예제 #1
0
파일: gamma.c 프로젝트: Canar/mpfr
/* We use the reflection formula
  Gamma(1+t) Gamma(1-t) = - Pi t / sin(Pi (1 + t))
  in order to treat the case x <= 1,
  i.e. with x = 1-t, then Gamma(x) = -Pi*(1-x)/sin(Pi*(2-x))/GAMMA(2-x)
*/
int
mpfr_gamma (mpfr_ptr gamma, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
{
  mpfr_t xp, GammaTrial, tmp, tmp2;
  mpz_t fact;
  mpfr_prec_t realprec;
  int compared, is_integer;
  int inex = 0;  /* 0 means: result gamma not set yet */
  MPFR_GROUP_DECL (group);
  MPFR_SAVE_EXPO_DECL (expo);
  MPFR_ZIV_DECL (loop);

  MPFR_LOG_FUNC
    (("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (x), mpfr_log_prec, x, rnd_mode),
     ("gamma[%Pu]=%.*Rg inexact=%d",
      mpfr_get_prec (gamma), mpfr_log_prec, gamma, inex));

  /* Trivial cases */
  if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
    {
      if (MPFR_IS_NAN (x))
        {
          MPFR_SET_NAN (gamma);
          MPFR_RET_NAN;
        }
      else if (MPFR_IS_INF (x))
        {
          if (MPFR_IS_NEG (x))
            {
              MPFR_SET_NAN (gamma);
              MPFR_RET_NAN;
            }
          else
            {
              MPFR_SET_INF (gamma);
              MPFR_SET_POS (gamma);
              MPFR_RET (0);  /* exact */
            }
        }
      else /* x is zero */
        {
          MPFR_ASSERTD(MPFR_IS_ZERO(x));
          MPFR_SET_INF(gamma);
          MPFR_SET_SAME_SIGN(gamma, x);
          MPFR_SET_DIVBY0 ();
          MPFR_RET (0);  /* exact */
        }
    }

  /* Check for tiny arguments, where gamma(x) ~ 1/x - euler + ....
     We know from "Bound on Runs of Zeros and Ones for Algebraic Functions",
     Proceedings of Arith15, T. Lang and J.-M. Muller, 2001, that the maximal
     number of consecutive zeroes or ones after the round bit is n-1 for an
     input of n bits. But we need a more precise lower bound. Assume x has
     n bits, and 1/x is near a floating-point number y of n+1 bits. We can
     write x = X*2^e, y = Y/2^f with X, Y integers of n and n+1 bits.
     Thus X*Y^2^(e-f) is near from 1, i.e., X*Y is near from 2^(f-e).
     Two cases can happen:
     (i) either X*Y is exactly 2^(f-e), but this can happen only if X and Y
         are themselves powers of two, i.e., x is a power of two;
     (ii) or X*Y is at distance at least one from 2^(f-e), thus
          |xy-1| >= 2^(e-f), or |y-1/x| >= 2^(e-f)/x = 2^(-f)/X >= 2^(-f-n).
          Since ufp(y) = 2^(n-f) [ufp = unit in first place], this means
          that the distance |y-1/x| >= 2^(-2n) ufp(y).
          Now assuming |gamma(x)-1/x| <= 1, which is true for x <= 1,
          if 2^(-2n) ufp(y) >= 2, the error is at most 2^(-2n-1) ufp(y),
          and round(1/x) with precision >= 2n+2 gives the correct result.
          If x < 2^E, then y > 2^(-E), thus ufp(y) > 2^(-E-1).
          A sufficient condition is thus EXP(x) + 2 <= -2 MAX(PREC(x),PREC(Y)).
  */
  if (MPFR_GET_EXP (x) + 2
      <= -2 * (mpfr_exp_t) MAX(MPFR_PREC(x), MPFR_PREC(gamma)))
    {
      int sign = MPFR_SIGN (x); /* retrieve sign before possible override */
      int special;
      MPFR_BLOCK_DECL (flags);

      MPFR_SAVE_EXPO_MARK (expo);

      /* for overflow cases, see below; this needs to be done
         before x possibly gets overridden. */
      special =
        MPFR_GET_EXP (x) == 1 - MPFR_EMAX_MAX &&
        MPFR_IS_POS_SIGN (sign) &&
        MPFR_IS_LIKE_RNDD (rnd_mode, sign) &&
        mpfr_powerof2_raw (x);

      MPFR_BLOCK (flags, inex = mpfr_ui_div (gamma, 1, x, rnd_mode));
      if (inex == 0) /* x is a power of two */
        {
          /* return RND(1/x - euler) = RND(+/- 2^k - eps) with eps > 0 */
          if (rnd_mode == MPFR_RNDN || MPFR_IS_LIKE_RNDU (rnd_mode, sign))
            inex = 1;
          else
            {
              mpfr_nextbelow (gamma);
              inex = -1;
            }
        }
      else if (MPFR_UNLIKELY (MPFR_OVERFLOW (flags)))
        {
          /* Overflow in the division 1/x. This is a real overflow, except
             in RNDZ or RNDD when 1/x = 2^emax, i.e. x = 2^(-emax): due to
             the "- euler", the rounded value in unbounded exponent range
             is 0.111...11 * 2^emax (not an overflow). */
          if (!special)
            MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, flags);
        }
      MPFR_SAVE_EXPO_FREE (expo);
      /* Note: an overflow is possible with an infinite result;
         in this case, the overflow flag will automatically be
         restored by mpfr_check_range. */
      return mpfr_check_range (gamma, inex, rnd_mode);
    }

  is_integer = mpfr_integer_p (x);
  /* gamma(x) for x a negative integer gives NaN */
  if (is_integer && MPFR_IS_NEG(x))
    {
      MPFR_SET_NAN (gamma);
      MPFR_RET_NAN;
    }

  compared = mpfr_cmp_ui (x, 1);
  if (compared == 0)
    return mpfr_set_ui (gamma, 1, rnd_mode);

  /* if x is an integer that fits into an unsigned long, use mpfr_fac_ui
     if argument is not too large.
     If precision is p, fac_ui costs O(u*p), whereas gamma costs O(p*M(p)),
     so for u <= M(p), fac_ui should be faster.
     We approximate here M(p) by p*log(p)^2, which is not a bad guess.
     Warning: since the generic code does not handle exact cases,
     we want all cases where gamma(x) is exact to be treated here.
  */
  if (is_integer && mpfr_fits_ulong_p (x, MPFR_RNDN))
    {
      unsigned long int u;
      mpfr_prec_t p = MPFR_PREC(gamma);
      u = mpfr_get_ui (x, MPFR_RNDN);
      if (u < 44787929UL && bits_fac (u - 1) <= p + (rnd_mode == MPFR_RNDN))
        /* bits_fac: lower bound on the number of bits of m,
           where gamma(x) = (u-1)! = m*2^e with m odd. */
        return mpfr_fac_ui (gamma, u - 1, rnd_mode);
      /* if bits_fac(...) > p (resp. p+1 for rounding to nearest),
         then gamma(x) cannot be exact in precision p (resp. p+1).
         FIXME: remove the test u < 44787929UL after changing bits_fac
         to return a mpz_t or mpfr_t. */
    }

  MPFR_SAVE_EXPO_MARK (expo);

  /* check for overflow: according to (6.1.37) in Abramowitz & Stegun,
     gamma(x) >= exp(-x) * x^(x-1/2) * sqrt(2*Pi)
              >= 2 * (x/e)^x / x for x >= 1 */
  if (compared > 0)
    {
      mpfr_t yp;
      mpfr_exp_t expxp;
      MPFR_BLOCK_DECL (flags);

      /* quick test for the default exponent range */
      if (mpfr_get_emax () >= 1073741823UL && MPFR_GET_EXP(x) <= 25)
        {
          MPFR_SAVE_EXPO_FREE (expo);
          return mpfr_gamma_aux (gamma, x, rnd_mode);
        }

      /* 1/e rounded down to 53 bits */
#define EXPM1_STR "0.010111100010110101011000110110001011001110111100111"
      mpfr_init2 (xp, 53);
      mpfr_init2 (yp, 53);
      mpfr_set_str_binary (xp, EXPM1_STR);
      mpfr_mul (xp, x, xp, MPFR_RNDZ);
      mpfr_sub_ui (yp, x, 2, MPFR_RNDZ);
      mpfr_pow (xp, xp, yp, MPFR_RNDZ); /* (x/e)^(x-2) */
      mpfr_set_str_binary (yp, EXPM1_STR);
      mpfr_mul (xp, xp, yp, MPFR_RNDZ); /* x^(x-2) / e^(x-1) */
      mpfr_mul (xp, xp, yp, MPFR_RNDZ); /* x^(x-2) / e^x */
      mpfr_mul (xp, xp, x, MPFR_RNDZ); /* lower bound on x^(x-1) / e^x */
      MPFR_BLOCK (flags, mpfr_mul_2ui (xp, xp, 1, MPFR_RNDZ));
      expxp = MPFR_GET_EXP (xp);
      mpfr_clear (xp);
      mpfr_clear (yp);
      MPFR_SAVE_EXPO_FREE (expo);
      return MPFR_OVERFLOW (flags) || expxp > __gmpfr_emax ?
        mpfr_overflow (gamma, rnd_mode, 1) :
        mpfr_gamma_aux (gamma, x, rnd_mode);
    }

  /* now compared < 0 */

  /* check for underflow: for x < 1,
     gamma(x) = Pi*(x-1)/sin(Pi*(2-x))/gamma(2-x).
     Since gamma(2-x) >= 2 * ((2-x)/e)^(2-x) / (2-x), we have
     |gamma(x)| <= Pi*(1-x)*(2-x)/2/((2-x)/e)^(2-x) / |sin(Pi*(2-x))|
                <= 12 * ((2-x)/e)^x / |sin(Pi*(2-x))|.
     To avoid an underflow in ((2-x)/e)^x, we compute the logarithm.
  */
  if (MPFR_IS_NEG(x))
    {
      int underflow = 0, sgn, ck;
      mpfr_prec_t w;

      mpfr_init2 (xp, 53);
      mpfr_init2 (tmp, 53);
      mpfr_init2 (tmp2, 53);
      /* we want an upper bound for x * [log(2-x)-1].
         since x < 0, we need a lower bound on log(2-x) */
      mpfr_ui_sub (xp, 2, x, MPFR_RNDD);
      mpfr_log (xp, xp, MPFR_RNDD);
      mpfr_sub_ui (xp, xp, 1, MPFR_RNDD);
      mpfr_mul (xp, xp, x, MPFR_RNDU);

      /* we need an upper bound on 1/|sin(Pi*(2-x))|,
         thus a lower bound on |sin(Pi*(2-x))|.
         If 2-x is exact, then the error of Pi*(2-x) is (1+u)^2 with u = 2^(-p)
         thus the error on sin(Pi*(2-x)) is less than 1/2ulp + 3Pi(2-x)u,
         assuming u <= 1, thus <= u + 3Pi(2-x)u */

      w = mpfr_gamma_2_minus_x_exact (x); /* 2-x is exact for prec >= w */
      w += 17; /* to get tmp2 small enough */
      mpfr_set_prec (tmp, w);
      mpfr_set_prec (tmp2, w);
      MPFR_DBGRES (ck = mpfr_ui_sub (tmp, 2, x, MPFR_RNDN));
      MPFR_ASSERTD (ck == 0); /* tmp = 2-x exactly */
      mpfr_const_pi (tmp2, MPFR_RNDN);
      mpfr_mul (tmp2, tmp2, tmp, MPFR_RNDN); /* Pi*(2-x) */
      mpfr_sin (tmp, tmp2, MPFR_RNDN); /* sin(Pi*(2-x)) */
      sgn = mpfr_sgn (tmp);
      mpfr_abs (tmp, tmp, MPFR_RNDN);
      mpfr_mul_ui (tmp2, tmp2, 3, MPFR_RNDU); /* 3Pi(2-x) */
      mpfr_add_ui (tmp2, tmp2, 1, MPFR_RNDU); /* 3Pi(2-x)+1 */
      mpfr_div_2ui (tmp2, tmp2, mpfr_get_prec (tmp), MPFR_RNDU);
      /* if tmp2<|tmp|, we get a lower bound */
      if (mpfr_cmp (tmp2, tmp) < 0)
        {
          mpfr_sub (tmp, tmp, tmp2, MPFR_RNDZ); /* low bnd on |sin(Pi*(2-x))| */
          mpfr_ui_div (tmp, 12, tmp, MPFR_RNDU); /* upper bound */
          mpfr_log2 (tmp, tmp, MPFR_RNDU);
          mpfr_add (xp, tmp, xp, MPFR_RNDU);
          /* The assert below checks that expo.saved_emin - 2 always
             fits in a long. FIXME if we want to allow mpfr_exp_t to
             be a long long, for instance. */
          MPFR_ASSERTN (MPFR_EMIN_MIN - 2 >= LONG_MIN);
          underflow = mpfr_cmp_si (xp, expo.saved_emin - 2) <= 0;
        }

      mpfr_clear (xp);
      mpfr_clear (tmp);
      mpfr_clear (tmp2);
      if (underflow) /* the sign is the opposite of that of sin(Pi*(2-x)) */
        {
          MPFR_SAVE_EXPO_FREE (expo);
          return mpfr_underflow (gamma, (rnd_mode == MPFR_RNDN) ? MPFR_RNDZ : rnd_mode, -sgn);
        }
    }

  realprec = MPFR_PREC (gamma);
  /* we want both 1-x and 2-x to be exact */
  {
    mpfr_prec_t w;
    w = mpfr_gamma_1_minus_x_exact (x);
    if (realprec < w)
      realprec = w;
    w = mpfr_gamma_2_minus_x_exact (x);
    if (realprec < w)
      realprec = w;
  }
  realprec = realprec + MPFR_INT_CEIL_LOG2 (realprec) + 20;
  MPFR_ASSERTD(realprec >= 5);

  MPFR_GROUP_INIT_4 (group, realprec + MPFR_INT_CEIL_LOG2 (realprec) + 20,
                     xp, tmp, tmp2, GammaTrial);
  mpz_init (fact);
  MPFR_ZIV_INIT (loop, realprec);
  for (;;)
    {
      mpfr_exp_t err_g;
      int ck;
      MPFR_GROUP_REPREC_4 (group, realprec, xp, tmp, tmp2, GammaTrial);

      /* reflection formula: gamma(x) = Pi*(x-1)/sin(Pi*(2-x))/gamma(2-x) */

      ck = mpfr_ui_sub (xp, 2, x, MPFR_RNDN); /* 2-x, exact */
      MPFR_ASSERTD(ck == 0);  (void) ck; /* use ck to avoid a warning */
      mpfr_gamma (tmp, xp, MPFR_RNDN);   /* gamma(2-x), error (1+u) */
      mpfr_const_pi (tmp2, MPFR_RNDN);   /* Pi, error (1+u) */
      mpfr_mul (GammaTrial, tmp2, xp, MPFR_RNDN); /* Pi*(2-x), error (1+u)^2 */
      err_g = MPFR_GET_EXP(GammaTrial);
      mpfr_sin (GammaTrial, GammaTrial, MPFR_RNDN); /* sin(Pi*(2-x)) */
      /* If tmp is +Inf, we compute exp(lngamma(x)). */
      if (mpfr_inf_p (tmp))
        {
          inex = mpfr_explgamma (gamma, x, &expo, tmp, tmp2, rnd_mode);
          if (inex)
            goto end;
          else
            goto ziv_next;
        }
      err_g = err_g + 1 - MPFR_GET_EXP(GammaTrial);
      /* let g0 the true value of Pi*(2-x), g the computed value.
         We have g = g0 + h with |h| <= |(1+u^2)-1|*g.
         Thus sin(g) = sin(g0) + h' with |h'| <= |(1+u^2)-1|*g.
         The relative error is thus bounded by |(1+u^2)-1|*g/sin(g)
         <= |(1+u^2)-1|*2^err_g. <= 2.25*u*2^err_g for |u|<=1/4.
         With the rounding error, this gives (0.5 + 2.25*2^err_g)*u. */
      ck = mpfr_sub_ui (xp, x, 1, MPFR_RNDN); /* x-1, exact */
      MPFR_ASSERTD(ck == 0);  (void) ck; /* use ck to avoid a warning */
      mpfr_mul (xp, tmp2, xp, MPFR_RNDN); /* Pi*(x-1), error (1+u)^2 */
      mpfr_mul (GammaTrial, GammaTrial, tmp, MPFR_RNDN);
      /* [1 + (0.5 + 2.25*2^err_g)*u]*(1+u)^2 = 1 + (2.5 + 2.25*2^err_g)*u
         + (0.5 + 2.25*2^err_g)*u*(2u+u^2) + u^2.
         For err_g <= realprec-2, we have (0.5 + 2.25*2^err_g)*u <=
         0.5*u + 2.25/4 <= 0.6875 and u^2 <= u/4, thus
         (0.5 + 2.25*2^err_g)*u*(2u+u^2) + u^2 <= 0.6875*(2u+u/4) + u/4
         <= 1.8*u, thus the rel. error is bounded by (4.5 + 2.25*2^err_g)*u. */
      mpfr_div (GammaTrial, xp, GammaTrial, MPFR_RNDN);
      /* the error is of the form (1+u)^3/[1 + (4.5 + 2.25*2^err_g)*u].
         For realprec >= 5 and err_g <= realprec-2, [(4.5 + 2.25*2^err_g)*u]^2
         <= 0.71, and for |y|<=0.71, 1/(1-y) can be written 1+a*y with a<=4.
         (1+u)^3 * (1+4*(4.5 + 2.25*2^err_g)*u)
         = 1 + (21 + 9*2^err_g)*u + (57+27*2^err_g)*u^2 + (55+27*2^err_g)*u^3
             + (18+9*2^err_g)*u^4
         <= 1 + (21 + 9*2^err_g)*u + (57+27*2^err_g)*u^2 + (56+28*2^err_g)*u^3
         <= 1 + (21 + 9*2^err_g)*u + (59+28*2^err_g)*u^2
         <= 1 + (23 + 10*2^err_g)*u.
         The final error is thus bounded by (23 + 10*2^err_g) ulps,
         which is <= 2^6 for err_g<=2, and <= 2^(err_g+4) for err_g >= 2. */
      err_g = (err_g <= 2) ? 6 : err_g + 4;

      if (MPFR_LIKELY (MPFR_CAN_ROUND (GammaTrial, realprec - err_g,
                                       MPFR_PREC(gamma), rnd_mode)))
        break;

    ziv_next:
      MPFR_ZIV_NEXT (loop, realprec);
    }

 end:
  MPFR_ZIV_FREE (loop);

  if (inex == 0)
    inex = mpfr_set (gamma, GammaTrial, rnd_mode);
  MPFR_GROUP_CLEAR (group);
  mpz_clear (fact);

  MPFR_SAVE_EXPO_FREE (expo);
  return mpfr_check_range (gamma, inex, rnd_mode);
}
예제 #2
0
파일: ui_div.c 프로젝트: BrianGladman/mpfr
int
mpfr_ui_div (mpfr_ptr y, unsigned long int u, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
{
  MPFR_LOG_FUNC
    (("u=%lu x[%Pu]=%.*Rg rnd=%d",
      u, mpfr_get_prec(x), mpfr_log_prec, x, rnd_mode),
     ("y[%Pu]=%.*Rg", mpfr_get_prec(y), mpfr_log_prec, y));

  if (MPFR_UNLIKELY(MPFR_IS_SINGULAR(x)))
    {
      if (MPFR_IS_NAN(x))
        {
          MPFR_SET_NAN(y);
          MPFR_RET_NAN;
        }
      else if (MPFR_IS_INF(x)) /* u/Inf = 0 */
        {
          MPFR_SET_ZERO(y);
          MPFR_SET_SAME_SIGN(y,x);
          MPFR_RET(0);
        }
      else /* u / 0 */
        {
          MPFR_ASSERTD(MPFR_IS_ZERO(x));
          if (u)
            {
              /* u > 0, so y = sign(x) * Inf */
              MPFR_SET_SAME_SIGN(y, x);
              MPFR_SET_INF(y);
              MPFR_SET_DIVBY0 ();
              MPFR_RET(0);
            }
          else
            {
              /* 0 / 0 */
              MPFR_SET_NAN(y);
              MPFR_RET_NAN;
            }
        }
    }
  else if (MPFR_LIKELY(u != 0))
    {
      mpfr_t uu;
      mp_limb_t up[1];
      int cnt;
      int inex;

      MPFR_SAVE_EXPO_DECL (expo);

      MPFR_TMP_INIT1(up, uu, GMP_NUMB_BITS);
      MPFR_ASSERTN(u == (mp_limb_t) u);
      count_leading_zeros(cnt, (mp_limb_t) u);
      up[0] = (mp_limb_t) u << cnt;

      /* Optimization note: Exponent save/restore operations may be
         removed if mpfr_div works even when uu is out-of-range. */
      MPFR_SAVE_EXPO_MARK (expo);
      MPFR_SET_EXP (uu, GMP_NUMB_BITS - cnt);
      inex = mpfr_div (y, uu, x, rnd_mode);
      MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, __gmpfr_flags);
      MPFR_SAVE_EXPO_FREE (expo);
      return mpfr_check_range (y, inex, rnd_mode);
    }
  else /* u = 0, and x != 0 */
    {
      MPFR_SET_ZERO(y);         /* if u=0, then set y to 0 */
      MPFR_SET_SAME_SIGN(y, x); /* u considered as +0: sign(+0/x) = sign(x) */
      MPFR_RET(0);
    }
}
예제 #3
0
파일: log10.c 프로젝트: MiKTeX/miktex
int
mpfr_log10 (mpfr_ptr r, mpfr_srcptr a, mpfr_rnd_t rnd_mode)
{
  int inexact;
  MPFR_SAVE_EXPO_DECL (expo);

  MPFR_LOG_FUNC
    (("a[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (a), mpfr_log_prec, a, rnd_mode),
     ("r[%Pu]=%.*Rg inexact=%d",
      mpfr_get_prec (r), mpfr_log_prec, r, inexact));

  /* If a is NaN, the result is NaN */
  if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (a)))
    {
      if (MPFR_IS_NAN (a))
        {
          MPFR_SET_NAN (r);
          MPFR_RET_NAN;
        }
      /* check for infinity before zero */
      else if (MPFR_IS_INF (a))
        {
          if (MPFR_IS_NEG (a))
            /* log10(-Inf) = NaN */
            {
              MPFR_SET_NAN (r);
              MPFR_RET_NAN;
            }
          else /* log10(+Inf) = +Inf */
            {
              MPFR_SET_INF (r);
              MPFR_SET_POS (r);
              MPFR_RET (0); /* exact */
            }
        }
      else /* a = 0 */
        {
          MPFR_ASSERTD (MPFR_IS_ZERO (a));
          MPFR_SET_INF (r);
          MPFR_SET_NEG (r);
          MPFR_SET_DIVBY0 ();
          MPFR_RET (0); /* log10(0) is an exact -infinity */
        }
    }

  /* If a is negative, the result is NaN */
  if (MPFR_UNLIKELY (MPFR_IS_NEG (a)))
    {
      MPFR_SET_NAN (r);
      MPFR_RET_NAN;
    }

  /* If a is 1, the result is 0 */
  if (mpfr_cmp_ui (a, 1) == 0)
    {
      MPFR_SET_ZERO (r);
      MPFR_SET_POS (r);
      MPFR_RET (0); /* result is exact */
    }

  MPFR_SAVE_EXPO_MARK (expo);

  /* General case */
  {
    /* Declaration of the intermediary variable */
    mpfr_t t, tt;
    MPFR_ZIV_DECL (loop);
    /* Declaration of the size variable */
    mpfr_prec_t Ny = MPFR_PREC(r);   /* Precision of output variable */
    mpfr_prec_t Nt;        /* Precision of the intermediary variable */
    mpfr_exp_t  err;                           /* Precision of error */

    /* compute the precision of intermediary variable */
    /* the optimal number of bits : see algorithms.tex */
    Nt = Ny + 4 + MPFR_INT_CEIL_LOG2 (Ny);

    /* initialize of intermediary variables */
    mpfr_init2 (t, Nt);
    mpfr_init2 (tt, Nt);

    /* First computation of log10 */
    MPFR_ZIV_INIT (loop, Nt);
    for (;;)
      {
        /* compute log10 */
        mpfr_set_ui (t, 10, MPFR_RNDN);   /* 10 */
        mpfr_log (t, t, MPFR_RNDD);       /* log(10) */
        mpfr_log (tt, a, MPFR_RNDN);      /* log(a) */
        mpfr_div (t, tt, t, MPFR_RNDN);   /* log(a)/log(10) */

        /* estimation of the error */
        err = Nt - 4;
        if (MPFR_LIKELY (MPFR_CAN_ROUND (t, err, Ny, rnd_mode)))
          break;

        /* log10(10^n) is exact:
           FIXME: Can we have 10^n exactly representable as a mpfr_t
           but n can't fit an unsigned long? */
        if (MPFR_IS_POS (t)
            && mpfr_integer_p (t) && mpfr_fits_ulong_p (t, MPFR_RNDN)
            && !mpfr_ui_pow_ui (tt, 10, mpfr_get_ui (t, MPFR_RNDN), MPFR_RNDN)
            && mpfr_cmp (a, tt) == 0)
          break;

        /* actualization of the precision */
        MPFR_ZIV_NEXT (loop, Nt);
        mpfr_set_prec (t, Nt);
        mpfr_set_prec (tt, Nt);
      }
    MPFR_ZIV_FREE (loop);

    inexact = mpfr_set (r, t, rnd_mode);

    mpfr_clear (t);
    mpfr_clear (tt);
  }

  MPFR_SAVE_EXPO_FREE (expo);
  return mpfr_check_range (r, inexact, rnd_mode);
}
예제 #4
0
파일: log2.c 프로젝트: MiKTeX/miktex
int
mpfr_log2 (mpfr_ptr r, mpfr_srcptr a, mpfr_rnd_t rnd_mode)
{
  int inexact;
  MPFR_SAVE_EXPO_DECL (expo);

  MPFR_LOG_FUNC
    (("a[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (a), mpfr_log_prec, a, rnd_mode),
     ("r[%Pu]=%.*Rg inexact=%d", mpfr_get_prec (r), mpfr_log_prec, r,
      inexact));

  if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (a)))
    {
      /* If a is NaN, the result is NaN */
      if (MPFR_IS_NAN (a))
        {
          MPFR_SET_NAN (r);
          MPFR_RET_NAN;
        }
      /* check for infinity before zero */
      else if (MPFR_IS_INF (a))
        {
          if (MPFR_IS_NEG (a))
            /* log(-Inf) = NaN */
            {
              MPFR_SET_NAN (r);
              MPFR_RET_NAN;
            }
          else /* log(+Inf) = +Inf */
            {
              MPFR_SET_INF (r);
              MPFR_SET_POS (r);
              MPFR_RET (0);
            }
        }
      else /* a is zero */
        {
          MPFR_ASSERTD (MPFR_IS_ZERO (a));
          MPFR_SET_INF (r);
          MPFR_SET_NEG (r);
          MPFR_SET_DIVBY0 ();
          MPFR_RET (0); /* log2(0) is an exact -infinity */
        }
    }

  /* If a is negative, the result is NaN */
  if (MPFR_UNLIKELY (MPFR_IS_NEG (a)))
    {
      MPFR_SET_NAN (r);
      MPFR_RET_NAN;
    }

  /* If a is 1, the result is 0 */
  if (MPFR_UNLIKELY (mpfr_cmp_ui (a, 1) == 0))
    {
      MPFR_SET_ZERO (r);
      MPFR_SET_POS (r);
      MPFR_RET (0); /* only "normal" case where the result is exact */
    }

  /* If a is 2^N, log2(a) is exact*/
  if (MPFR_UNLIKELY (mpfr_cmp_ui_2exp (a, 1, MPFR_GET_EXP (a) - 1) == 0))
    return mpfr_set_si(r, MPFR_GET_EXP (a) - 1, rnd_mode);

  MPFR_SAVE_EXPO_MARK (expo);

  /* General case */
  {
    /* Declaration of the intermediary variable */
    mpfr_t t, tt;
    /* Declaration of the size variable */
    mpfr_prec_t Ny = MPFR_PREC(r);              /* target precision */
    mpfr_prec_t Nt;                             /* working precision */
    mpfr_exp_t err;                             /* error */
    MPFR_ZIV_DECL (loop);

    /* compute the precision of intermediary variable */
    /* the optimal number of bits : see algorithms.tex */
    Nt = Ny + 3 + MPFR_INT_CEIL_LOG2 (Ny);

    /* initialize of intermediary       variable */
    mpfr_init2 (t, Nt);
    mpfr_init2 (tt, Nt);

    /* First computation of log2 */
    MPFR_ZIV_INIT (loop, Nt);
    for (;;)
      {
        /* compute log2 */
        mpfr_const_log2(t,MPFR_RNDD); /* log(2) */
        mpfr_log(tt,a,MPFR_RNDN);     /* log(a) */
        mpfr_div(t,tt,t,MPFR_RNDN); /* log(a)/log(2) */

        /* estimation of the error */
        err = Nt-3;
        if (MPFR_LIKELY (MPFR_CAN_ROUND (t, err, Ny, rnd_mode)))
          break;

        /* actualization of the precision */
        MPFR_ZIV_NEXT (loop, Nt);
        mpfr_set_prec (t, Nt);
        mpfr_set_prec (tt, Nt);
      }
    MPFR_ZIV_FREE (loop);

    inexact = mpfr_set (r, t, rnd_mode);

    mpfr_clear (t);
    mpfr_clear (tt);
  }

  MPFR_SAVE_EXPO_FREE (expo);
  return mpfr_check_range (r, inexact, rnd_mode);
}
예제 #5
0
파일: pow.c 프로젝트: MiKTeX/miktex
/* The computation of z = pow(x,y) is done by
   z = exp(y * log(x)) = x^y
   For the special cases, see Section F.9.4.4 of the C standard:
     _ pow(±0, y) = ±inf for y an odd integer < 0.
     _ pow(±0, y) = +inf for y < 0 and not an odd integer.
     _ pow(±0, y) = ±0 for y an odd integer > 0.
     _ pow(±0, y) = +0 for y > 0 and not an odd integer.
     _ pow(-1, ±inf) = 1.
     _ pow(+1, y) = 1 for any y, even a NaN.
     _ pow(x, ±0) = 1 for any x, even a NaN.
     _ pow(x, y) = NaN for finite x < 0 and finite non-integer y.
     _ pow(x, -inf) = +inf for |x| < 1.
     _ pow(x, -inf) = +0 for |x| > 1.
     _ pow(x, +inf) = +0 for |x| < 1.
     _ pow(x, +inf) = +inf for |x| > 1.
     _ pow(-inf, y) = -0 for y an odd integer < 0.
     _ pow(-inf, y) = +0 for y < 0 and not an odd integer.
     _ pow(-inf, y) = -inf for y an odd integer > 0.
     _ pow(-inf, y) = +inf for y > 0 and not an odd integer.
     _ pow(+inf, y) = +0 for y < 0.
     _ pow(+inf, y) = +inf for y > 0. */
int
mpfr_pow (mpfr_ptr z, mpfr_srcptr x, mpfr_srcptr y, mpfr_rnd_t rnd_mode)
{
  int inexact;
  int cmp_x_1;
  int y_is_integer;
  MPFR_SAVE_EXPO_DECL (expo);

  MPFR_LOG_FUNC
    (("x[%Pu]=%.*Rg y[%Pu]=%.*Rg rnd=%d",
      mpfr_get_prec (x), mpfr_log_prec, x,
      mpfr_get_prec (y), mpfr_log_prec, y, rnd_mode),
     ("z[%Pu]=%.*Rg inexact=%d",
      mpfr_get_prec (z), mpfr_log_prec, z, inexact));

  if (MPFR_ARE_SINGULAR (x, y))
    {
      /* pow(x, 0) returns 1 for any x, even a NaN. */
      if (MPFR_UNLIKELY (MPFR_IS_ZERO (y)))
        return mpfr_set_ui (z, 1, rnd_mode);
      else if (MPFR_IS_NAN (x))
        {
          MPFR_SET_NAN (z);
          MPFR_RET_NAN;
        }
      else if (MPFR_IS_NAN (y))
        {
          /* pow(+1, NaN) returns 1. */
          if (mpfr_cmp_ui (x, 1) == 0)
            return mpfr_set_ui (z, 1, rnd_mode);
          MPFR_SET_NAN (z);
          MPFR_RET_NAN;
        }
      else if (MPFR_IS_INF (y))
        {
          if (MPFR_IS_INF (x))
            {
              if (MPFR_IS_POS (y))
                MPFR_SET_INF (z);
              else
                MPFR_SET_ZERO (z);
              MPFR_SET_POS (z);
              MPFR_RET (0);
            }
          else
            {
              int cmp;
              cmp = mpfr_cmpabs (x, __gmpfr_one) * MPFR_INT_SIGN (y);
              MPFR_SET_POS (z);
              if (cmp > 0)
                {
                  /* Return +inf. */
                  MPFR_SET_INF (z);
                  MPFR_RET (0);
                }
              else if (cmp < 0)
                {
                  /* Return +0. */
                  MPFR_SET_ZERO (z);
                  MPFR_RET (0);
                }
              else
                {
                  /* Return 1. */
                  return mpfr_set_ui (z, 1, rnd_mode);
                }
            }
        }
      else if (MPFR_IS_INF (x))
        {
          int negative;
          /* Determine the sign now, in case y and z are the same object */
          negative = MPFR_IS_NEG (x) && mpfr_odd_p (y);
          if (MPFR_IS_POS (y))
            MPFR_SET_INF (z);
          else
            MPFR_SET_ZERO (z);
          if (negative)
            MPFR_SET_NEG (z);
          else
            MPFR_SET_POS (z);
          MPFR_RET (0);
        }
      else
        {
          int negative;
          MPFR_ASSERTD (MPFR_IS_ZERO (x));
          /* Determine the sign now, in case y and z are the same object */
          negative = MPFR_IS_NEG(x) && mpfr_odd_p (y);
          if (MPFR_IS_NEG (y))
            {
              MPFR_ASSERTD (! MPFR_IS_INF (y));
              MPFR_SET_INF (z);
              MPFR_SET_DIVBY0 ();
            }
          else
            MPFR_SET_ZERO (z);
          if (negative)
            MPFR_SET_NEG (z);
          else
            MPFR_SET_POS (z);
          MPFR_RET (0);
        }
    }

  /* x^y for x < 0 and y not an integer is not defined */
  y_is_integer = mpfr_integer_p (y);
  if (MPFR_IS_NEG (x) && ! y_is_integer)
    {
      MPFR_SET_NAN (z);
      MPFR_RET_NAN;
    }

  /* now the result cannot be NaN:
     (1) either x > 0
     (2) or x < 0 and y is an integer */

  cmp_x_1 = mpfr_cmpabs (x, __gmpfr_one);
  if (cmp_x_1 == 0)
    return mpfr_set_si (z, MPFR_IS_NEG (x) && mpfr_odd_p (y) ? -1 : 1, rnd_mode);

  /* now we have:
     (1) either x > 0
     (2) or x < 0 and y is an integer
     and in addition |x| <> 1.
  */

  /* detect overflow: an overflow is possible if
     (a) |x| > 1 and y > 0
     (b) |x| < 1 and y < 0.
     FIXME: this assumes 1 is always representable.

     FIXME2: maybe we can test overflow and underflow simultaneously.
     The idea is the following: first compute an approximation to
     y * log2|x|, using rounding to nearest. If |x| is not too near from 1,
     this approximation should be accurate enough, and in most cases enable
     one to prove that there is no underflow nor overflow.
     Otherwise, it should enable one to check only underflow or overflow,
     instead of both cases as in the present case.
  */

  /* fast check for cases where no overflow nor underflow is possible:
     if |y| <= 2^15, and -32767 < EXP(x) <= 32767, then
     |y*log2(x)| <= 2^15*32767 < 1073741823, thus for the default
     emax=1073741823 and emin=-emax there can be no overflow nor underflow */
  if (__gmpfr_emax >= 1073741823 && __gmpfr_emin <= -1073741823 &&
      MPFR_EXP(y) <= 15 && -32767 < MPFR_EXP(x) && MPFR_EXP(x) <= 32767)
    goto no_overflow_nor_underflow;

  if (cmp_x_1 * MPFR_SIGN (y) > 0)
    {
      mpfr_t t;
      int negative, overflow;

      MPFR_SAVE_EXPO_MARK (expo);
      mpfr_init2 (t, 53);
      /* we want a lower bound on y*log2|x|:
         (i) if x > 0, it suffices to round log2(x) toward zero, and
             to round y*o(log2(x)) toward zero too;
         (ii) if x < 0, we first compute t = o(-x), with rounding toward 1,
              and then follow as in case (1). */
      if (MPFR_IS_POS (x))
        mpfr_log2 (t, x, MPFR_RNDZ);
      else
        {
          mpfr_neg (t, x, (cmp_x_1 > 0) ? MPFR_RNDZ : MPFR_RNDU);
          mpfr_log2 (t, t, MPFR_RNDZ);
        }
      mpfr_mul (t, t, y, MPFR_RNDZ);
      overflow = mpfr_cmp_si (t, __gmpfr_emax) > 0;
      mpfr_clear (t);
      MPFR_SAVE_EXPO_FREE (expo);
      if (overflow)
        {
          MPFR_LOG_MSG (("early overflow detection\n", 0));
          negative = MPFR_IS_NEG (x) && mpfr_odd_p (y);
          return mpfr_overflow (z, rnd_mode, negative ? -1 : 1);
        }
    }

  /* Basic underflow checking. One has:
   *   - if y > 0, |x^y| < 2^(EXP(x) * y);
   *   - if y < 0, |x^y| <= 2^((EXP(x) - 1) * y);
   * so that one can compute a value ebound such that |x^y| < 2^ebound.
   * If we have ebound <= emin - 2 (emin - 1 in directed rounding modes),
   * then there is an underflow and we can decide the return value.
   */
  if (MPFR_IS_NEG (y) ? (MPFR_GET_EXP (x) > 1) : (MPFR_GET_EXP (x) < 0))
    {
      mp_limb_t tmp_limb[MPFR_EXP_LIMB_SIZE];
      mpfr_t tmp;
      mpfr_eexp_t ebound;
      int inex2;

      /* We must restore the flags. */
      MPFR_SAVE_EXPO_MARK (expo);
      MPFR_TMP_INIT1 (tmp_limb, tmp, sizeof (mpfr_exp_t) * CHAR_BIT);
      inex2 = mpfr_set_exp_t (tmp, MPFR_GET_EXP (x), MPFR_RNDN);
      MPFR_ASSERTN (inex2 == 0);
      if (MPFR_IS_NEG (y))
        {
          inex2 = mpfr_sub_ui (tmp, tmp, 1, MPFR_RNDN);
          MPFR_ASSERTN (inex2 == 0);
        }
      mpfr_mul (tmp, tmp, y, MPFR_RNDU);
      if (MPFR_IS_NEG (y))
        mpfr_nextabove (tmp);
      /* tmp doesn't necessarily fit in ebound, but that doesn't matter
         since we get the minimum value in such a case. */
      ebound = mpfr_get_exp_t (tmp, MPFR_RNDU);
      MPFR_SAVE_EXPO_FREE (expo);
      if (MPFR_UNLIKELY (ebound <=
                         __gmpfr_emin - (rnd_mode == MPFR_RNDN ? 2 : 1)))
        {
          /* warning: mpfr_underflow rounds away from 0 for MPFR_RNDN */
          MPFR_LOG_MSG (("early underflow detection\n", 0));
          return mpfr_underflow (z,
                                 rnd_mode == MPFR_RNDN ? MPFR_RNDZ : rnd_mode,
                                 MPFR_IS_NEG (x) && mpfr_odd_p (y) ? -1 : 1);
        }
    }

 no_overflow_nor_underflow:

  /* If y is an integer, we can use mpfr_pow_z (based on multiplications),
     but if y is very large (I'm not sure about the best threshold -- VL),
     we shouldn't use it, as it can be very slow and take a lot of memory
     (and even crash or make other programs crash, as several hundred of
     MBs may be necessary). Note that in such a case, either x = +/-2^b
     (this case is handled below) or x^y cannot be represented exactly in
     any precision supported by MPFR (the general case uses this property).
  */
  if (y_is_integer && (MPFR_GET_EXP (y) <= 256))
    {
      mpz_t zi;

      MPFR_LOG_MSG (("special code for y not too large integer\n", 0));
      mpz_init (zi);
      mpfr_get_z (zi, y, MPFR_RNDN);
      inexact = mpfr_pow_z (z, x, zi, rnd_mode);
      mpz_clear (zi);
      return inexact;
    }

  /* Special case (+/-2^b)^Y which could be exact. If x is negative, then
     necessarily y is a large integer. */
  if (mpfr_powerof2_raw (x))
  {
    mpfr_exp_t b = MPFR_GET_EXP (x) - 1;
    mpfr_t tmp;
    int sgnx = MPFR_SIGN (x);

    MPFR_ASSERTN (b >= LONG_MIN && b <= LONG_MAX);  /* FIXME... */

    MPFR_LOG_MSG (("special case (+/-2^b)^Y\n", 0));
    /* now x = +/-2^b, so x^y = (+/-1)^y*2^(b*y) is exact whenever b*y is
       an integer */
    MPFR_SAVE_EXPO_MARK (expo);
    mpfr_init2 (tmp, MPFR_PREC (y) + sizeof (long) * CHAR_BIT);
    inexact = mpfr_mul_si (tmp, y, b, MPFR_RNDN); /* exact */
    MPFR_ASSERTN (inexact == 0);
    /* Note: as the exponent range has been extended, an overflow is not
       possible (due to basic overflow and underflow checking above, as
       the result is ~ 2^tmp), and an underflow is not possible either
       because b is an integer (thus either 0 or >= 1). */
    MPFR_CLEAR_FLAGS ();
    inexact = mpfr_exp2 (z, tmp, rnd_mode);
    mpfr_clear (tmp);
    if (sgnx < 0 && mpfr_odd_p (y))
      {
        mpfr_neg (z, z, rnd_mode);
        inexact = -inexact;
      }
    /* Without the following, the overflows3 test in tpow.c fails. */
    MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, __gmpfr_flags);
    MPFR_SAVE_EXPO_FREE (expo);
    return mpfr_check_range (z, inexact, rnd_mode);
  }

  MPFR_SAVE_EXPO_MARK (expo);

  /* Case where y * log(x) is very small. Warning: x can be negative, in
     that case y is a large integer. */
  {
    mpfr_exp_t err, expx, logt;

    /* We need an upper bound on the exponent of y * log(x). */
    if (MPFR_IS_POS(x))
      expx = cmp_x_1 > 0 ? MPFR_EXP(x) : 1 - MPFR_EXP(x);
    else
      expx = mpfr_cmp_si (x, -1) > 0 ? 1 - MPFR_EXP(x) : MPFR_EXP(x);
    MPFR_ASSERTD(expx >= 0);
    /* now |log(x)| < expx */
    logt = MPFR_INT_CEIL_LOG2 (expx);
    /* now expx <= 2^logt */
    err = MPFR_GET_EXP (y) + logt;
    MPFR_CLEAR_FLAGS ();
    MPFR_SMALL_INPUT_AFTER_SAVE_EXPO (z, __gmpfr_one, - err, 0,
                                      (MPFR_IS_POS (y)) ^ (cmp_x_1 < 0),
                                      rnd_mode, expo, {});
  }

  /* General case */
  inexact = mpfr_pow_general (z, x, y, rnd_mode, y_is_integer, &expo);

  MPFR_SAVE_EXPO_FREE (expo);
  return mpfr_check_range (z, inexact, rnd_mode);
}
예제 #6
0
파일: zeta.c 프로젝트: MiKTeX/miktex
int
mpfr_zeta (mpfr_t z, mpfr_srcptr s, mpfr_rnd_t rnd_mode)
{
  mpfr_t z_pre, s1, y, p;
  long add;
  mpfr_prec_t precz, prec1, precs, precs1;
  int inex;
  MPFR_GROUP_DECL (group);
  MPFR_ZIV_DECL (loop);
  MPFR_SAVE_EXPO_DECL (expo);

  MPFR_LOG_FUNC (
    ("s[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (s), mpfr_log_prec, s, rnd_mode),
    ("z[%Pu]=%.*Rg inexact=%d", mpfr_get_prec (z), mpfr_log_prec, z, inex));

  /* Zero, Nan or Inf ? */
  if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (s)))
    {
      if (MPFR_IS_NAN (s))
        {
          MPFR_SET_NAN (z);
          MPFR_RET_NAN;
        }
      else if (MPFR_IS_INF (s))
        {
          if (MPFR_IS_POS (s))
            return mpfr_set_ui (z, 1, MPFR_RNDN); /* Zeta(+Inf) = 1 */
          MPFR_SET_NAN (z); /* Zeta(-Inf) = NaN */
          MPFR_RET_NAN;
        }
      else /* s iz zero */
        {
          MPFR_ASSERTD (MPFR_IS_ZERO (s));
          return mpfr_set_si_2exp (z, -1, -1, rnd_mode);
        }
    }

  /* s is neither Nan, nor Inf, nor Zero */

  /* check tiny s: we have zeta(s) = -1/2 - 1/2 log(2 Pi) s + ... around s=0,
     and for |s| <= 2^(-4), we have |zeta(s) + 1/2| <= |s|.
     EXP(s) + 1 < -PREC(z) is a sufficient condition to be able to round
     correctly, for any PREC(z) >= 1 (see algorithms.tex for details). */
  if (MPFR_GET_EXP (s) + 1 < - (mpfr_exp_t) MPFR_PREC(z))
    {
      int signs = MPFR_SIGN(s);

      MPFR_SAVE_EXPO_MARK (expo);
      mpfr_set_si_2exp (z, -1, -1, rnd_mode); /* -1/2 */
      if (rnd_mode == MPFR_RNDA)
        rnd_mode = MPFR_RNDD; /* the result is around -1/2, thus negative */
      if ((rnd_mode == MPFR_RNDU || rnd_mode == MPFR_RNDZ) && signs < 0)
        {
          mpfr_nextabove (z); /* z = -1/2 + epsilon */
          inex = 1;
        }
      else if (rnd_mode == MPFR_RNDD && signs > 0)
        {
          mpfr_nextbelow (z); /* z = -1/2 - epsilon */
          inex = -1;
        }
      else
        {
          if (rnd_mode == MPFR_RNDU) /* s > 0: z = -1/2 */
            inex = 1;
          else if (rnd_mode == MPFR_RNDD)
            inex = -1;              /* s < 0: z = -1/2 */
          else /* (MPFR_RNDZ and s > 0) or MPFR_RNDN: z = -1/2 */
            inex = (signs > 0) ? 1 : -1;
        }
      MPFR_SAVE_EXPO_FREE (expo);
      return mpfr_check_range (z, inex, rnd_mode);
    }

  /* Check for case s= -2n */
  if (MPFR_IS_NEG (s))
    {
      mpfr_t tmp;
      tmp[0] = *s;
      MPFR_EXP (tmp) = MPFR_GET_EXP (s) - 1;
      if (mpfr_integer_p (tmp))
        {
          MPFR_SET_ZERO (z);
          MPFR_SET_POS (z);
          MPFR_RET (0);
        }
    }

  /* Check for case s=1 before changing the exponent range */
  if (mpfr_cmp (s, __gmpfr_one) == 0)
    {
      MPFR_SET_INF (z);
      MPFR_SET_POS (z);
      MPFR_SET_DIVBY0 ();
      MPFR_RET (0);
    }

  MPFR_SAVE_EXPO_MARK (expo);

  /* Compute Zeta */
  if (MPFR_IS_POS (s) && MPFR_GET_EXP (s) >= 0) /* Case s >= 1/2 */
    inex = mpfr_zeta_pos (z, s, rnd_mode);
  else /* use reflection formula
          zeta(s) = 2^s*Pi^(s-1)*sin(Pi*s/2)*gamma(1-s)*zeta(1-s) */
    {
      int overflow = 0;

      precz = MPFR_PREC (z);
      precs = MPFR_PREC (s);

      /* Precision precs1 needed to represent 1 - s, and s + 2,
         without any truncation */
      precs1 = precs + 2 + MAX (0, - MPFR_GET_EXP (s));
      /* Precision prec1 is the precision on elementary computations;
         it ensures a final precision prec1 - add for zeta(s) */
      add = compute_add (s, precz);
      prec1 = precz + add;
      /* FIXME: To avoid that the working precision (prec1) depends on the
         input precision, one would need to take into account the error made
         when s1 is not exactly 1-s when computing zeta(s1) and gamma(s1)
         below, and also in the case y=Inf (i.e. when gamma(s1) overflows).
         Make sure that underflows do not occur in intermediate computations.
         Due to the limited precision, they are probably not possible
         in practice; add some MPFR_ASSERTN's to be sure that problems
         do not remain undetected? */
      prec1 = MAX (prec1, precs1) + 10;

      MPFR_GROUP_INIT_4 (group, prec1, z_pre, s1, y, p);
      MPFR_ZIV_INIT (loop, prec1);
      for (;;)
        {
          mpfr_exp_t ey;
          mpfr_t z_up;

          mpfr_const_pi (p, MPFR_RNDD); /* p is Pi */

          mpfr_sub (s1, __gmpfr_one, s, MPFR_RNDN); /* s1 = 1-s */
          mpfr_gamma (y, s1, MPFR_RNDN);          /* gamma(1-s) */
          if (MPFR_IS_INF (y)) /* zeta(s) < 0 for -4k-2 < s < -4k,
                                  zeta(s) > 0 for -4k < s < -4k+2 */
            {
              /* FIXME: An overflow in gamma(s1) does not imply that
                 zeta(s) will overflow. A solution:
                 1. Compute
                   log(|zeta(s)|/2) = (s-1)*log(2*pi) + lngamma(1-s)
                     + log(abs(sin(Pi*s/2)) * zeta(1-s))
                 (possibly sharing computations with the normal case)
                 with a rather good accuracy (see (2)).
                 Memorize the sign of sin(...) for the final sign.
                 2. Take the exponential, ~= |zeta(s)|/2. If there is an
                 overflow, then this means an overflow on the final result
                 (due to the multiplication by 2, which has not been done
                 yet).
                 3. Ziv test.
                 4. Correct the sign from the sign of sin(...).
                 5. Round then multiply by 2. Here, an overflow in either
                 operation means a real overflow. */
              mpfr_reflection_overflow (z_pre, s1, s, y, p, MPFR_RNDD);
              /* z_pre is a lower bound of |zeta(s)|/2, thus if it overflows,
                 or has exponent emax, then |zeta(s)| overflows too. */
              if (MPFR_IS_INF (z_pre) || MPFR_GET_EXP(z_pre) == __gmpfr_emax)
                { /* determine the sign of overflow */
                  mpfr_div_2ui (s1, s, 2, MPFR_RNDN); /* s/4, exact */
                  mpfr_frac (s1, s1, MPFR_RNDN); /* exact, -1 < s1 < 0 */
                  overflow = (mpfr_cmp_si_2exp (s1, -1, -1) > 0) ? -1 : 1;
                  break;
                }
              else /* EXP(z_pre) < __gmpfr_emax */
                {
                  int ok = 0;
                  mpfr_t z_down;
                  mpfr_init2 (z_up, mpfr_get_prec (z_pre));
                  mpfr_reflection_overflow (z_up, s1, s, y, p, MPFR_RNDU);
                  /* if the lower approximation z_pre does not overflow, but
                     z_up does, we need more precision */
                  if (MPFR_IS_INF (z_up) || MPFR_GET_EXP(z_up) == __gmpfr_emax)
                    goto next_loop;
                  /* check if z_pre and z_up round to the same number */
                  mpfr_init2 (z_down, precz);
                  mpfr_set (z_down, z_pre, rnd_mode);
                  /* Note: it might be that EXP(z_down) = emax here, in that
                     case we will have overflow below when we multiply by 2 */
                  mpfr_prec_round (z_up, precz, rnd_mode);
                  ok = mpfr_cmp (z_down, z_up) == 0;
                  mpfr_clear (z_up);
                  mpfr_clear (z_down);
                  if (ok)
                    {
                      /* get correct sign and multiply by 2 */
                      mpfr_div_2ui (s1, s, 2, MPFR_RNDN); /* s/4, exact */
                      mpfr_frac (s1, s1, MPFR_RNDN); /* exact, -1 < s1 < 0 */
                      if (mpfr_cmp_si_2exp (s1, -1, -1) > 0)
                        mpfr_neg (z_pre, z_pre, rnd_mode);
                      mpfr_mul_2ui (z_pre, z_pre, 1, rnd_mode);
                      break;
                    }
                  else
                    goto next_loop;
                }
            }
          mpfr_zeta_pos (z_pre, s1, MPFR_RNDN);   /* zeta(1-s)  */
          mpfr_mul (z_pre, z_pre, y, MPFR_RNDN);  /* gamma(1-s)*zeta(1-s) */

          /* multiply z_pre by 2^s*Pi^(s-1) where p=Pi, s1=1-s */
          mpfr_mul_2ui (y, p, 1, MPFR_RNDN);      /* 2*Pi */
          mpfr_neg (s1, s1, MPFR_RNDN);           /* s-1 */
          mpfr_pow (y, y, s1, MPFR_RNDN);         /* (2*Pi)^(s-1) */
          mpfr_mul (z_pre, z_pre, y, MPFR_RNDN);
          mpfr_mul_2ui (z_pre, z_pre, 1, MPFR_RNDN);

          /* multiply z_pre by sin(Pi*s/2) */
          mpfr_mul (y, s, p, MPFR_RNDN);
          mpfr_div_2ui (p, y, 1, MPFR_RNDN);      /* p = s*Pi/2 */
          /* FIXME: sinpi will be available, we should replace the mpfr_sin
             call below by mpfr_sinpi(s/2), where s/2 will be exact.
             Can mpfr_sin underflow? Moreover, the code below should be
             improved so that the "if" condition becomes unlikely, e.g.
             by taking a slightly larger working precision. */
          mpfr_sin (y, p, MPFR_RNDN);             /* y = sin(Pi*s/2) */
          ey = MPFR_GET_EXP (y);
          if (ey < 0) /* take account of cancellation in sin(p) */
            {
              mpfr_t t;

              MPFR_ASSERTN (- ey < MPFR_PREC_MAX - prec1);
              mpfr_init2 (t, prec1 - ey);
              mpfr_const_pi (t, MPFR_RNDD);
              mpfr_mul (t, s, t, MPFR_RNDN);
              mpfr_div_2ui (t, t, 1, MPFR_RNDN);
              mpfr_sin (y, t, MPFR_RNDN);
              mpfr_clear (t);
            }
          mpfr_mul (z_pre, z_pre, y, MPFR_RNDN);

          if (MPFR_LIKELY (MPFR_CAN_ROUND (z_pre, prec1 - add, precz,
                                           rnd_mode)))
            break;

        next_loop:
          MPFR_ZIV_NEXT (loop, prec1);
          MPFR_GROUP_REPREC_4 (group, prec1, z_pre, s1, y, p);
        }
      MPFR_ZIV_FREE (loop);
      if (overflow != 0)
        {
          inex = mpfr_overflow (z, rnd_mode, overflow);
          MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, MPFR_FLAGS_OVERFLOW);
        }
      else
        inex = mpfr_set (z, z_pre, rnd_mode);
      MPFR_GROUP_CLEAR (group);
    }

  MPFR_SAVE_EXPO_FREE (expo);
  return mpfr_check_range (z, inex, rnd_mode);
}
예제 #7
0
파일: digamma.c 프로젝트: MiKTeX/miktex
int
mpfr_digamma (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
{
  int inex;
  MPFR_SAVE_EXPO_DECL (expo);

  MPFR_LOG_FUNC
    (("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec(x), mpfr_log_prec, x, rnd_mode),
     ("y[%Pu]=%.*Rg inexact=%d", mpfr_get_prec(y), mpfr_log_prec, y, inex));

  if (MPFR_UNLIKELY(MPFR_IS_SINGULAR(x)))
    {
      if (MPFR_IS_NAN(x))
        {
          MPFR_SET_NAN(y);
          MPFR_RET_NAN;
        }
      else if (MPFR_IS_INF(x))
        {
          if (MPFR_IS_POS(x)) /* Digamma(+Inf) = +Inf */
            {
              MPFR_SET_SAME_SIGN(y, x);
              MPFR_SET_INF(y);
              MPFR_RET(0);
            }
          else                /* Digamma(-Inf) = NaN */
            {
              MPFR_SET_NAN(y);
              MPFR_RET_NAN;
            }
        }
      else /* Zero case */
        {
          /* the following works also in case of overlap */
          MPFR_SET_INF(y);
          MPFR_SET_OPPOSITE_SIGN(y, x);
          MPFR_SET_DIVBY0 ();
          MPFR_RET(0);
        }
    }

  /* Digamma is undefined for negative integers */
  if (MPFR_IS_NEG(x) && mpfr_integer_p (x))
    {
      MPFR_SET_NAN(y);
      MPFR_RET_NAN;
    }

  /* now x is a normal number */

  MPFR_SAVE_EXPO_MARK (expo);
  /* for x very small, we have Digamma(x) = -1/x - gamma + O(x), more precisely
     -1 < Digamma(x) + 1/x < 0 for -0.2 < x < 0.2, thus:
     (i) either x is a power of two, then 1/x is exactly representable, and
         as long as 1/2*ulp(1/x) > 1, we can conclude;
     (ii) otherwise assume x has <= n bits, and y has <= n+1 bits, then
   |y + 1/x| >= 2^(-2n) ufp(y), where ufp means unit in first place.
   Since |Digamma(x) + 1/x| <= 1, if 2^(-2n) ufp(y) >= 2, then
   |y - Digamma(x)| >= 2^(-2n-1)ufp(y), and rounding -1/x gives the correct result.
   If x < 2^E, then y > 2^(-E), thus ufp(y) > 2^(-E-1).
   A sufficient condition is thus EXP(x) <= -2 MAX(PREC(x),PREC(Y)). */
  if (MPFR_EXP(x) < -2)
    {
      if (MPFR_EXP(x) <= -2 * (mpfr_exp_t) MAX(MPFR_PREC(x), MPFR_PREC(y)))
        {
          int signx = MPFR_SIGN(x);
          inex = mpfr_si_div (y, -1, x, rnd_mode);
          if (inex == 0) /* x is a power of two */
            { /* result always -1/x, except when rounding down */
              if (rnd_mode == MPFR_RNDA)
                rnd_mode = (signx > 0) ? MPFR_RNDD : MPFR_RNDU;
              if (rnd_mode == MPFR_RNDZ)
                rnd_mode = (signx > 0) ? MPFR_RNDU : MPFR_RNDD;
              if (rnd_mode == MPFR_RNDU)
                inex = 1;
              else if (rnd_mode == MPFR_RNDD)
                {
                  mpfr_nextbelow (y);
                  inex = -1;
                }
              else /* nearest */
                inex = 1;
            }
          MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, __gmpfr_flags);
          goto end;
        }
    }

  if (MPFR_IS_NEG(x))
    inex = mpfr_digamma_reflection (y, x, rnd_mode);
  /* if x < 1/2 we use the reflection formula */
  else if (MPFR_EXP(x) < 0)
    inex = mpfr_digamma_reflection (y, x, rnd_mode);
  else
    inex = mpfr_digamma_positive (y, x, rnd_mode);

 end:
  MPFR_SAVE_EXPO_FREE (expo);
  return mpfr_check_range (y, inex, rnd_mode);
}
예제 #8
0
파일: atanh.c 프로젝트: BrianGladman/mpfr
int
mpfr_atanh (mpfr_ptr y, mpfr_srcptr xt , mpfr_rnd_t rnd_mode)
{
  int inexact;
  mpfr_t x, t, te;
  mpfr_prec_t Nx, Ny, Nt;
  mpfr_exp_t err;
  MPFR_ZIV_DECL (loop);
  MPFR_SAVE_EXPO_DECL (expo);

  MPFR_LOG_FUNC
    (("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (xt), mpfr_log_prec, xt, rnd_mode),
    ("y[%Pu]=%.*Rg inexact=%d",
     mpfr_get_prec (y), mpfr_log_prec, y, inexact));

  /* Special cases */
  if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (xt)))
    {
      /* atanh(NaN) = NaN, and atanh(+/-Inf) = NaN since tanh gives a result
         between -1 and 1 */
      if (MPFR_IS_NAN (xt) || MPFR_IS_INF (xt))
        {
          MPFR_SET_NAN (y);
          MPFR_RET_NAN;
        }
      else /* necessarily xt is 0 */
        {
          MPFR_ASSERTD (MPFR_IS_ZERO (xt));
          MPFR_SET_ZERO (y);   /* atanh(0) = 0 */
          MPFR_SET_SAME_SIGN (y,xt);
          MPFR_RET (0);
        }
    }

  /* atanh (x) = NaN as soon as |x| > 1, and arctanh(+/-1) = +/-Inf */
  if (MPFR_UNLIKELY (MPFR_GET_EXP (xt) > 0))
    {
      if (MPFR_GET_EXP (xt) == 1 && mpfr_powerof2_raw (xt))
        {
          MPFR_SET_INF (y);
          MPFR_SET_SAME_SIGN (y, xt);
          MPFR_SET_DIVBY0 ();
          MPFR_RET (0);
        }
      MPFR_SET_NAN (y);
      MPFR_RET_NAN;
    }

  /* atanh(x) = x + x^3/3 + ... so the error is < 2^(3*EXP(x)-1) */
  MPFR_FAST_COMPUTE_IF_SMALL_INPUT (y, xt, -2 * MPFR_GET_EXP (xt), 1, 1,
                                    rnd_mode, {});

  MPFR_SAVE_EXPO_MARK (expo);

  /* Compute initial precision */
  Nx = MPFR_PREC (xt);
  MPFR_TMP_INIT_ABS (x, xt);
  Ny = MPFR_PREC (y);
  Nt = MAX (Nx, Ny);
  /* the optimal number of bits : see algorithms.ps */
  Nt = Nt + MPFR_INT_CEIL_LOG2 (Nt) + 4;

  /* initialize of intermediary variable */
  mpfr_init2 (t, Nt);
  mpfr_init2 (te, Nt);

  /* First computation of cosh */
  MPFR_ZIV_INIT (loop, Nt);
  for (;;)
    {
      /* compute atanh */
      mpfr_ui_sub (te, 1, x, MPFR_RNDU);   /* (1-xt)*/
      mpfr_add_ui (t,  x, 1, MPFR_RNDD);   /* (xt+1)*/
      mpfr_div (t, t, te, MPFR_RNDN);      /* (1+xt)/(1-xt)*/
      mpfr_log (t, t, MPFR_RNDN);          /* ln((1+xt)/(1-xt))*/
      mpfr_div_2ui (t, t, 1, MPFR_RNDN);   /* (1/2)*ln((1+xt)/(1-xt))*/

      /* error estimate: see algorithms.tex */
      /* FIXME: this does not correspond to the value in algorithms.tex!!! */
      /* err=Nt-__gmpfr_ceil_log2(1+5*pow(2,1-MPFR_EXP(t)));*/
      err = Nt - (MAX (4 - MPFR_GET_EXP (t), 0) + 1);

      if (MPFR_LIKELY (MPFR_IS_ZERO (t)
                       || MPFR_CAN_ROUND (t, err, Ny, rnd_mode)))
        break;

      /* reactualisation of the precision */
      MPFR_ZIV_NEXT (loop, Nt);
      mpfr_set_prec (t, Nt);
      mpfr_set_prec (te, Nt);
    }
  MPFR_ZIV_FREE (loop);

  inexact = mpfr_set4 (y, t, rnd_mode, MPFR_SIGN (xt));

  mpfr_clear(t);
  mpfr_clear(te);

  MPFR_SAVE_EXPO_FREE (expo);
  return mpfr_check_range (y, inexact, rnd_mode);
}