예제 #1
0
/*
 * decode_ext()
 *
 *    Decode opcode extensions (if any)
 */
static int
decode_ext(struct ud *u, uint16_t ptr)
{
  uint8_t idx = 0;
  if ((ptr & 0x8000) == 0) {
    return decode_insn(u, ptr); 
  }
  u->le = &ud_lookup_table_list[(~0x8000 & ptr)];
  if (u->le->type == UD_TAB__OPC_3DNOW) {
    return decode_3dnow(u);
  }

  switch (u->le->type) {
    case UD_TAB__OPC_MOD:
      /* !11 = 0, 11 = 1 */
      idx = (MODRM_MOD(modrm(u)) + 1) / 4;
      break;
      /* disassembly mode/operand size/address size based tables.
       * 16 = 0,, 32 = 1, 64 = 2
       */
    case UD_TAB__OPC_MODE:
      idx = u->dis_mode / 32;
      break;
    case UD_TAB__OPC_OSIZE:
      idx = eff_opr_mode(u->dis_mode, REX_W(u->pfx_rex), u->pfx_opr) / 32;
      break;
    case UD_TAB__OPC_ASIZE:
      idx = eff_adr_mode(u->dis_mode, u->pfx_adr) / 32;
      break;
    case UD_TAB__OPC_X87:
      idx = modrm(u) - 0xC0;
      break;
    case UD_TAB__OPC_VENDOR:
      if (u->vendor == UD_VENDOR_ANY) {
        /* choose a valid entry */
        idx = (u->le->table[idx] != 0) ? 0 : 1;
      } else if (u->vendor == UD_VENDOR_AMD) {
        idx = 0;
      } else {
        idx = 1;
      }
      break;
    case UD_TAB__OPC_RM:
      idx = MODRM_RM(modrm(u));
      break;
    case UD_TAB__OPC_REG:
      idx = MODRM_REG(modrm(u));
      break;
    case UD_TAB__OPC_SSE:
      return decode_ssepfx(u);
    default:
      assert(!"not reached");
      break;
  }

  return decode_ext(u, u->le->table[idx]);
}
예제 #2
0
/*
 * decode_modrm_reg
 *
 *    Decodes reg field of mod/rm byte
 * 
 */
static inline void
decode_modrm_reg(struct ud         *u, 
                 struct ud_operand *operand,
                 unsigned int       type,
                 unsigned int       size)
{
  uint8_t reg = (REX_R(u->pfx_rex) << 3) | MODRM_REG(modrm(u));
  decode_reg(u, operand, type, reg, size);
}
예제 #3
0
파일: uprobes.c 프로젝트: AiWinters/linux
/*
 * Figure out which fixups arch_uprobe_post_xol() will need to perform, and
 * annotate arch_uprobe->fixups accordingly.  To start with,
 * arch_uprobe->fixups is either zero or it reflects rip-related fixups.
 */
static void prepare_fixups(struct arch_uprobe *auprobe, struct insn *insn)
{
	bool fix_ip = true, fix_call = false;	/* defaults */
	int reg;

	insn_get_opcode(insn);	/* should be a nop */

	switch (OPCODE1(insn)) {
	case 0x9d:
		/* popf */
		auprobe->fixups |= UPROBE_FIX_SETF;
		break;
	case 0xc3:		/* ret/lret */
	case 0xcb:
	case 0xc2:
	case 0xca:
		/* ip is correct */
		fix_ip = false;
		break;
	case 0xe8:		/* call relative - Fix return addr */
		fix_call = true;
		break;
	case 0x9a:		/* call absolute - Fix return addr, not ip */
		fix_call = true;
		fix_ip = false;
		break;
	case 0xff:
		insn_get_modrm(insn);
		reg = MODRM_REG(insn);
		if (reg == 2 || reg == 3) {
			/* call or lcall, indirect */
			/* Fix return addr; ip is correct. */
			fix_call = true;
			fix_ip = false;
		} else if (reg == 4 || reg == 5) {
			/* jmp or ljmp, indirect */
			/* ip is correct. */
			fix_ip = false;
		}
		break;
	case 0xea:		/* jmp absolute -- ip is correct */
		fix_ip = false;
		break;
	default:
		break;
	}
	if (fix_ip)
		auprobe->fixups |= UPROBE_FIX_IP;
	if (fix_call)
		auprobe->fixups |= UPROBE_FIX_CALL;
}
예제 #4
0
/*
 * decode_modrm_reg
 *
 *    Decodes reg field of mod/rm byte
 * 
 */
static void
decode_modrm_reg(struct ud         *u, 
                 struct ud_operand *operand,
                 unsigned int       type,
                 unsigned int       size)
{
  uint8_t reg = (REX_R(u->pfx_rex) << 3) | MODRM_REG(modrm(u));
  operand->type = UD_OP_REG;
  operand->size = resolve_operand_size(u, size);

  if (type == T_GPR) {
    operand->base = decode_gpr(u, operand->size, reg);
  } else {
    operand->base = resolve_reg(u, type, reg);
  }
}
예제 #5
0
/*
 * decode_modrm_rm
 *
 *    Decodes rm field of mod/rm byte
 * 
 */
static void 
decode_modrm_rm(struct ud         *u, 
                struct ud_operand *op,
                unsigned char      type,
                unsigned int       size)

{
  unsigned char mod, rm, reg;

  /* get mod, r/m and reg fields */
  mod = MODRM_MOD(modrm(u));
  rm  = (REX_B(u->pfx_rex) << 3) | MODRM_RM(modrm(u));
  reg = (REX_R(u->pfx_rex) << 3) | MODRM_REG(modrm(u));

  op->size = resolve_operand_size(u, size);

  /* 
   * If mod is 11b, then the modrm.rm specifies a register.
   *
   */
  if (mod == 3) {
    op->type = UD_OP_REG;
    if (type ==  T_GPR) {
      op->base = decode_gpr(u, op->size, rm);
    } else {
      op->base = resolve_reg(u, type, (REX_B(u->pfx_rex) << 3) | (rm & 7));
    }
    return;
  } 


  /* 
   * !11 => Memory Address
   */  
  op->type = UD_OP_MEM;

  if (u->adr_mode == 64) {
    op->base = UD_R_RAX + rm;
    if (mod == 1) {
      op->offset = 8;
    } else if (mod == 2) {
      op->offset = 32;
    } else if (mod == 0 && (rm & 7) == 5) {           
      op->base = UD_R_RIP;
      op->offset = 32;
    } else {
      op->offset = 0;
    }
    /* 
     * Scale-Index-Base (SIB) 
     */
    if ((rm & 7) == 4) {
      inp_next(u);
      
      op->scale = (1 << SIB_S(inp_curr(u))) & ~1;
      op->index = UD_R_RAX + (SIB_I(inp_curr(u)) | (REX_X(u->pfx_rex) << 3));
      op->base  = UD_R_RAX + (SIB_B(inp_curr(u)) | (REX_B(u->pfx_rex) << 3));

      /* special conditions for base reference */
      if (op->index == UD_R_RSP) {
        op->index = UD_NONE;
        op->scale = UD_NONE;
      }

      if (op->base == UD_R_RBP || op->base == UD_R_R13) {
        if (mod == 0) {
          op->base = UD_NONE;
        } 
        if (mod == 1) {
          op->offset = 8;
        } else {
          op->offset = 32;
        }
      }
    }
  } else if (u->adr_mode == 32) {
    op->base = UD_R_EAX + rm;
    if (mod == 1) {
      op->offset = 8;
    } else if (mod == 2) {
      op->offset = 32;
    } else if (mod == 0 && rm == 5) {
      op->base = UD_NONE;
      op->offset = 32;
    } else {
      op->offset = 0;
    }

    /* Scale-Index-Base (SIB) */
    if ((rm & 7) == 4) {
      inp_next(u);

      op->scale = (1 << SIB_S(inp_curr(u))) & ~1;
      op->index = UD_R_EAX + (SIB_I(inp_curr(u)) | (REX_X(u->pfx_rex) << 3));
      op->base  = UD_R_EAX + (SIB_B(inp_curr(u)) | (REX_B(u->pfx_rex) << 3));

      if (op->index == UD_R_ESP) {
        op->index = UD_NONE;
        op->scale = UD_NONE;
      }

      /* special condition for base reference */
      if (op->base == UD_R_EBP) {
        if (mod == 0) {
          op->base = UD_NONE;
        } 
        if (mod == 1) {
          op->offset = 8;
        } else {
          op->offset = 32;
        }
      }
    }
  } else {
    const unsigned int bases[]   = { UD_R_BX, UD_R_BX, UD_R_BP, UD_R_BP,
                                     UD_R_SI, UD_R_DI, UD_R_BP, UD_R_BX };
    const unsigned int indices[] = { UD_R_SI, UD_R_DI, UD_R_SI, UD_R_DI,
                                     UD_NONE, UD_NONE, UD_NONE, UD_NONE };
    op->base  = bases[rm & 7];
    op->index = indices[rm & 7];
    if (mod == 0 && rm == 6) {
      op->offset= 16;
      op->base = UD_NONE;
    } else if (mod == 1) {
      op->offset = 8;
    } else if (mod == 2) { 
      op->offset = 16;
    }
  }

  /* 
   * extract offset, if any 
   */
  switch (op->offset) {
    case 8 : op->lval.ubyte  = inp_uint8(u);  break;
    case 16: op->lval.uword  = inp_uint16(u); break;
    case 32: op->lval.udword = inp_uint32(u); break;
    case 64: op->lval.uqword = inp_uint64(u); break;
    default: break;
  }
}
예제 #6
0
파일: uprobes.c 프로젝트: AllenWeb/linux
/*
 * If arch_uprobe->insn doesn't use rip-relative addressing, return
 * immediately.  Otherwise, rewrite the instruction so that it accesses
 * its memory operand indirectly through a scratch register.  Set
 * arch_uprobe->fixups and arch_uprobe->rip_rela_target_address
 * accordingly.  (The contents of the scratch register will be saved
 * before we single-step the modified instruction, and restored
 * afterward.)
 *
 * We do this because a rip-relative instruction can access only a
 * relatively small area (+/- 2 GB from the instruction), and the XOL
 * area typically lies beyond that area.  At least for instructions
 * that store to memory, we can't execute the original instruction
 * and "fix things up" later, because the misdirected store could be
 * disastrous.
 *
 * Some useful facts about rip-relative instructions:
 *
 *  - There's always a modrm byte.
 *  - There's never a SIB byte.
 *  - The displacement is always 4 bytes.
 */
static void
handle_riprel_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, struct insn *insn)
{
	u8 *cursor;
	u8 reg;

	if (mm->context.ia32_compat)
		return;

	auprobe->rip_rela_target_address = 0x0;
	if (!insn_rip_relative(insn))
		return;

	/*
	 * insn_rip_relative() would have decoded rex_prefix, modrm.
	 * Clear REX.b bit (extension of MODRM.rm field):
	 * we want to encode rax/rcx, not r8/r9.
	 */
	if (insn->rex_prefix.nbytes) {
		cursor = auprobe->insn + insn_offset_rex_prefix(insn);
		*cursor &= 0xfe;	/* Clearing REX.B bit */
	}

	/*
	 * Point cursor at the modrm byte.  The next 4 bytes are the
	 * displacement.  Beyond the displacement, for some instructions,
	 * is the immediate operand.
	 */
	cursor = auprobe->insn + insn_offset_modrm(insn);
	insn_get_length(insn);

	/*
	 * Convert from rip-relative addressing to indirect addressing
	 * via a scratch register.  Change the r/m field from 0x5 (%rip)
	 * to 0x0 (%rax) or 0x1 (%rcx), and squeeze out the offset field.
	 */
	reg = MODRM_REG(insn);
	if (reg == 0) {
		/*
		 * The register operand (if any) is either the A register
		 * (%rax, %eax, etc.) or (if the 0x4 bit is set in the
		 * REX prefix) %r8.  In any case, we know the C register
		 * is NOT the register operand, so we use %rcx (register
		 * #1) for the scratch register.
		 */
		auprobe->fixups = UPROBE_FIX_RIP_CX;
		/* Change modrm from 00 000 101 to 00 000 001. */
		*cursor = 0x1;
	} else {
		/* Use %rax (register #0) for the scratch register. */
		auprobe->fixups = UPROBE_FIX_RIP_AX;
		/* Change modrm from 00 xxx 101 to 00 xxx 000 */
		*cursor = (reg << 3);
	}

	/* Target address = address of next instruction + (signed) offset */
	auprobe->rip_rela_target_address = (long)insn->length + insn->displacement.value;

	/* Displacement field is gone; slide immediate field (if any) over. */
	if (insn->immediate.nbytes) {
		cursor++;
		memmove(cursor, cursor + insn->displacement.nbytes, insn->immediate.nbytes);
	}
	return;
}
예제 #7
0
파일: decode.c 프로젝트: AmesianX/hyperdbg
/* -----------------------------------------------------------------------------
 * decode_modrm() - Decodes ModRM Byte
 * -----------------------------------------------------------------------------
 */
static void 
decode_modrm(struct ud* u, struct ud_operand *op, unsigned int s, 
         unsigned char rm_type, struct ud_operand *opreg, 
			 unsigned int reg_size, unsigned char reg_type)
{
  unsigned char mod, rm, reg;

  inp_next(u);

  /* get mod, r/m and reg fields */
  mod = MODRM_MOD(inp_curr(u));
  rm  = (REX_B(u->pfx_rex) << 3) | MODRM_RM(inp_curr(u));
  reg = (REX_R(u->pfx_rex) << 3) | MODRM_REG(inp_curr(u));

  op->size = (uint8_t) resolve_operand_size(u, s);

  /* if mod is 11b, then the UD_R_m specifies a gpr/mmx/sse/control/debug */
  if (mod == 3) {
    op->type = UD_OP_REG;
    if (rm_type ==  T_GPR)
        op->base = decode_gpr(u, op->size, rm);
    else    op->base = resolve_reg(u, rm_type, (REX_B(u->pfx_rex) << 3) | (rm&7));
  } 
  /* else its memory addressing */  
  else {
    op->type = UD_OP_MEM;

    /* 64bit addressing */
    if (u->adr_mode == 64) {

        op->base = UD_R_RAX + rm;

        /* get offset type */
        if (mod == 1)
            op->offset = 8;
        else if (mod == 2)
            op->offset = 32;
        else if (mod == 0 && (rm & 7) == 5) {           
            op->base = UD_R_RIP;
            op->offset = 32;
        } else  op->offset = 0;

        /* Scale-Index-Base (SIB) */
        if ((rm & 7) == 4) {
            inp_next(u);
            
            op->scale = (1 << SIB_S(inp_curr(u))) & ~1;
            op->index = UD_R_RAX + (SIB_I(inp_curr(u)) | (REX_X(u->pfx_rex) << 3));
            op->base  = UD_R_RAX + (SIB_B(inp_curr(u)) | (REX_B(u->pfx_rex) << 3));

            /* special conditions for base reference */
            if (op->index == UD_R_RSP) {
                op->index = UD_NONE;
                op->scale = UD_NONE;
            }

            if (op->base == UD_R_RBP || op->base == UD_R_R13) {
                if (mod == 0) 
                    op->base = UD_NONE;
                if (mod == 1)
                    op->offset = 8;
                else op->offset = 32;
            }
        }
    } 

    /* 32-Bit addressing mode */
    else if (u->adr_mode == 32) {

        /* get base */
        op->base = UD_R_EAX + rm;

        /* get offset type */
        if (mod == 1)
            op->offset = 8;
        else if (mod == 2)
            op->offset = 32;
        else if (mod == 0 && rm == 5) {
            op->base = UD_NONE;
            op->offset = 32;
        } else  op->offset = 0;

        /* Scale-Index-Base (SIB) */
        if ((rm & 7) == 4) {
            inp_next(u);

            op->scale = (1 << SIB_S(inp_curr(u))) & ~1;
            op->index = UD_R_EAX + (SIB_I(inp_curr(u)) | (REX_X(u->pfx_rex) << 3));
            op->base  = UD_R_EAX + (SIB_B(inp_curr(u)) | (REX_B(u->pfx_rex) << 3));

            if (op->index == UD_R_ESP) {
                op->index = UD_NONE;
                op->scale = UD_NONE;
            }

            /* special condition for base reference */
            if (op->base == UD_R_EBP) {
                if (mod == 0)
                    op->base = UD_NONE;
                if (mod == 1)
                    op->offset = 8;
                else op->offset = 32;
            }
        }
    } 

    /* 16bit addressing mode */
    else  {
        switch (rm) {
            case 0: op->base = UD_R_BX; op->index = UD_R_SI; break;
            case 1: op->base = UD_R_BX; op->index = UD_R_DI; break;
            case 2: op->base = UD_R_BP; op->index = UD_R_SI; break;
            case 3: op->base = UD_R_BP; op->index = UD_R_DI; break;
            case 4: op->base = UD_R_SI; break;
            case 5: op->base = UD_R_DI; break;
            case 6: op->base = UD_R_BP; break;
            case 7: op->base = UD_R_BX; break;
        }

        if (mod == 0 && rm == 6) {
            op->offset= 16;
            op->base = UD_NONE;
        }
        else if (mod == 1)
            op->offset = 8;
        else if (mod == 2) 
            op->offset = 16;
    }
  }  

  /* extract offset, if any */
  switch(op->offset) {
    case 8 : op->lval.ubyte  = inp_uint8(u);  break;
    case 16: op->lval.uword  = inp_uint16(u);  break;
    case 32: op->lval.udword = inp_uint32(u); break;
    default: break;
  }

  /* resolve register encoded in reg field */
  if (opreg) {
    opreg->type = UD_OP_REG;
    opreg->size = (uint8_t)resolve_operand_size(u, reg_size);
    if (reg_type == T_GPR) 
        opreg->base = decode_gpr(u, opreg->size, reg);
    else opreg->base = resolve_reg(u, reg_type, reg);
  }
}
예제 #8
0
파일: decode.c 프로젝트: AmesianX/hyperdbg
/* Searches the instruction tables for the right entry.
 */
static int search_itab( struct ud * u )
{
    struct ud_itab_entry * e = NULL;
    enum ud_itab_index table;
    uint8_t peek;
    uint8_t did_peek = 0;
    uint8_t curr; 
    uint8_t index;

    /* if in state of error, return */
    if ( u->error ) 
        return -1;

    /* get first byte of opcode. */
    inp_next(u); 
    if ( u->error ) 
        return -1;
    curr = inp_curr(u); 

    /* resolve xchg, nop, pause crazyness */
    if ( 0x90 == curr ) {
        if ( !( u->dis_mode == 64 && REX_B( u->pfx_rex ) ) ) {
            if ( u->pfx_rep ) {
                u->pfx_rep = 0;
                e = & ie_pause;
            } else {
                e = & ie_nop;
            }
            goto found_entry;
        }
    }

    /* get top-level table */
    if ( 0x0F == curr ) {
        table = ITAB__0F;
        curr  = inp_next(u);
        if ( u->error )
            return -1;

        /* 2byte opcodes can be modified by 0x66, F3, and F2 prefixes */
        if ( 0x66 == u->pfx_insn ) {
            if ( ud_itab_list[ ITAB__PFX_SSE66__0F ][ curr ].mnemonic != UD_Iinvalid ) {
                table = ITAB__PFX_SSE66__0F;
                u->pfx_opr = 0;
            }
        } else if ( 0xF2 == u->pfx_insn ) {
            if ( ud_itab_list[ ITAB__PFX_SSEF2__0F ][ curr ].mnemonic != UD_Iinvalid ) {
                table = ITAB__PFX_SSEF2__0F; 
                u->pfx_repne = 0;
            }
        } else if ( 0xF3 == u->pfx_insn ) {
            if ( ud_itab_list[ ITAB__PFX_SSEF3__0F ][ curr ].mnemonic != UD_Iinvalid ) {
                table = ITAB__PFX_SSEF3__0F;
                u->pfx_repe = 0;
                u->pfx_rep  = 0;
            }
        }
    /* pick an instruction from the 1byte table */
    } else {
        table = ITAB__1BYTE; 
    }

    index = curr;

search:

    e = & ud_itab_list[ table ][ index ];

    /* if mnemonic constant is a standard instruction constant
     * our search is over.
     */
    
    if ( e->mnemonic < UD_Id3vil ) {
        if ( e->mnemonic == UD_Iinvalid ) {
            if ( did_peek ) {
                inp_next( u ); if ( u->error ) return -1;
            }
            goto found_entry;
        }
        goto found_entry;
    }

    table = e->prefix;

    switch ( e->mnemonic )
    {
    case UD_Igrp_reg:
        peek     = inp_peek( u );
        did_peek = 1;
        index    = MODRM_REG( peek );
        break;

    case UD_Igrp_mod:
        peek     = inp_peek( u );
        did_peek = 1;
        index    = MODRM_MOD( peek );
        if ( index == 3 )
           index = ITAB__MOD_INDX__11;
        else 
           index = ITAB__MOD_INDX__NOT_11; 
        break;

    case UD_Igrp_rm:
        curr     = inp_next( u );
        did_peek = 0;
        if ( u->error )
            return -1;
        index    = MODRM_RM( curr );
        break;

    case UD_Igrp_x87:
        curr     = inp_next( u );
        did_peek = 0;
        if ( u->error )
            return -1;
        index    = curr - 0xC0;
        break;

    case UD_Igrp_osize:
        if ( u->opr_mode == 64 ) 
            index = ITAB__MODE_INDX__64;
        else if ( u->opr_mode == 32 ) 
            index = ITAB__MODE_INDX__32;
        else
            index = ITAB__MODE_INDX__16;
        break;
 
    case UD_Igrp_asize:
        if ( u->adr_mode == 64 ) 
            index = ITAB__MODE_INDX__64;
        else if ( u->adr_mode == 32 ) 
            index = ITAB__MODE_INDX__32;
        else
            index = ITAB__MODE_INDX__16;
        break;               

    case UD_Igrp_mode:
        if ( u->dis_mode == 64 ) 
            index = ITAB__MODE_INDX__64;
        else if ( u->dis_mode == 32 ) 
            index = ITAB__MODE_INDX__32;
        else
            index = ITAB__MODE_INDX__16;
        break;

    case UD_Igrp_vendor:
        if ( u->vendor == UD_VENDOR_INTEL ) 
            index = ITAB__VENDOR_INDX__INTEL; 
        else if ( u->vendor == UD_VENDOR_AMD )
            index = ITAB__VENDOR_INDX__AMD;
/*         else */
/*             assert( !"unrecognized vendor id" ); */
        break;

    case UD_Id3vil:
/*         assert( !"invalid instruction mnemonic constant Id3vil" ); */
        break;

    default:
/*         assert( !"invalid instruction mnemonic constant" ); */
        break;
    }

    goto search;

found_entry:

    u->itab_entry = e;
    u->mnemonic = u->itab_entry->mnemonic;

    return 0;
}