next_Edge(mesh,&idx)))
          ME_Set_ID(me,++ne);

        fprintf(stderr,"Bandwidth did not improve. Keeping old numbering with gaps eliminated\n");
      }
      fprintf(stderr,"\n\n\n");


      free(nadj);
      free(adj);
      free(offset);
      free(newmap);

    }


    /* Reorder faces according to a breadth first algorithm applied to
       edges (differs from RCM in that it does not add adjacent graph nodes
       in ascending order of their valence) */

    if (mtype == MFACE || mtype == MALLTYPE) {      
      int nf = MESH_Num_Faces(mesh);

      if (mtype == MALLTYPE) { 

        /* RCM algorithm already applied on the vertices. Use an edge
           connected to the starting vertex as the first edge */

        List_ptr vfaces = MV_Faces(v0);
        f0 = List_Entry(vfaces,0);
        List_Delete(vfaces);
      }
      else {
        /* Find the face whose mid point is a minimum point */
        minx = miny = minz = 1.0e+12;
        f0 = NULL;
        idx = 0;
        while ((mf = MESH_Next_Face(mesh,&idx))) {
          double fxyz[MAXPV2][3];
          int nfv;

          MF_Coords(mf,&nfv,fxyz);
          xyz[0] = fxyz[0][0];
          xyz[1] = fxyz[0][1];
          xyz[2] = fxyz[0][2];
          for (i = 1; i < nfv; i++) {
            xyz[0] += fxyz[i][0];
            xyz[1] += fxyz[i][1];
            xyz[2] += fxyz[i][2];
          }
          xyz[0] /= nfv; xyz[1] /= nfv; xyz[2] /= nfv;
          if (xyz[0] < minx && xyz[1] < miny && xyz[2] < minz) {
            minx = xyz[0];
            miny = xyz[1];
            minz = xyz[2];
            f0 = mf;
          }
        }
      }


      nadj = (int *) malloc(nf*sizeof(int));
      nalloc = nf*5;
      adj = (int *) malloc(nalloc*sizeof(int));

      if (!MESH_Num_Regions(mesh)) {
        int nentries = 0;
        i = 0;
        idx = 0;
        while ((mf = MESH_Next_Face(mesh,&idx))) {
          List_ptr vfaces, fverts, adjflist;
          MFace_ptr vf, adjf;
          MVertex_ptr fv;

          adjflist = List_New(0);
          fverts = MF_Vertices(mf,1,0);
          idx2 = 0;
          while ((fv = List_Next_Entry(fverts,&idx2))) {
            List_ptr vfaces = MV_Faces(fv);
            idx3 = 0;
            while ((adjf = List_Next_Entry(vfaces,&idx3))) {
              if (adjf != mf) {
                int fmarked;
#ifdef MSTK_USE_MARKERS
                fmarked = MEnt_IsMarked(adjf,mkid);
#else
                MEnt_Get_AttVal(adjf, mkatt, &fmarked, &rval, &pval);
#endif
                if (fmarked) {
                  List_Add(adjflist,adjf);
#ifdef MSTK_USE_MARKERS                  
                  MEnt_Mark(adjf,mkid);
#else
                  MEnt_Set_AttVal(adjf, mkatt, 1, 0.0, NULL);
#endif
                }
              }
            }	    
            List_Delete(vfaces);
          }
          List_Delete(fverts);
#ifdef MSTK_USE_MARKERS
          List_Unmark(adjflist,mkid);
#endif

          nadj[i] = List_Num_Entries(adjflist);

          if (nentries+nadj[i] > nalloc) {
            nalloc *= 2;
            adj = (int *) realloc(adj,nalloc*sizeof(int));
          }

          idx2 = 0;
          while ((adjf = List_Next_Entry(adjflist,&idx2)))
            adj[nentries++] = MF_ID(adjf)-1;

          List_Delete(adjflist);
          i++;
        }
      }
      else {
        int nentries = 0;
        i = 0;
        idx = 0;
        while ((mf = MESH_Next_Face(mesh,&idx))) {
          List_ptr fregions, adjflist;
          MRegion_ptr fr;
          MFace_ptr adjf;

          adjflist = List_New(0);
          fregions = MF_Regions(mf);
          idx2 = 0;
          while ((fr = List_Next_Entry(fregions,&idx2))) {
            List_ptr rfaces = MR_Faces(fr);
            idx3 = 0;
            while ((adjf = List_Next_Entry(rfaces,&idx3))) {
              if (adjf != mf) {
                int fmarked;
#ifdef MSTK_USE_MARKERS
                fmarked = MEnt_IsMarked(adjf,mkid);
#else
                MEnt_Get_AttVal(adjf, mkatt, &fmarked, &rval, &pval);
#endif
                if (fmarked) {
                  List_Add(adjflist,adjf);
#ifdef MSTK_USE_MARKERS                  
                  MEnt_Mark(adjf,mkid);
#else
                  MEnt_Set_AttVal(adjf, mkatt, 1, 0.0, NULL);
#endif
                }
              }
            }
            List_Delete(rfaces);
          }
          List_Delete(fregions);
#ifdef MSTK_USE_MARKERS
          List_Unmark(adjflist,mkid);
#endif

          nadj[i] = List_Num_Entries(adjflist);

          if (nentries+nadj[i] > nalloc) {
            nalloc *= 2;
            adj = (int *) realloc(adj,nalloc*sizeof(int));
          }

          idx2 = 0;
          while ((adjf = List_Next_Entry(adjflist,&idx2)))
            adj[nentries++] = MF_ID(adjf)-1;

          List_Delete(adjflist);
          i++;
        }
      }

      /* Compute offsets into adj array */

      offset = (int *) malloc(nf*sizeof(int));
      offset[0] = 0;
      for (i = 1; i < nf; i++)
        offset[i] = offset[i-1] + nadj[i-1];


      /* Compute maximum bandwidth before renumbering */

      maxbandwidth1 = 0;
      avebandwidth1 = 0;
      for (i = 0; i < nf; i++) {
        int off = offset[i];
        int curid = i;
        for (j = 0; j < nadj[i]; j++) {
          int adjid = adj[off+j];
          int diff = abs(adjid-curid);
          maxbandwidth1 = (diff > maxbandwidth1) ? diff : maxbandwidth1;
          avebandwidth1 += diff;
          nconn++;
        }
      }
      nconn = offset[nf-1]+nadj[nf-1];
      avebandwidth1 /= nconn;

      if (MESH_Num_Regions(mesh)) {
        fprintf(stderr,
                "Ave face ID difference on elements before renumbering: %-lf\n",
                avebandwidth1);
        fprintf(stderr,
                "Max face ID difference on elements before renumbering: %-d\n",
                maxbandwidth1);
      }
      else {
        fprintf(stderr,
                "Ave face ID difference before renumbering: %-lf\n",
                avebandwidth1);
        fprintf(stderr,
                "Max face ID difference before renumbering: %-d\n",
                maxbandwidth1);
      }
    
      fprintf(stderr,"\n");


      /* Call Graph Renumbering algorithm */

      newmap = (int *) malloc(nf*sizeof(int));
      Graph_Renumber_GPS(nf, MF_ID(f0)-1, nadj, adj, newmap, &depth, &maxwidth);


      /* Compute bandwidth after renumbering */

      maxbandwidth2 = 0;
      avebandwidth2 = 0;
      for (i = 0; i < nf; i++) {
        int off = offset[i];
        int curid = newmap[i];
        for (j = 0; j < nadj[i]; j++) {
          int adjid = newmap[adj[off+j]];
          int diff = abs(adjid-curid);
          maxbandwidth2 = (diff > maxbandwidth2) ? diff : maxbandwidth2;
          avebandwidth2 += diff;
          nconn++;
        }
      }
      nconn = offset[nf-1]+nadj[nf-1];
      avebandwidth2 /= nconn;


      if (maxbandwidth2 < maxbandwidth1 && avebandwidth2 < avebandwidth1) {
        /* Renumber */
      
        idx = 0; i = 0;
        while ((mf = MESH_Next_Face(mesh,&idx))) {
          MF_Set_ID(mf,newmap[i]+1);
          i++;
        }

        if (MESH_Num_Regions(mesh)) {
          fprintf(stderr,
                  "Ave face ID difference on elements after renumbering: %-lf\n",
                  avebandwidth2);
          fprintf(stderr,
                  "Max face ID difference on elements after renumbering: %-d\n",
                  maxbandwidth2);
        }
        else {
          fprintf(stderr,
                  "Ave face ID difference after renumbering: %-lf\n",
                  avebandwidth2);
          fprintf(stderr,
                  "Max face ID difference after renumbering: %-d\n",
                  maxbandwidth2);
        }
    
      }
      else {
        nf = 0;
        idx = 0; 
        while ((mf = MESH_Next_Face(mesh,&idx)))
          MF_Set_ID(mf,++nf);

        fprintf(stderr,"Bandwidth did not improve. Keeping old numbering with gaps eliminated\n");
      }
      fprintf(stderr,"\n\n\n");

      free(nadj);
      free(adj);
      free(offset);
      free(newmap);
    }


    if (mtype == MREGION || mtype == MALLTYPE) {
      int nr = MESH_Num_Regions(mesh);

      if (nr) {

        if (mtype == MALLTYPE) { 

          /* Renumbering algorithm already applied on the vertices. Use
             a region connected to the starting vertex as the first
             region */

          List_ptr vregions = MV_Regions(v0);
          r0 = List_Entry(vregions,0);
          List_Delete(vregions);
        }
        else {
          /* Find the region whose center point is a minimum point */
          minx = miny = minz = 1.0e+12;
          r0 = NULL;
          idx = 0;
          while ((mr = MESH_Next_Region(mesh,&idx))) {
            double rxyz[MAXPV3][3];
            int nrv;

            MR_Coords(mr,&nrv,rxyz);
            xyz[0] = rxyz[0][0];
            xyz[1] = rxyz[0][1];
            xyz[2] = rxyz[0][2];
            for (i = 1; i < nrv; i++) {
              xyz[0] += rxyz[i][0];
              xyz[1] += rxyz[i][1];
              xyz[2] += rxyz[i][2];
            }
            xyz[0] /= nrv; xyz[1] /= nrv; xyz[2] /= nrv;
            if (xyz[0] < minx && xyz[1] < miny && xyz[2] < minz) {
              minx = xyz[0];
              miny = xyz[1];
              minz = xyz[2];
              r0 = mr;
            }
          }
        }


        nadj = (int *) malloc(nr*sizeof(int));
        nalloc = nr*5;
        adj = (int *) malloc(nalloc*sizeof(int));

        int nentries = 0;
        i = 0;
        idx = 0;
        while ((mr = MESH_Next_Region(mesh,&idx))) {
          List_ptr vregions, rverts, adjrlist;
          MRegion_ptr vr, adjr;
          MVertex_ptr rv;

          adjrlist = List_New(0);
          rverts = MR_Vertices(mr);
          idx2 = 0;
          while ((rv = List_Next_Entry(rverts,&idx2))) {
            List_ptr vregions = MV_Regions(rv);
            idx3 = 0;
            while ((adjr = List_Next_Entry(vregions,&idx3))) {
              if (adjr != mr) {
                int rmarked;
#ifdef MSTK_USE_MARKERS
                rmarked = MEnt_IsMarked(adjr,mkid);
#else
                MEnt_Get_AttVal(adjr, mkatt, &rmarked, &rval, &pval);
#endif
                List_Add(adjrlist,adjr);
#ifdef MSTK_USE_MARKERS
                MEnt_Mark(adjr,mkid);
#else
                MEnt_Set_AttVal(adjr, mkatt, 1, 0.0, NULL);
#endif
              }
            }	    
            List_Delete(vregions);
          }
          List_Delete(rverts);
#ifdef MSTK_USE_MARKERS
          List_Unmark(adjrlist,mkid);
#endif

          nadj[i] = List_Num_Entries(adjrlist);

          if (nentries+nadj[i] > nalloc) {
            nalloc *= 2;
            adj = (int *) realloc(adj,nalloc*sizeof(int));
          }

          idx2 = 0;
          while ((adjr = List_Next_Entry(adjrlist,&idx2)))
            adj[nentries++] = MR_ID(adjr)-1;

          List_Delete(adjrlist);
          i++;
        }

        /* Compute offsets into adj array */

        offset = (int *) malloc(nr*sizeof(int));
        offset[0] = 0;
        for (i = 1; i < nr; i++)
          offset[i] = offset[i-1] + nadj[i-1];


        /* Compute maximum bandwidth before renumbering */

        maxbandwidth1 = 0;
        avebandwidth1 = 0;
        for (i = 0; i < nr; i++) {
          int off = offset[i];
          int curid = i;
          for (j = 0; j < nadj[i]; j++) {
            int adjid = adj[off+j];
            int diff = abs(adjid-curid);
            maxbandwidth1 = (diff > maxbandwidth1) ? diff : maxbandwidth1;
            avebandwidth1 += diff;
            nconn++;
          }
        }
        nconn = offset[nr-1]+nadj[nr-1];
        avebandwidth1 /= nconn;

        fprintf(stderr,
                "Ave region ID difference before renumbering: %-lf\n",
                avebandwidth1);
        fprintf(stderr,
                "Max region ID difference before renumbering: %-d\n",
                maxbandwidth1);
    
        fprintf(stderr,"\n");


        /* Call Graph Renumbering algorithm */

        newmap = (int *) malloc(nr*sizeof(int));
        Graph_Renumber_GPS(nr, MR_ID(r0)-1, nadj, adj, newmap, &depth, &maxwidth);

        /* Compute bandwidth after renumbering */

        maxbandwidth2 = 0;
        avebandwidth2 = 0;
        for (i = 0; i < nr; i++) {
          int off = offset[i];
          int curid = newmap[i];
          for (j = 0; j < nadj[i]; j++) {
            int adjid = newmap[adj[off+j]];
            int diff = abs(adjid-curid);
            maxbandwidth2 = (diff > maxbandwidth2) ? diff : maxbandwidth2;
            avebandwidth2 += diff;
            nconn++;
          }
        }
        nconn = offset[nr-1]+nadj[nr-1];
        avebandwidth2 /= nconn;

        if (maxbandwidth2 < maxbandwidth1 && avebandwidth2 < avebandwidth1) {

          /* Renumber */
      
          idx = 0; i = 0;
          while ((mr = MESH_Next_Region(mesh,&idx))) {
            MR_Set_ID(mr,newmap[i]+1);
            i++;
          }

          fprintf(stderr,
                  "Ave region ID difference after renumbering: %-lf\n",
                  avebandwidth2);
          fprintf(stderr,
                  "Max region ID difference after renumbering: %-d\n",
                  maxbandwidth2);
    
        }
        else {
          nr = 0;
          idx = 0; 
          while ((mr = MESH_Next_Region(mesh,&idx)))
            MR_Set_ID(mr,++nr);

          fprintf(stderr,"Bandwidth did not improve. Keeping old numbering with gaps eliminated\n");
        }
        fprintf(stderr,"\n\n\n");


        free(nadj);
        free(adj);
        free(offset);
        free(newmap);
      }
    }

#ifdef MSTK_USE_MARKERS
    MSTK_FreeMarker(mkid);
#endif
  }
  

  vidatt = MAttrib_New(mesh,"vidrcm",INT,MVERTEX);
  idx = 0;
  while ((mv = MESH_Next_Vertex(mesh,&idx))) {
    MEnt_Set_AttVal(mv,vidatt,MV_ID(mv),0.0,NULL);
  }
 

  /* We have to reset the max IDs stored in the mesh so that we can correctly
     assign IDs to new entities */

  MESH_Reset_Cached_MaxIDs(mesh);

  return;
}
예제 #2
0
  int MESH_CheckTopo(Mesh_ptr mesh) {
    int valid = 1;
    char mesg[256], funcname[32] = "MESH_CheckTopo";
    int idx1, idx2, idx3, idx4;
    MVertex_ptr mv;
    MEdge_ptr me, ve, fe, re;
    MFace_ptr mf, vf, ef, rf;
    MRegion_ptr mr, vr, er, fr;
    int found, done;
    int dir;
    int i, j, k;
    int nfe;
    int vid, eid, fid, rid;
    int gvid, geid, gfid, grid;
    int gvdim, gedim, gfdim, grdim;
    int maxiter = 1000;
    List_ptr vedges, vfaces, vregions;
    List_ptr efaces;
    List_ptr fverts, fedges, fregs, fregs1;
    List_ptr rverts, redges, rfaces;



    /*****************************************************************/
    /* Vertices                                                      */
    /*****************************************************************/    

    
    /* Check that edges connected to vertices reference the vertices */
    /* Also check that the classification of the vertex is consistent
       with respect to the edge */

    int first_unknown_classfn = 1;
    idx1 = 0;
    while ((mv = MESH_Next_Vertex(mesh,&idx1))) {

#ifdef MSTK_HAVE_MPI
      if (MV_PType(mv) == PGHOST) continue;
#endif      

      vid = MV_ID(mv);
      gvdim = MV_GEntDim(mv);
      gvid  = MV_GEntID(mv);

      if (gvdim == 4 && first_unknown_classfn) {
        sprintf(mesg, "Vertex %-d - classification unknown\n", vid);
        MSTK_Report(funcname, mesg, MSTK_WARN);
        first_unknown_classfn = 0;
      }
      vedges = MV_Edges(mv);
      if (!vedges) {
        sprintf(mesg,"Vertex %-d does not have any connected edges\n",vid);
        MSTK_Report(funcname,mesg,MSTK_WARN);
        continue;
      }

      idx2 = 0;
      while ((ve = List_Next_Entry(vedges,&idx2))) {
	
	eid = ME_ID(ve);
	     
	if (ME_Vertex(ve,0) != mv && ME_Vertex(ve,1) != mv) {
	  sprintf(mesg,"Vertex %-d connected to edge %-d but edge does not use vertex",vid,eid);
	  MSTK_Report(funcname,mesg,MSTK_ERROR);
	  valid = 0;
	}

      }


      if (gvdim == 1) {

	/* If vertex is classified on a model edge, then it should be
	   connected to two and only two edges that are classified on
	   the same model edge */

	int ne = 0;
	idx2 = 0;
	while ((ve = List_Next_Entry(vedges,&idx2))) {	  
	  gedim = ME_GEntDim(ve);
	  geid  = ME_GEntID(ve);	  
	  if (gedim == 1 && geid == gvid) ne++;
	}
	  
	if (ne != 2) {
	  sprintf(mesg,"Vertex %-d classified on model edge %-d but it is not \n connected to two edges classified on this model edge",vid,gvid);
	  MSTK_Report(funcname,mesg,MSTK_WARN);
	}
      }

      List_Delete(vedges);



      if (gvdim == 2) {
	MEdge_ptr e0, ecur, enxt;
	MFace_ptr fcur;
        int flipped = 0;

	/* If vertex is classified on a model face, then we should be
	   able to find a ring of faces classified on that model
	   face */

	vfaces = MV_Faces(mv);

	found = 0;
	idx2 = 0;
	while ((vf = List_Next_Entry(vfaces,&idx2))) {
	  if (MF_GEntDim(vf) == 2) {
	    found = 1;
	    break;
	  }
	}
        List_Delete(vfaces);

	if (!found) {
	  sprintf(mesg,"Vertex %-d classified on model face %-d but could not \n find connected face classified on this model face",vid,gvid);
	  MSTK_Report(funcname,mesg,MSTK_WARN);
	  valid = 0;
	}

	fcur = vf;

	fedges = MF_Edges(fcur,1,mv);
	nfe = List_Num_Entries(fedges);
	e0 = List_Entry(fedges,0);
	ecur = e0;
	enxt = List_Entry(fedges,nfe-1);
	List_Delete(fedges);
	
	done = 0; i = 0;
	while (!done) {
	  ecur = enxt;
	  efaces = ME_Faces(ecur);
	  found = 0;
	  idx3 = 0;
	  while ((ef = List_Next_Entry(efaces,&idx3))) {
	    if (ef != fcur && MF_GEntDim(ef) == 2 && MF_GEntID(ef) == gvid) {
	      fcur = ef;
	      found = 1;
	      break;
	    }
	  }
	  List_Delete(efaces);

	  if (!found) {
	    sprintf(mesg,"Could not find next boundary face connected to vertex %-d",vid);
	    MSTK_Report(funcname,mesg,MSTK_WARN);
	    valid = 0;
	    break;
	  }
	   
	  fedges = MF_Edges(fcur,1,mv);
	  nfe = List_Num_Entries(fedges);

          if (List_Entry(fedges,0) == ecur)
            enxt = List_Entry(fedges,nfe-1);
          else if (List_Entry(fedges,nfe-1) == ecur) {
            enxt = List_Entry(fedges,0);
            flipped = 1;
          }
          else {
            sprintf(mesg,"Could not find next edge while traversing around vertex %-d on model face %-d",vid,gvid);
            MSTK_Report(funcname,mesg,MSTK_ERROR);
          }

	  List_Delete(fedges);

	  if (enxt == e0)
	    done = 1;

	  if (++i > maxiter)
	    break;
	}

	if (!done) {
	  sprintf(mesg,"Vertex %-d classified on model face %-d but could not  find ring of faces classified on this model face",vid,gvid);
	  MSTK_Report(funcname,mesg,MSTK_WARN);
	}

        if (done && flipped) {
          List_ptr fregs = MF_Regions(fcur);
          if (List_Num_Entries(fregs) < 2) {
            sprintf(mesg,"Inconsistent orientations of boundary faces around vertex %-d",vid);
            MSTK_Report(funcname,mesg,MSTK_WARN);
          }
          if (fregs) List_Delete(fregs);
        }
      }


    } /* while ((mv = MESH_Next_Vertex(mesh,&idx1))) */




    /*****************************************************************/
    /* Edges                                                      */
    /*****************************************************************/    

    first_unknown_classfn = 1;
    idx1 = 0;
    while ((me = MESH_Next_Edge(mesh,&idx1))) {

#ifdef MSTK_HAVE_MPI
      if (ME_PType(me) == PGHOST) continue;
#endif

      eid = ME_ID(me);
      gedim = ME_GEntDim(me);
      geid = ME_GEntID(me);

      if (gedim == 4 && first_unknown_classfn) {
        sprintf(mesg, "Edge %-d - unknown classification", eid);
        MSTK_Report(funcname, mesg, MSTK_WARN);
        first_unknown_classfn = 0;
      }

      if (ME_Vertex(me,0) == ME_Vertex(me,1)) {
        sprintf(mesg,"Edge %-d has repeated vertices",eid);
        MSTK_Report(funcname,mesg,MSTK_ERROR);
      }

      for (i = 0; i < 2; i++) {
	MVertex_ptr ev = ME_Vertex(me,i);

	vid = MV_ID(ev);
	gvid = MV_GEntID(ev);
	gvdim = MV_GEntDim(ev);

        if (gvdim != 4 && gvdim != 4) {  /* vertex and edge classifn is known */
          if (gedim < gvdim) {
            sprintf(mesg,"Edge %-d classified on lower dimensional entity than  connected vertex %-d",eid,vid);
            MSTK_Report(funcname,mesg,MSTK_WARN);
            valid = 0;
          }
          else if (gedim == gvdim && geid != gvid) {
            sprintf(mesg,"Edge %-d and its vertex %-d classified on different entities of the same dimension",eid,vid);
            MSTK_Report(funcname,mesg,MSTK_WARN);
            valid = 0;
          }
        }

	vedges = MV_Edges(ev);
	if (!List_Contains(vedges,me)) {
	  sprintf(mesg,"Edge %-d sees vertex %-d but not vice versa",eid,vid);
	  MSTK_Report(funcname,mesg,MSTK_ERROR);
	  valid = 0;
	}
	List_Delete(vedges);

	if (gedim == 2) {
	  MFace_ptr ebf[2], fcur, fnxt;
	  MRegion_ptr rcur;
	  int nf, nfr;
	  List_ptr eregs;

	  /* Edge is classified on model face - it should be connected
	     to two and only two faces also classified on this model
	     face */

	  ebf[0] = ebf[1] = NULL;
	  nf = 0;
	  efaces = ME_Faces(me);
	  idx2 = 0;
	  while ((ef = List_Next_Entry(efaces,&idx2))) {
	    fid = MF_ID(ef);

	    if (MF_GEntDim(ef) == 2) {
	      nf++;
	      if (gedim == 2 && MF_GEntID(ef) != geid) {
		sprintf(mesg,"Face %-d connected to edge %-d classified on different model face",fid,eid);
		MSTK_Report(funcname,mesg,MSTK_WARN);
		valid = 0;
	      }

	      if (ebf[0] == NULL)
		ebf[0] = ef;
	      else
		ebf[1] = ef;
	    }
	  }
	  List_Delete(efaces);

	  if (nf != 2) {
	    sprintf(mesg,"Boundary edge %-d is not connected to exactly two\n  faces classified on the boundary",eid);
	    MSTK_Report(funcname,mesg,MSTK_ERROR);
	    valid = 0;
	  }


	  eregs = ME_Regions(me);
	  if (!eregs) 
	    continue;
	  else
	    List_Delete(eregs);

	  /* Can we go from f0 to f1 in one or two dirs? */

	  fcur = ebf[0];
          fnxt = NULL;
	  fregs = MF_Regions(fcur);
	  if (!fregs) {
	    fid = MF_ID(fcur);
	    sprintf(mesg,"Edge %-d connected to regions but face %-d is not",eid,fid);
	    MSTK_Report(funcname,mesg,MSTK_ERROR);
	    valid = 0;
	  }

	  nfr = List_Num_Entries(fregs);
	  for (i = 0; i < nfr; i++) {
	    rcur = List_Entry(fregs,i);
	  
	    rfaces = MR_Faces(rcur);
	    idx3 = 0;
	    found = 0;
	    while ((rf = List_Next_Entry(rfaces,&idx3))) {
	      if (rf != fcur && MF_UsesEntity(rf,me,1)) {
		found = 1;
		fnxt = rf;
		break;
	      }
	    }
	    List_Delete(rfaces);
	    
	    if (!found) {
	      rid = MR_ID(rcur);
	      sprintf(mesg,"Could not find second face in region %-d using edge %-d",rid,eid);
	    }
	    
	    
	    done = 0; j = 0;
	    while (!done) {
	      fcur = fnxt;
	      fid = MF_ID(fcur);
	      
	      if (fnxt == ebf[1]) {
		done = 1;
		break;
	      }
	      
	      fregs1 = MF_Regions(fcur);
	      idx3 = 0;
	      while ((fr = List_Next_Entry(fregs1,&idx3))) {
		if (fr != rcur) {
		  rcur = fr;
		  found = 1;
		  break;
		}
	      }
	      List_Delete(fregs1);

	      if (!found) {
		sprintf(mesg,"Could not find next region around edge %-d",eid);
		MSTK_Report(funcname,mesg,MSTK_ERROR);
		valid = 0;
		break;
	      }
	      
	      
	      rfaces = MR_Faces(rcur);
	      idx3 = 0;
	      found = 0;
	      while ((rf = List_Next_Entry(rfaces,&idx3))) {
		if (rf != fcur && MF_UsesEntity(rf,me,1)) {
		  found = 1;
		  fnxt = rf;
		  break;
		}
	      }
	      List_Delete(rfaces);
	      
	      if (!found) {
		rid = MR_ID(rcur);
		sprintf(mesg,"Could not find second face in region %-d using edge %-d",rid,eid);
	      }
	      
	      if (++j > maxiter)
		break;
	    } /* while (!done) */

	    if (!done) {
	      sprintf(mesg,"Could not traverse around edge %-d from face %-d to face %-d",eid,MF_ID(ebf[0]),MF_ID(ebf[1]));
	      MSTK_Report(funcname,mesg,MSTK_ERROR);
	      valid = 0;
	    }
	  } /* for (i = 0; i < nfr; i++) */
          List_Delete(fregs);

	} /* if (geid == 2) */

      } /* for (i = 0; i < 2; i++) */

    } /* while ((me = MESH_Next_Edge(mesh,&idx1))) */



    /*****************************************************************/
    /* Faces                                                      */
    /*****************************************************************/    

    first_unknown_classfn = 1;
    idx1 = 0;
    while ((mf = MESH_Next_Face(mesh,&idx1))) {

#ifdef MSTK_HAVE_MPI
      if (MF_PType(mf) == PGHOST) continue;
#endif

      fid = MF_ID(mf);
      gfid = MF_GEntID(mf);
      gfdim = MF_GEntDim(mf);

      if (gfdim == 4 && first_unknown_classfn) {
        sprintf(mesg, "Face %-d - unknown classification", fid);
        MSTK_Report(funcname, mesg, MSTK_WARN);
        first_unknown_classfn = 0;
      }

      fedges = MF_Edges(mf,1,0);

      if (List_Num_Entries(fedges) < 3) {
        sprintf(mesg,"Face %-d has less than 3 edges",fid);
        MSTK_Report(funcname,mesg,MSTK_ERROR);
      }

      idx2 = 0;
      while ((fe = List_Next_Entry(fedges,&idx2))) {
	eid = ME_ID(fe);
	geid = ME_GEntID(fe);
	gedim = ME_GEntDim(fe);

        if (gedim != 4 && gfdim != 4) {  /* Edge, Face classfn is known */
          if (gfdim < gedim) {
            sprintf(mesg,"Face %-d classified on lower order entity than edge %-d",fid,ME_ID(fe));
            MSTK_Report(funcname,mesg,MSTK_WARN);
            valid = 0;
          }
          else if (gedim == gfdim && geid != gfid) {
            sprintf(mesg,"Face %-d and edge %-d classified on different\n entities of the same dimension",fid,eid);
            MSTK_Report(funcname,mesg,MSTK_WARN);
          }
        }

	efaces = ME_Faces(fe);
	if (!List_Contains(efaces,mf)) {
	  sprintf(mesg,"Face %-d refers to edge %-d but not vice versa",fid,ME_ID(fe));
	  MSTK_Report(funcname,mesg,MSTK_ERROR);
	  valid = 0;
	}
	List_Delete(efaces);
      }
      List_Delete(fedges);
      

      fregs = MF_Regions(mf);

      if (gfdim == 3) {
	if (!fregs || List_Num_Entries(fregs) != 2) {
	  sprintf(mesg,"Interior face %-d does not have two connected regions",fid);
	  MSTK_Report(funcname,mesg,MSTK_ERROR);
	  valid = 0;
	}
      }


      if (fregs) {
	if (List_Num_Entries(fregs) == 2) {
	  if (MR_FaceDir(List_Entry(fregs,0),mf) == MR_FaceDir(List_Entry(fregs,1),mf)) {
	    sprintf(mesg,"Both regions using face %-d in the same sense",fid);
	    MSTK_Report(funcname,mesg,MSTK_ERROR);
	    valid = 0;
	  }
	}
	List_Delete(fregs);      
      }


    } /* while ((mf = MESH_Next_Face(mesh,&idx1))) */



    /*****************************************************************/
    /* Regions                                                      */
    /*****************************************************************/    

    idx1 = 0;
    while ((mr = MESH_Next_Region(mesh,&idx1))) {
      
#ifdef MSTK_HAVE_MPI
      if (MR_PType(mr) == PGHOST) continue;
#endif

      rid = MR_ID(mr);
      grid = MR_GEntID(mr);

      rfaces = MR_Faces(mr);
      int nrf = List_Num_Entries(rfaces);

      if (nrf < 4) {
        sprintf(mesg,"Region %-d has less than 4 faces",rid);
        MSTK_Report(funcname,mesg,MSTK_ERROR);
      }

      /* Check that face to region and region to face links are consistent
         with each other */
      int *rfdirs = (int *) malloc(nrf*sizeof(int));

      i = 0;
      idx2 = 0;
      while ((rf = List_Next_Entry(rfaces,&idx2))) {
	rfdirs[i] = MR_FaceDir_i(mr,i);
	if (mr != MF_Region(rf,!rfdirs[i])) {
	  sprintf(mesg,"Region %-d to face %-d dir inconsistent with \n face to region dir",rid,MF_ID(rf));
	  MSTK_Report(funcname,mesg,MSTK_ERROR);
	  valid = 0;
	}

        i++;
      }


      /* Check that faces of a region have consistent orientation in
         the region with respect to each other */
      
      for (i = 0; i < nrf; i++) {
        MFace_ptr rf, rf2;

        rf = List_Entry(rfaces,i);

        fedges = MF_Edges(rf,1,0);
        nfe = List_Num_Entries(fedges);
        
        for (j = 0; j < nfe; j++) {
          fe = List_Entry(fedges,j);
          int fedir = MF_EdgeDir_i(rf,j);
          
          /* Find adjacent face in the region */
          found = 0;
          for (k = 0; k < nrf; k++) {
            rf2 = List_Entry(rfaces,k);
            if (rf != rf2 && MF_UsesEntity(rf2,fe,MEDGE)) {
              found = 1;
              break;
            }
          }

          if (!found) {
            sprintf(mesg,"Cannot find another face in region %-d sharing edge %-d (ID = %-d) of face with ID = %-d",MR_ID(mr),j,ME_ID(fe),MF_ID(rf));
            MSTK_Report(funcname,mesg,MSTK_ERROR);
            valid = 0;
          }
          
          int fedir_adj = MF_EdgeDir(rf2,fe);
          
          /* If the two faces use the edge in opposite directions then
             the region should use the faces in the same direction and
             vice versa */

          if (((fedir_adj == fedir) && (rfdirs[i] == rfdirs[k])) ||
              ((fedir_adj != fedir) && (rfdirs[i] != rfdirs[k]))) {
            sprintf(mesg,"Region %-d faces are inconsistently oriented",MR_ID(mr));
            MSTK_Report(funcname,mesg,MSTK_ERROR);
            valid = 0;
          }
        }
        List_Delete(fedges);
           
      }
      List_Delete(rfaces);
      free(rfdirs);
    }

    return valid;

  } /* int MESH_CheckTopo */
예제 #3
0
파일: vizpart.c 프로젝트: ekikinzon/MSTK
int main(int argc, char **argv) {
  int len, ok;
  int i, j, id, idx, ncells, file_found;
  int num_parts, imethod;
  int nproc, rank;  
  Mesh_ptr mesh;
  char basename[256], meshname[256], gmvfilename[256], method[256];


  if (argc == 1) {
    fprintf(stderr,"Usage: %s --num=num_parts --method=Metis/Zoltan (default=Metis) --file=name.mstk\n",argv[0]);
    exit(-1);    
  }

  file_found = 0;
  num_parts = 4;
  strcpy(method,"Metis");
  for (i = 1; i < argc; i++) {
    if (strncmp(argv[i],"--file=",7) == 0) {
      sscanf(argv[i]+7,"%s",meshname);
      file_found = 1;
    }
    else if (strncmp(argv[i],"--num=",6) == 0)
      sscanf(argv[i]+6,"%d",&num_parts);
    else if (strncmp(argv[i],"--method=",9) == 0) 
      sscanf(argv[i]+9,"%s",method);
    else if (strncmp(argv[i],"--help",6) == 0) {
      fprintf(stderr,"Usage: %s --num=num_parts --method=Metis/Zoltan (default=Metis) --file=name.mstk\n",argv[0]);
      exit(-1);    
    }      
  }

  if (strncasecmp(method,"metis",5) == 0)
    imethod = 0;
  else if (strncasecmp(method,"zoltan",6) == 0)
    imethod = 1;
  else {
    fprintf(stderr,"vizpart: Partitioning method not recognized\n");
    exit(-1);
  }

  if (!file_found) {
    fprintf(stderr,"Must specify input filename using --file argument\n");
    exit(-1);
  }


  MPI_Init(&argc,&argv);
      
  MSTK_Init();

  MSTK_Comm comm = MPI_COMM_WORLD;

  MPI_Comm_size(comm,&nproc);
  MPI_Comm_rank(comm,&rank);

  if (imethod == 1 && nproc != num_parts) {
    fprintf(stderr,"Zoltan based partitioner: Number of processors must equal requested number of partition\n");
    exit(-1);
  }

  
  strcpy(basename,meshname);
  len = strlen(meshname);
  if (len > 5 && strncmp(&(meshname[len-5]),".mstk",5) == 0)
    basename[len-5] = '\0';
  else
    strcat(meshname,".mstk");

  mesh = MESH_New(UNKNOWN_REP);

  if (rank == 0) {

    ok = MESH_InitFromFile(mesh,meshname,comm);
    if (!ok) {
      fprintf(stderr,"Cannot file input file %s\n\n\n",meshname);
      exit(-1);
    }

    if ( (ncells = MESH_Num_Regions(mesh)) > 0) {
      printf("3D mesh with %d regions\n", ncells);
    }
    else if ( (ncells = MESH_Num_Faces(mesh)) > 0)
      printf("2D mesh with %d faces\n", ncells);
    else {
      fprintf(stderr,"Mesh is neither solid nor surface mesh. Exiting...\n");
      exit(-1);
    }
  }

  Mesh_ptr *submeshes = (Mesh_ptr*) malloc(num_parts*sizeof(Mesh_ptr));
  int *part;
  MESH_Get_Partitioning(mesh, imethod, &part, comm);

  if(rank == 0) {

    int del_inmesh = 0;
    MESH_Partition(mesh, num_parts, part, submeshes);

    idx = 0;
    if(MESH_Num_Regions(mesh)) {
      MAttrib_ptr region_part = MAttrib_New(mesh, "part", INT, MREGION);
      MRegion_ptr mr;
      while ((mr = MESH_Next_Region(mesh, &idx))) {
        id = MR_ID(mr);
	MEnt_Set_AttVal(mr,region_part,part[id-1],0,NULL);
      }
    }
    else {
      MAttrib_ptr face_part = MAttrib_New(mesh, "part", INT, MFACE);
      MFace_ptr mf;
      while ((mf = MESH_Next_Face(mesh, &idx))) {
        id = MF_ID(mf);
	MEnt_Set_AttVal(mf,face_part,part[idx-1],0,NULL);
      }
    }

    sprintf(gmvfilename,"%s_part.gmv",basename);
    MESH_ExportToGMV(mesh,gmvfilename,0,NULL,NULL,comm);
    for( i = 0; i < num_parts; i++) {
      sprintf(gmvfilename,"%s_part.%04d.%04d.gmv",basename,i,0);
      MESH_ExportToGMV(submeshes[i],gmvfilename,0,NULL,NULL,comm);
    }

    for (i = 0; i < num_parts; i++)
      MESH_Delete(submeshes[i]);
  }


  free(submeshes);
  MESH_Delete(mesh);
  free(part);

  MPI_Finalize();
  return 1;
}
예제 #4
0
  int MESH_PartitionWithZoltan(Mesh_ptr mesh, int nparts, int **part, int noptions, 
                               char **options, MSTK_Comm comm) { 

  MEdge_ptr fedge;
  MFace_ptr mf, oppf, rface;
  MRegion_ptr mr, oppr;
  List_ptr fedges, efaces, rfaces, fregions;
  int  i, j, k, id;
  int  nv, ne, nf, nr=0, nfe, nef, nfr, nrf, idx, idx2;
  int  numflag, nedgecut, ipos;
  int  wtflag;

  int rc;
  float ver;
  struct Zoltan_Struct *zz;
  GRAPH_DATA graph;
  int changes, numGidEntries, numLidEntries, numImport, numExport;
  ZOLTAN_ID_PTR importGlobalGids, importLocalGids, exportGlobalGids, exportLocalGids;
  int *importProcs, *importToPart, *exportProcs, *exportToPart;

  int rank;
  MPI_Comm_rank(comm,&rank);
 
  rc = Zoltan_Initialize(0, NULL, &ver);

  if (rc != ZOLTAN_OK){
    MSTK_Report("MESH_PartitionWithZoltan","Could not initialize Zoltan",MSTK_FATAL);
    MPI_Finalize();
    exit(0);
  }

  /******************************************************************
  ** Create a Zoltan library structure for this instance of partition 
  ********************************************************************/
  zz = Zoltan_Create(comm);

  /*****************************************************************
   ** Figure out partitioning method
   *****************************************************************/
  
  char partition_method_str[32];
  strcpy(partition_method_str,"RCB");  /* Default - Recursive Coordinate Bisection */
  if (noptions) {
    for (i = 0; i < noptions; i++) {
      if (strncmp(options[i],"LB_PARTITION",12) == 0) {
        char *result = NULL, instring[256];
        strcpy(instring,options[i]);
        result = strtok(instring,"=");
        result = strtok(NULL," ");
        strcpy(partition_method_str,result);
      }
    }
  }
  
  if (rank == 0) {
    char mesg[256];
    sprintf(mesg,"Using partitioning method %s for ZOLTAN\n",partition_method_str);
    MSTK_Report("MESH_PartitionWithZoltan",mesg,MSTK_MESG);
  }

  /* General parameters for Zoltan */
  Zoltan_Set_Param(zz, "DEBUG_LEVEL", "0");
  Zoltan_Set_Param(zz, "LB_METHOD", partition_method_str);
  Zoltan_Set_Param(zz, "LB_APPROACH", "PARTITION");
  Zoltan_Set_Param(zz, "NUM_GID_ENTRIES", "1");
  Zoltan_Set_Param(zz, "NUM_LID_ENTRIES", "1");
  Zoltan_Set_Param(zz, "RETURN_LISTS", "ALL");


  graph.numMyNodes = 0;
  graph.numAllNbors = 0;
  graph.nodeGID = NULL;
  graph.nodeCoords = NULL;
  graph.nborIndex = NULL;
  graph.nborGID = NULL;
  graph.nborProc = NULL;

  if (strcmp(partition_method_str,"RCB") == 0) {
    if (rank == 0) {
      nr = MESH_Num_Regions(mesh);
      nf = MESH_Num_Faces(mesh);

      if (!nf && !nr)
        MSTK_Report("MESH_PartitionWithZoltan","Cannot partition wire meshes",
                    MSTK_FATAL);

      if (nr == 0) { /* Surface or planar mesh */

        int ndim = 2;       /* assume mesh is planar */
        idx = 0;
        MVertex_ptr mv;
        while ((mv = MESH_Next_Vertex(mesh,&idx))) {
          double vxyz[3];
          MV_Coords(mv,vxyz);
          if (vxyz[2] != 0.0) {
            ndim = 3;  /* non-planar or planar with non-zero z */
            break;
          }
        }
        NDIM_4_ZOLTAN = ndim-1;  /* ignore last dimension to avoid partitioning in that dimension */

        graph.numMyNodes = nf;

        graph.nodeGID = (ZOLTAN_ID_TYPE *) malloc(sizeof(ZOLTAN_ID_TYPE) * nf);
        graph.nodeCoords = (double *) malloc(sizeof(double) * NDIM_4_ZOLTAN * nf);

        idx = 0;
        while ((mf = MESH_Next_Face(mesh,&idx))) {
          double fxyz[MAXPV2][3], cen[3];
          int nfv;

          MF_Coords(mf,&nfv,fxyz);
          cen[0] = cen[1] = cen[2] = 0.0;
          for (j = 0; j < nfv; j++)
            for (k = 0; k < NDIM_4_ZOLTAN; k++) 
              cen[k] += fxyz[j][k];              
          for (k = 0; k < NDIM_4_ZOLTAN; k++) cen[k] /= nfv;

          id = MF_ID(mf);
          graph.nodeGID[id-1] = id;
          memcpy(&(graph.nodeCoords[NDIM_4_ZOLTAN*(id-1)]),cen,NDIM_4_ZOLTAN*sizeof(double));
        }

      }
      else { /* Volume mesh */

        int ndim = 3;
        NDIM_4_ZOLTAN = ndim-1;  /* ignore last dimension  to avoid partitioning in that dimension */
        graph.numMyNodes = nr;

        graph.nodeGID = (ZOLTAN_ID_TYPE *) malloc(sizeof(ZOLTAN_ID_TYPE) * nr);
        graph.nodeCoords = (double *) malloc(sizeof(double) * NDIM_4_ZOLTAN * nr);

        idx = 0;
        while ((mr = MESH_Next_Region(mesh,&idx))) {
          double rxyz[MAXPV3][3], cen[3];
          int nrv;
          
          MR_Coords(mr,&nrv,rxyz);
          cen[0] = cen[1] = cen[2] = 0.0;
          for (j = 0; j < nrv; j++)
            for (k = 0; k < NDIM_4_ZOLTAN; k++)
              cen[k] += rxyz[j][k];
          for (k = 0; k < NDIM_4_ZOLTAN; k++) cen[k] /= nrv;
          for (k = 0; k < NDIM_4_ZOLTAN; k++) 
            if (fabs(cen[k]) < 1.0e-10) cen[k] = 0.0; 

          id = MR_ID(mr);
          graph.nodeGID[id-1] = id;
          memcpy(&(graph.nodeCoords[NDIM_4_ZOLTAN*(id-1)]),cen,NDIM_4_ZOLTAN*sizeof(double));
        }

      }
    }

    MPI_Bcast(&NDIM_4_ZOLTAN,1,MPI_INT,0,comm);

    /* Set some default values */
    Zoltan_Set_Param(zz, "RCB_RECTILINEAR_BLOCKS","1");
    //    Zoltan_Set_Param(zz, "AVERAGE_CUTS", "1");

    if (noptions > 1) {
      for (i = 1; i < noptions; i++) {
        char *paramstr = NULL, *valuestr = NULL, instring[256];
        strcpy(instring,options[i]);
        paramstr = strtok(instring,"=");
        valuestr = strtok(NULL," ");
        Zoltan_Set_Param(zz,paramstr,valuestr);
      }
    }

    /* Query functions - defined in simpleQueries.h */

    Zoltan_Set_Num_Obj_Fn(zz, get_number_of_nodes, &graph);
    Zoltan_Set_Obj_List_Fn(zz, get_node_list, &graph);
    Zoltan_Set_Num_Geom_Fn(zz, get_num_dimensions_reduced, &graph);    /* reduced dimensions */
    Zoltan_Set_Geom_Multi_Fn(zz, get_element_centers_reduced, &graph); /* reduced dimension centers */

  }
  else if (strcmp(partition_method_str,"GRAPH") == 0) {

    if(rank == 0) {
      nv = MESH_Num_Vertices(mesh);
      ne = MESH_Num_Edges(mesh);
      nf = MESH_Num_Faces(mesh);
      nr = MESH_Num_Regions(mesh);
      
      ipos = 0;
      
      /* build nodes and neighbors list, similar as in partition with metis
         Assign processor 0 the whole mesh, assign other processors a NULL mesh */
  
      if (nr == 0) {
        if (nf == 0) {
          MSTK_Report("MESH_PartitionWithZoltan",
                      "Cannot partition wire meshes with Zoltan",MSTK_FATAL);
          exit(-1);
      
        }

        graph.nodeGID = (ZOLTAN_ID_TYPE *)malloc(sizeof(ZOLTAN_ID_TYPE) * nf);
        graph.nborIndex = (int *)malloc(sizeof(int) * (nf + 1));
        graph.nborGID = (ZOLTAN_ID_TYPE *)malloc(sizeof(ZOLTAN_ID_TYPE) * 2*ne);
        graph.nborProc = (int *)malloc(sizeof(int) * 2*ne);
      
        graph.nborIndex[0] = 0;
      
        /* Surface mesh */
        idx = 0; i = 0;
        while ((mf = MESH_Next_Face(mesh,&idx))) {
          graph.nodeGID[i] = MF_ID(mf);
          fedges = MF_Edges(mf,1,0);
          nfe = List_Num_Entries(fedges);
	
          idx2 = 0;
          while ((fedge = List_Next_Entry(fedges,&idx2))) {
	  
            efaces = ME_Faces(fedge);
            nef = List_Num_Entries(efaces);
	  
            if (nef == 1) {
              continue;          /* boundary edge; nothing to do */
            } else {
              int j;
              for (j = 0; j < nef; j++) {
                oppf = List_Entry(efaces,j);
                if (oppf == mf) {
                  graph.nborGID[ipos] = MF_ID(oppf);
                  /* initially set all nodes on processor 0 */
                  graph.nborProc[ipos] = 0;
                  ipos++;
                }
              }
            }
	  
            List_Delete(efaces);
	  
          }
	
          List_Delete(fedges);
          i++;
          graph.nborIndex[i] = ipos;
        }
        graph.numMyNodes = i;
        graph.numAllNbors = ipos;
      }
      else {
        graph.nodeGID = (ZOLTAN_ID_TYPE *)malloc(sizeof(ZOLTAN_ID_TYPE) * nr);
        graph.nborIndex = (int *)malloc(sizeof(int) * (nr + 1));
        graph.nborGID = (ZOLTAN_ID_TYPE *)malloc(sizeof(ZOLTAN_ID_TYPE) * 2*nf);
        graph.nborProc = (int *)malloc(sizeof(int) * 2*nf);
      
        graph.nborIndex[0] = 0;
      
        /* Volume mesh */
      
        idx = 0; i = 0;
        while ((mr = MESH_Next_Region(mesh,&idx))) {
          graph.nodeGID[i] = MR_ID(mr);
          rfaces = MR_Faces(mr);
          nrf = List_Num_Entries(rfaces);
      
          idx2 = 0;
          while ((rface = List_Next_Entry(rfaces,&idx2))) {
	  
            fregions = MF_Regions(rface);
            nfr = List_Num_Entries(fregions);
	  
            if (nfr > 1) {
              oppr = List_Entry(fregions,0);
              if (oppr == mr)
                oppr = List_Entry(fregions,1);
	    
              graph.nborGID[ipos] = MR_ID(oppr);
              /* initially set all nodes on processor 0 */
              graph.nborProc[ipos] = 0;
              ipos++;
            }
	  
            List_Delete(fregions);
	  
          }
	
          List_Delete(rfaces);
	
          i++;
          graph.nborIndex[i] = ipos;
        }
        graph.numMyNodes = i;
        graph.numAllNbors = ipos;
      }
    }

    /* Graph parameters */

    /* Zoltan_Set_Param(zz, "CHECK_GRAPH", "2"); */
    Zoltan_Set_Param(zz, "PHG_EDGE_SIZE_THRESHOLD", ".35");  /* 0-remove all, 1-remove none */

    /* Query functions - defined in simpleQueries.h */

    Zoltan_Set_Num_Obj_Fn(zz, get_number_of_nodes, &graph);
    Zoltan_Set_Obj_List_Fn(zz, get_node_list, &graph);
    Zoltan_Set_Num_Edges_Multi_Fn(zz, get_num_edges_list, &graph);
    Zoltan_Set_Edge_List_Multi_Fn(zz, get_edge_list, &graph);    
  }

  /* Partition the graph */
  /******************************************************************                                                                             
   ** Zoltan can now partition the graph.                                                                                                   
   ** We assume the number of partitions is                                                                                
   ** equal to the number of processes.  Process rank 0 will own                                                                                   
   ** partition 0, process rank 1 will own partition 1, and so on.                                                                                 
   ******************************************************************/
  rc = Zoltan_LB_Partition(zz, /* input (all remaining fields are output) */
			   &changes,        /* 1 if partitioning was changed, 0 otherwise */
			   &numGidEntries,  /* Number of integers used for a global ID */
			   &numLidEntries,  /* Number of integers used for a local ID */
			   &numImport,      /* Number of nodes to be sent to me */
			   &importGlobalGids,  /* Global IDs of nodes to be sent to me */
			   &importLocalGids,   /* Local IDs of nodes to be sent to me */
			   &importProcs,    /* Process rank for source of each incoming node */
			   &importToPart,   /* New partition for each incoming node */
			   &numExport,      /* Number of nodes I must send to other processes*/
			   &exportGlobalGids,  /* Global IDs of the nodes I must send */
			   &exportLocalGids,   /* Local IDs of the nodes I must send */
			   &exportProcs,    /* Process to which I send each of the nodes */
			   &exportToPart);  /* Partition to which each node will belong */

  if (rc != ZOLTAN_OK){
    if (rank == 0)
      MSTK_Report("MESH_PartitionWithZoltan","Could not partition mesh with ZOLTAN",
                  MSTK_ERROR);
    Zoltan_Destroy(&zz);
    MPI_Finalize();
    return 0;
  }

  if(rank == 0) {
    *part = (int *) calloc(graph.numMyNodes,sizeof(int));
    for ( i = 0; i < numExport; i++ ) {
      (*part)[exportGlobalGids[i]-1] = exportToPart[i];
    }
    if (graph.nodeGID) free(graph.nodeGID);
    if (graph.nodeCoords) free(graph.nodeCoords);
    if (graph.nborIndex) free(graph.nborIndex);
    if (graph.nborGID) free(graph.nborGID);
    if (graph.nborProc) free(graph.nborProc);
  }
  else { 
    *part = NULL;
  }


  Zoltan_LB_Free_Part(&exportGlobalGids, &exportLocalGids, &exportProcs, &exportToPart);
  Zoltan_LB_Free_Part(&importGlobalGids, &importLocalGids, &importProcs, &importToPart);
  Zoltan_Destroy(&zz);                

  return 1;
}
예제 #5
0
int MESH_PartitionWithMetis(Mesh_ptr mesh, int nparts, int **part) {

  MEdge_ptr fedge;
  MFace_ptr mf, oppf, rface;
  MRegion_ptr mr, oppr;
  List_ptr fedges, efaces, rfaces, fregions;
  int  i, ncells, ipos;
  int  nv, ne, nf, nr, nfe, nef, nfr, nrf, idx, idx2;
#ifdef METIS_5
  idx_t ngraphvtx, numflag, nedgecut, numparts, ncons;
  idx_t wtflag, metisopts[METIS_NOPTIONS];
  idx_t *vsize, *idxpart;
  idx_t  *xadj, *adjncy, *vwgt, *adjwgt;
  real_t *tpwgts, *ubvec;
#else
  idxtype ngraphvtx, numflag, nedgecut, numparts;
  idxtype  wtflag, metisopts[5] = {0,0,0,0,0};
  idxtype  *xadj, *adjncy, *vwgt, *adjwgt, *idxpart;
#endif
  

  /* First build a nodal graph of the mesh in the format required by
     metis */

  nv = MESH_Num_Vertices(mesh);
  ne = MESH_Num_Edges(mesh);
  nf = MESH_Num_Faces(mesh);
  nr = MESH_Num_Regions(mesh);

  ipos = 0;
  
  if (nr == 0) {
    
    if (nf == 0) {
      fprintf(stderr,"Cannot partition wire meshes\n");
      exit(-1);
    }

#ifdef METIS_5
    xadj = (idx_t *) malloc((nf+1)*sizeof(idx_t));
    adjncy = (idx_t *) malloc(2*ne*sizeof(idx_t));
#else    
    xadj = (idxtype *) malloc((nf+1)*sizeof(idxtype));
    adjncy = (idxtype *) malloc(2*ne*sizeof(idxtype));
#endif
    ncells = nf;

    /* Surface mesh */

    idx = 0; i = 0;
    xadj[i] = ipos;
    while ((mf = MESH_Next_Face(mesh,&idx))) {
      
      fedges = MF_Edges(mf,1,0);
      nfe = List_Num_Entries(fedges);
      
      idx2 = 0;
      while ((fedge = List_Next_Entry(fedges,&idx2))) {
	
	efaces = ME_Faces(fedge);
	nef = List_Num_Entries(efaces);
	
	if (nef == 1) {
	  continue;          /* boundary edge; nothing to do */
	}
	else {
          int j;
          for (j = 0; j < nef; j++) {
            oppf = List_Entry(efaces,j);
            if (oppf != mf) {
              adjncy[ipos] = MF_ID(oppf)-1;
              ipos++;
            }
          }
	}
	
	List_Delete(efaces);
	
      }
      
      List_Delete(fedges);
      
      i++;
      xadj[i] = ipos;
    }

  }
  else {

#ifdef METIS_5
    xadj = (idx_t *) malloc((nr+1)*sizeof(idx_t));
    adjncy = (idx_t *) malloc(2*nf*sizeof(idx_t));
#else
    xadj = (idxtype *) malloc((nr+1)*sizeof(idxtype));
    adjncy = (idxtype *) malloc(2*nf*sizeof(idxtype));
#endif
    ncells = nr;

    /* Volume mesh */

    idx = 0; i = 0;
    xadj[i] = ipos;
    while ((mr = MESH_Next_Region(mesh,&idx))) {
      
      rfaces = MR_Faces(mr);
      nrf = List_Num_Entries(rfaces);
      
      idx2 = 0;
      while ((rface = List_Next_Entry(rfaces,&idx2))) {
	
	fregions = MF_Regions(rface);
	nfr = List_Num_Entries(fregions);
	
	if (nfr > 1) {
	  oppr = List_Entry(fregions,0);
	  if (oppr == mr)
	    oppr = List_Entry(fregions,1);
	  
	  adjncy[ipos] = MR_ID(oppr)-1;
	  ipos++;
	}
        List_Delete(fregions);	
	
      }
      
      List_Delete(rfaces);
      
      i++;
      xadj[i] = ipos;
    }

  }
  


  /* Partition the graph */
  
  wtflag = 0;        /* No weights are specified */
  vwgt = adjwgt = NULL;

  numflag = 0;    /* C style numbering of elements (nodes of the dual graph) */
  ngraphvtx = ncells; /* we want the variable to be of type idxtype or idx_t */
  numparts = nparts;  /* we want the variable to be of type idxtype or idx_t */

#ifdef METIS_5
  idxpart = (idx_t *) malloc(ncells*sizeof(idx_t));

  ncons = 1;  /* Number of constraints */
  vsize = NULL;  
  tpwgts = NULL;
  ubvec = NULL;

  METIS_SetDefaultOptions(metisopts);
  metisopts[METIS_OPTION_NUMBERING] = 0;

  if (nparts <= 8)
    METIS_PartGraphRecursive(&ngraphvtx,&ncons,xadj,adjncy,vwgt,vsize,adjwgt,
			     &numparts,tpwgts,ubvec,metisopts,&nedgecut,
                             idxpart);
  else
    METIS_PartGraphKway(&ngraphvtx,&ncons,xadj,adjncy,vwgt,vsize,adjwgt,
                        &numparts,tpwgts,ubvec,metisopts,&nedgecut,idxpart);

#else

  idxpart = (idxtype *) malloc(ncells*sizeof(idxtype));

  if (nparts <= 8)
    METIS_PartGraphRecursive(&ngraphvtx,xadj,adjncy,vwgt,adjwgt,&wtflag,
			     &numflag,&numparts,metisopts,&nedgecut,idxpart);
  else
    METIS_PartGraphKway(&ngraphvtx,xadj,adjncy,vwgt,adjwgt,&wtflag,&numflag,
			&numparts,metisopts,&nedgecut,idxpart);
#endif

  free(xadj);
  free(adjncy);


  
  *part = (int *) malloc(ncells*sizeof(int));
  for (i = 0; i < ncells; i++)
    (*part)[i] = (int) idxpart[i];

  free(idxpart);
  return 1;

}
예제 #6
0
  int MESH_Send_NonVertexEntities_FN(Mesh_ptr mesh, int torank, MSTK_Comm comm,
                           int *numreq, int *maxreq, MPI_Request **requests,
                           int *numptrs2free, int *maxptrs2free,
                           void ***ptrs2free) {
    int i, j, nv, ne, nf, nr;
    int nevs, nfes, nrfs, nfe, nrv, nrf, dir;
    int maxnfe, maxnrf;
    int *mesh_info;
    int *list_edge=NULL, *list_face=NULL, *list_region=NULL;
    MVertex_ptr mv;
    MEdge_ptr me;
    MFace_ptr mf;
    MRegion_ptr mr;
    List_ptr mfedges, mrfaces, mrverts;
    RepType rtype;
    double coor[3];
    MPI_Request mpirequest;

    if (requests == NULL)
      MSTK_Report("MESH_Surf_SendMesh","MPI requests array is NULL",MSTK_FATAL);

    if (*maxreq == 0) {
      *maxreq = 25;
      *requests = (MPI_Request *) malloc(*maxreq*sizeof(MPI_Request));
      *numreq = 0;
    }
    else if (*maxreq < (*numreq) + 13) {
      *maxreq = 2*(*maxreq) + 11;
      *requests = (MPI_Request *) realloc(*requests,*maxreq*sizeof(MPI_Request));
    }
  

    ne = MESH_Num_Edges(mesh);
    nf = MESH_Num_Faces(mesh);
    nr = MESH_Num_Regions(mesh);

    /* some other known quantitites - 5 items per edge (2 for verts
       and 3 for extra data), maxnfe+4 items per face (1 for number of
       edges, maxnfe for edge indices, anad 3 for extra data),
       maxnrf+4 items per region (1 for number of faces, maxnrf for
       face indices and 3 for extra data */


    maxnfe = 0;
    for (i = 0; i < nf; i++) {
      mf = MESH_Face(mesh,i);
      nfe = MF_Num_Edges(mf);
      if (nfe > maxnfe)
        maxnfe = nfe;
    }

    maxnrf = 0;
    for (i = 0; i < nr; i++) {
      mr = MESH_Region(mesh,i);
      nrf = MR_Num_Faces(mr);
      if (nrf > maxnrf)
        maxnrf = nrf;
    }

    // The amount of extra info we are sending and their meaning is obviously
    // known on the receiving side too. So nevs, nfes and nrfs can be 
    // calculated without us sending it


    nevs = (2+3)*ne;    
    nfes = (1 + maxnfe + 3)*nf;
    nrfs = (1 + maxnrf + 3)*nr;
    
    /* Reserve nevs spots for each edge */

    list_edge = (int *) malloc(5*ne*sizeof(int));

    nevs = 0;

    /* Store the vertex ids, then the 3 auxilliary data fields */

    for(i = 0; i < ne; i++) {
      me = MESH_Edge(mesh,i);
      list_edge[nevs]   = MV_ID(ME_Vertex(me,0));
      list_edge[nevs+1] = MV_ID(ME_Vertex(me,1));
      list_edge[nevs+2] = (ME_GEntID(me)<<3) | (ME_GEntDim(me));
      list_edge[nevs+3] = (ME_MasterParID(me) <<3) | (ME_OnParBoundary(me)<<2) | (ME_PType(me));
      list_edge[nevs+4] = ME_GlobalID(me);
      nevs += 5;
    }

    /* send detailed edge info */

    MPI_Isend(list_edge,nevs,MPI_INT,torank,torank,comm,&mpirequest);
    (*requests)[*numreq] = mpirequest;
    (*numreq)++;
  

    /* Reserve nfes spots for each face */

    list_face = (int *) malloc(nfes*sizeof(int));

    nfes = 0;

    /* first store nfe, then the edge ids, then the 3 auxilliary data fields */

    for(i = 0; i < nf; i++) {
      mf = MESH_Face(mesh,i);
      mfedges = MF_Edges(mf,1,0);
      nfe = List_Num_Entries(mfedges);
      list_face[nfes] = nfe;
      for(j = 0; j < nfe; j++) {
        dir = MF_EdgeDir_i(mf,j) ? 1 : -1;
        list_face[nfes+j+1] = dir*ME_ID(List_Entry(mfedges,j));
      }
      list_face[nfes+nfe+1] = (MF_GEntID(mf)<<3) | (MF_GEntDim(mf));
      list_face[nfes+nfe+2] = (MF_MasterParID(mf)<<3) | (MF_OnParBoundary(mf)<<2) | (MF_PType(mf));
      list_face[nfes+nfe+3] = MF_GlobalID(mf);
      nfes += (nfe + 4);
      List_Delete(mfedges);
    }


    /* send detailed face info */

    MPI_Isend(list_face,nfes,MPI_INT,torank,torank,comm,&mpirequest);
    (*requests)[*numreq] = mpirequest;
    (*numreq)++;

    
    if (nr) {

      list_region = (int *) malloc(nrfs*sizeof(int));
      
      nrfs = 0;
      
      /* first store nrf, then the face ids, then the 3 auxilliary data fields */
      
      for(i = 0; i < nr; i++) {
        mr = MESH_Region(mesh,i);
        mrfaces = MR_Faces(mr);
        nrf = List_Num_Entries(mrfaces);
        list_region[nrfs] = nrf;
        for(j = 0; j < nrf; j++) {
          dir = MR_FaceDir_i(mr,j) == 1 ? 1 : -1;
          list_region[nrfs+j+1] = dir*MF_ID(List_Entry(mrfaces,j));
        }
        list_region[nrfs+nrf+1] = (MR_GEntID(mr)<<3) | (MR_GEntDim(mr));
        list_region[nrfs+nrf+2] = (MR_MasterParID(mr)<<3) | (MR_PType(mr)); /* MR_PType is 2 bits; 3 bit is 0 */
        list_region[nrfs+nrf+3] = MR_GlobalID(mr);
        nrfs += (nrf + 4);
        List_Delete(mrfaces);
      }
      
      /* send detailed region info */
      
      MPI_Isend(list_region,nrfs,MPI_INT,torank,torank,comm,&mpirequest);
      (*requests)[*numreq] = mpirequest;
      (*numreq)++;
      
    }
      

    /* collect allocated memory so it can be freed in a higher level
       routine after MPI_Waitall or MPI_Test has ensured that the send
       has been completed */

    if (ptrs2free == NULL) 
      MSTK_Report("MESH_Surf_SendMesh_FN","ptrs2free array is NULL",MSTK_FATAL);

    int nptrs = 3;

    if (*maxptrs2free == 0) {
      *maxptrs2free = 25;
      *ptrs2free = (void **) malloc(*maxptrs2free*sizeof(void *));
      *numptrs2free = 0;
    }
    else if (*maxptrs2free < (*numptrs2free) + nptrs) {
      *maxptrs2free = 2*(*maxptrs2free) + nptrs;
      *ptrs2free = (void **) realloc(*ptrs2free,(*maxptrs2free)*sizeof(void *));
    }

    if (ne)
      (*ptrs2free)[(*numptrs2free)++] = list_edge;
    if (nf)
      (*ptrs2free)[(*numptrs2free)++] = list_face;
    if (nr)
      (*ptrs2free)[(*numptrs2free)++] = list_region;

    return 1;
  }