예제 #1
0
 void MR_VertexIDs_FNR3R4(MRegion_ptr r, int *nrv, int *rvertids) {
   int i;
   List_ptr rverts = MR_Vertices(r);
   *nrv = List_Num_Entries(rverts);
   for (i = 0; i < *nrv; i++)
     rvertids[i] = MEnt_ID(List_Entry(rverts,i));
 }
예제 #2
0
파일: MRegion.c 프로젝트: losalamos/MSTK
  int MR_Num_Vertices(MRegion_ptr r) {
    List_ptr rverts;
    int nrv;

    rverts = MR_Vertices(r);
    nrv = List_Num_Entries(rverts);
    List_Delete(rverts);

#ifdef DEBUG
    {
      RepType RTYPE = MEnt_RepType((MEntity_ptr) r);
      if (RTYPE != R1 || RTYPE != R2)
	MSTK_Report("MR_Num_Vertices",
		    "Inefficient to use this routine for this representation",
		    MSTK_WARN);
    }
#endif

    return nrv;
  }
예제 #3
0
MVertex_ptr ME_Collapse(MEdge_ptr e, MVertex_ptr vkeep_in, int topoflag,
                        List_ptr *deleted_entities) {
  MVertex_ptr vdel, vkeep, ev00, ev01, ev10, ev11, vert;
  MEdge_ptr edge, edge2, oldedges[3], nuedges[2];
  MFace_ptr face, face2, rface1, rface2;
  MRegion_ptr reg, reg2;
  List_ptr vedges, efaces, eregs, fedges, rfaces, fverts1, fverts2, vfaces;
  int idx1, idx2, idx3, dir, status, nfe, nrf, allfound, degenerate;
  int i, j, nfe2, nfv1, nfv2;

  status = 1;

  if (vkeep_in == NULL) {
    vdel = ME_Vertex(e,0);
    vkeep = ME_Vertex(e,1);
  }
  else {
    vkeep = vkeep_in;
    vdel = ME_OppVertex(e,vkeep);
  }

  int dimkeep, dimdel;
    
  dimkeep = MV_GEntDim(vkeep); /* Model entity dim of vertex to keep */
  dimdel = MV_GEntDim(vdel);   /* Model entity dim  of vertex to delete */
  
  if (topoflag == 1) {
    if (dimkeep == dimdel) {
      
      if (MV_GEntID(vkeep) != MV_GEntID(vdel))
        status = 0;                 /* cannot allow since it will cause 
                                       a dimensional reduction in mesh */
    }
    else if (dimdel < dimkeep) {
      
      if (vkeep_in == NULL) {
        /* If no preference was indicated on which vertex to retain,
	   we can collapse in the other direction */
        MVertex_ptr vtemp = vdel;
	vdel = vkeep;
	vkeep = vtemp;
      }
      else
        status = 0; /* can't reverse order or vertices and boundary of
                       mesh will get messed up if we go through as is */
    }
  }
  else if (vkeep_in == NULL) { 

    /* If no preference was indicated for the kept vertex and
       topological conformity with the underlying geometric model was
       not requested, we prefer to keep an external boundary vertex
       over an interior vertex or interior boundary vertex. This is
       because it is more likely that the external boundary vertex
       would have a boundary condition applied to it. If a preference
       was indicated, we just have to respect that. */

    int vdel_external = 0;

    /* Check if any edges connected to vdel have only one connected face */

    vedges = MV_Edges(vdel);    

    idx1 = 0;
    while ((edge = (MEdge_ptr) List_Next_Entry(vedges,&idx1))) {
      List_ptr efaces = ME_Faces(edge);
      int nef = List_Num_Entries(efaces);
      List_Delete(efaces);
      if (nef < 2) {
        vdel_external = 1;
        break;
      }
    }                                          
    
    List_Delete(vedges);

    /* check if any face connected to vdel has only one region
       connected to it */

    if (!vdel_external) {
      vfaces = MV_Faces(vdel);

      idx1 = 0;
      while ((face = (MFace_ptr) List_Next_Entry(vfaces,&idx1))) {
        List_ptr fregs = MF_Regions(face);
        int nfr = fregs ? List_Num_Entries(fregs) : 0;
        if (fregs) List_Delete(fregs);

        if (nfr == 1) {
          vdel_external = 0;
          break;
        }
      }

      List_Delete(vfaces);
    }

    if (vdel_external) {
      /* swap the vertices in the hope that vkeep is not also on an
         external boundary. Since we have to go through with the
         collapse anyway, there is no use of doing a detailed check
         for whether vkeep is also on an external boundary */

      MVertex_ptr vtemp = vdel;
      vdel = vkeep;
      vkeep = vtemp;
    }
    
  }


  if (status == 0)
    return NULL;   /* Cannot collapse due to constraints of topological
		   conformity with geometric model */

  *deleted_entities = List_New(10);

  /* Need to collect this in advance because the info gets messed up later */

  efaces = ME_Faces(e);
  eregs = ME_Regions(e);


  /* Replace vdel with vkeep in all edges connected to vdel */

  vedges = MV_Edges(vdel);
  idx1 = 0;
  while ((edge = List_Next_Entry(vedges,&idx1))) {
    ME_Replace_Vertex(edge,vdel,vkeep);
  }
  List_Delete(vedges);

  /* Remove edge 'e' from all faces connected to e */
  /* This part of the code is using some reliance on the internal
     implementation of MF_Edges. While unlikely, it _might_ break if
     the innards of MF_Edges are changed */

  
  idx1 = 0;
  while ((face = List_Next_Entry(efaces,&idx1))) {

    fedges = MF_Edges(face,1,0);
    nfe = List_Num_Entries(fedges);

    /* Find the edge before and after e in the face */

    oldedges[0] = oldedges[2] = NULL;
    for (i = 0; i < nfe; i++) {
      edge = List_Entry(fedges,i);
      if (edge == e) continue;

      dir = MF_EdgeDir_i(face,i);

      if (ME_Vertex(edge,dir) == vkeep)
	oldedges[0] = edge;
      else if (ME_Vertex(edge,!dir) == vkeep)
	oldedges[2] = edge;
    }
    oldedges[1] = e;

    nuedges[0] = oldedges[0];
    nuedges[1] = oldedges[2];


    /* Replace oldedges[0], oldedges[1] (=e), oldedges[2] with 
       oldedges[0], oldedges[2] since e is degenerate */

    MF_Replace_Edges(face,3,oldedges,2,nuedges);

    List_Delete(fedges);
  }



  /* Delete topologically degenerate regions */
  /* Defined as two faces of the regions having the same vertices */

  if (eregs) {
    idx1 = 0;
    while ((reg = List_Next_Entry(eregs,&idx1))) {

      rfaces = MR_Faces(reg);
      nrf = List_Num_Entries(rfaces);

      if (nrf == 4) {      
        List_ptr rverts = MR_Vertices(reg);
        if (List_Num_Entries(rverts) == 4) {
          MR_Delete(reg,0);    /* This is a tet - it will become degenerate */
        }
        List_Delete(rverts);
      }
      else {

	degenerate = 0;

	for (i = 0; i < nrf; i++) {

	  rface1 = List_Entry(rfaces,i);
	
	  fverts1 = MF_Vertices(rface1,1,0);
	  nfv1 = List_Num_Entries(fverts1);
		
	  for (j = i+1; j < nrf; j++) {
	  
	    rface2 = List_Entry(rfaces,j);

	    fverts2 = MF_Vertices(rface2,1,0);
	    nfv2 = List_Num_Entries(fverts2);
	  
	    if (nfv1 != nfv2) {
	      List_Delete(fverts2);
	      continue;             /* can't be exactly coincident */
	    }

	    allfound = 1;
	    idx2 = 0;
	    while ((vert = List_Next_Entry(fverts2,&idx2))) {
	      if (!List_Contains(fverts1,vert)) {
		allfound = 0;
		break;
	      }
	    }
	  
	    List_Delete(fverts2);
	  
	    if (allfound) {
	      degenerate = 1;
	      break;
	    }
	  
	  } /* for (j = i+1 ... */

	  List_Delete(fverts1);

	  if (degenerate) break;

	} /* for (i = 0; i < nrf;.... */

	if (degenerate) {
          List_Add(*deleted_entities,reg);
	  MR_Delete(reg,0);
        }

      } /* if (nrf == 4) .. else ... */

      List_Delete(rfaces);

    } /* while ((reg = ...)) */
  }


  /* Delete topologically degenerate faces */

  if (efaces) {
    idx1 = 0;
    while ((face = List_Next_Entry(efaces,&idx1))) {

      fedges = MF_Edges(face,1,0);

      if (List_Num_Entries(fedges) == 2) {

	/* Disconnect the regions from the face before deleting */

	List_ptr fregs = MF_Regions(face);
        if (fregs) {
          idx2 = 0;
          while ((reg = List_Next_Entry(fregs,&idx2)))
            MR_Rem_Face(reg,face);
          
          List_Delete(fregs);
        }

        List_Add(*deleted_entities,face);
	MF_Delete(face,0);
      }

      List_Delete(fedges);
    }
    List_Delete(efaces);
  }



  /* Now merge edges which have the same end vertices */
  /* Prefer to preserve edges on external boundaries over internal edges */

  vedges = MV_Edges(vkeep);
  idx1 = 0; 
  while ((edge = List_Next_Entry(vedges,&idx1))) {
    if (edge == e) continue;
    
    ev00 = ME_Vertex(edge,0);
    ev01 = ME_Vertex(edge,1);

    idx2 = 0;
    while ((edge2 = List_Next_Entry(vedges,&idx2))) {
      if (edge == e || edge == edge2) continue;

      ev10 = ME_Vertex(edge2,0);
      ev11 = ME_Vertex(edge2,1);

      if ((ev00 == ev10 && ev01 == ev11) ||
	  (ev00 == ev11 && ev10 == ev01)) {

        int external_edge, external_edge2;
        int edim = 4;
	    
        external_edge = 0;
        edim = ME_GEntDim(edge);
        if (edim == 1 || edim == 2 || edim == 4) { /* check if external edge */
          
          efaces = ME_Faces(edge);
          int nef = List_Num_Entries(efaces);
          if (nef == 1) {
            external_edge = 1;
          }
          else {
            idx3 = 0;
            while ((face = List_Next_Entry(efaces,&idx2))) {
              List_ptr fregs = MF_Regions(face);
              int nfr = fregs ? List_Num_Entries(fregs) : 0;
              if (fregs) List_Delete(fregs);
              if (nfr == 1) {
                external_edge = 1;
                break;
              }
            }
          }
          List_Delete(efaces);
          
        }
    
        external_edge2 = 0;
        edim = ME_GEntDim(edge2);
        if (edim == 1 || edim == 2 || edim == 4) { /* check if external edge */

          efaces = ME_Faces(edge2);
          int nef = List_Num_Entries(efaces);
          if (nef == 1) {
            external_edge2 = 1;
          }
          else {
            idx3 = 0;
            while ((face = List_Next_Entry(efaces,&idx2))) {
              List_ptr fregs = MF_Regions(face);
              int nfr = fregs ? List_Num_Entries(fregs) : 0;
              if (fregs) List_Delete(fregs);
              if (nfr == 1) {
                external_edge2 = 1;
                break;
              }
            }
          }
          List_Delete(efaces);
          
        }

        /* If edge2 is not external or both edges are external, go
           ahead and merge (edge2 will be deleted subject to
           topological checks if topoflag is 1) */

        if (!external_edge2 || (external_edge && external_edge2)) {
          MEs_Merge(edge,edge2,topoflag);	
          List_Rem(vedges,edge2);	
          List_Add(*deleted_entities,edge2);
          break;
        }
      }
    }
  }
  List_Delete(vedges);


  /* Merge faces with the same set of edges */
      
  vfaces = MV_Faces(vkeep);

  if (vfaces) {
    idx1 = 0;
    while ((face = List_Next_Entry(vfaces,&idx1))) {
    
      fedges = MF_Edges(face,1,0);
      nfe = List_Num_Entries(fedges);
    
      idx2 = 0;
      while ((face2 = List_Next_Entry(vfaces,&idx2))) {
	List_ptr fedges2;

	if (face2 == face) continue;

	fedges2 = MF_Edges(face2,1,0);
	nfe2 = List_Num_Entries(fedges2);

	if (nfe != nfe2) {
	  List_Delete(fedges2);
	  continue;
	}

	allfound = 1;

	for (i = 0; i < nfe2; i++) {
	  edge = List_Entry(fedges2,i);
	  if (!List_Contains(fedges,edge)) {
	    allfound = 0;
	    break;
	  }
	}
	List_Delete(fedges2);

	if (allfound) {

          List_ptr fregs = MF_Regions(face);
          int external_face = fregs ? (List_Num_Entries(fregs) == 1) : 0;
          if (fregs) List_Delete(fregs);

          List_ptr fregs2 = MF_Regions(face2);
          int external_face2 = fregs2 ? (List_Num_Entries(fregs2) == 1) : 0;
          if (fregs2) List_Delete(fregs2);

          /* Proceed with merge (which will delete face2) only if face2 is
             not an external face or both face and face2 are external */

          if (!external_face2 || (external_face && external_face2)) {
            MFs_Merge(face,face2,topoflag);	
            List_Rem(vfaces,face2);
            List_Add(*deleted_entities,face2);
            break;
          }

        }
	
      } /* while (face2 = List_Next_Entry(vfaces,... */

      List_Delete(fedges);

    } /* while (face = List_Next_Entry(vfaces,... */
    List_Delete(vfaces);
  }

  /* Now actually delete the collapse edge and the to-be-merged vertex */

  ME_Delete(e,0);
  List_Add(*deleted_entities,e);

  MV_Delete(vdel,0);
  List_Add(*deleted_entities,vdel);

  if (eregs) {
    idx1 = 0;
    while ((reg = List_Next_Entry(eregs,&idx1)))
      MR_Update_ElementType(reg);
    
    List_Delete(eregs);
  }

  return vkeep;
}
예제 #4
0
void MESH_Renumber(Mesh_ptr mesh, int renum_type, MType mtype) {
  MVertex_ptr mv, v0=NULL;
  MEdge_ptr me, e0=NULL;
  MFace_ptr mf, f0=NULL;
  MRegion_ptr mr, r0=NULL;
  int idx, idx2, idx3;
  int i, j;
  int done;
  MAttrib_ptr vidatt;
  List_ptr vlist;
  double xyz[3];
  double rval;
  int bandwidth, maxbandwidth1, maxbandwidth2;
  double avebandwidth1, avebandwidth2;
  void *pval;

  if (renum_type == 0) {
    if (mtype == MVERTEX || mtype == MALLTYPE) {
      int nv = 0;
      idx = 0; 
      while ((mv = MESH_Next_Vertex(mesh,&idx)))
	MV_Set_ID(mv,++nv);
    }
    
    if (mtype == MEDGE || mtype == MALLTYPE) {
      int ne = 0;
      idx = 0; 
      while ((me = MESH_Next_Edge(mesh,&idx)))
	ME_Set_ID(me,++ne);
    }
    
    if (mtype == MFACE || mtype == MALLTYPE) {
      int nf = 0;
      idx = 0; 
      while ((mf = MESH_Next_Face(mesh,&idx)))
	MF_Set_ID(mf,++nf);
    }
    
    if (mtype == MREGION || mtype == MALLTYPE) {
      int nr = 0;
      idx = 0; 
      while ((mr = MESH_Next_Region(mesh,&idx)))
	MR_Set_ID(mr,++nr);
    }
  }
  else if (renum_type == 1) {
    double minx, miny, minz;
    int minid, maxid;
    int *nadj, *newmap, *adj, *offset, nconn;
    int nalloc, depth, maxwidth;
        
#ifdef MSTK_USE_MARKERS
    int mkid = MSTK_GetMarker();
#else
    MAttrib_ptr mkatt = MAttrib_New(mesh, "mkatt", INT, MALLTYPE);
#endif

    if (mtype == MVERTEX || mtype == MALLTYPE) { 
      int nv = MESH_Num_Vertices(mesh);      
      
      /* Compute a graph of vertex connections across elements (faces
	 for surface meshes, regions for solid meshes */

      /* Start with the vertex in the lower leftmost corner */
      
      minx = miny = minz = 1.0e+12;
      v0 = NULL;
      idx = 0;
      while ((mv = MESH_Next_Vertex(mesh,&idx))) {
	MV_Coords(mv,xyz);
	if (xyz[0] <= minx && xyz[1] <= miny && xyz[2] <= minz) {
	  minx = xyz[0];
	  miny = xyz[1];
	  minz = xyz[2];
	  v0 = mv;
	}
      }


      nadj = (int *) malloc(nv*sizeof(int));
      nalloc = nv*5;
      adj = (int *) malloc(nalloc*sizeof(int));

      if (!MESH_Num_Regions(mesh)) {
        int nentries = 0;
        i = 0;
        idx = 0;
        while ((mv = MESH_Next_Vertex(mesh,&idx))) {
          List_ptr vfaces, adjvlist;
          MFace_ptr vf;
          MVertex_ptr adjv;

          adjvlist = List_New(0);
          vfaces = MV_Faces(mv);
          idx2 = 0;
          while ((vf = List_Next_Entry(vfaces,&idx2))) {
            List_ptr fverts = MF_Vertices(vf,1,0);
            idx3 = 0;
            while ((adjv = List_Next_Entry(fverts,&idx3))) {
              if (adjv != mv) {
                int vmarked;
#ifdef MSTK_USE_MARKERS
                vmarked = MEnt_IsMarked(adjv,mkid);
#else
                MEnt_Get_AttVal(adjv, mkatt, &vmarked, &rval, &pval);
#endif
                if (!vmarked) {
                  List_Add(adjvlist,adjv);
#ifdef MSTK_USE_MARKERS
                  MEnt_Mark(adjv,mkid);
#else
                  MEnt_Set_AttVal(adjv, mkatt, 1, 0.0, NULL);
#endif
                }
              }
            }
            List_Delete(fverts);
          }
          List_Delete(vfaces);
#ifdef MSTK_USE_MARKERS
          List_Unmark(adjvlist,mkid);
#endif

          nadj[i] = List_Num_Entries(adjvlist);
          
          if (nentries+nadj[i] > nalloc) {
            nalloc *= 2;
            adj = (int *) realloc(adj,nalloc*sizeof(int));
          }

          idx2 = 0;
          while ((adjv = List_Next_Entry(adjvlist,&idx2)))
            adj[nentries++] = MV_ID(adjv)-1;

          List_Delete(adjvlist);
          i++;
        }
      }
      else {
        int nentries = 0;
        i = 0;
        idx = 0;
        while ((mv = MESH_Next_Vertex(mesh,&idx))) {
          List_ptr vregions, adjvlist;
          MRegion_ptr vr;
          MVertex_ptr adjv;

          adjvlist = List_New(0);
          vregions = MV_Regions(mv);
          idx2 = 0;
          while ((vr = List_Next_Entry(vregions,&idx2))) {
            List_ptr rverts = MR_Vertices(vr);
            idx3 = 0;
            while ((adjv = List_Next_Entry(rverts,&idx3))) {
              if (adjv != mv) {
                int vmarked;
#ifdef MSTK_USE_MARKERS
                vmarked = MEnt_IsMarked(adjv,mkid);
#else
                MEnt_Get_AttVal(adjv, mkatt, &vmarked, &rval, &pval);
#endif
                if (!vmarked) {
                  List_Add(adjvlist,adjv);
#ifdef MSTK_USE_MARKERS
                  MEnt_Mark(adjv,mkid);
#else
                  MEnt_Set_AttVal(adjv, mkatt, 1, 0.0, NULL);
#endif
                }
              }
            }
            List_Delete(rverts);
          }
          List_Delete(vregions);
#ifdef MSTK_USE_MARKERS
          List_Unmark(adjvlist,mkid);
#endif

          nadj[i] = List_Num_Entries(adjvlist);

          if (nentries+nadj[i] > nalloc) {
            nalloc *= 2;
            adj = (int *) realloc(adj,nalloc*sizeof(int));
          }

          idx2 = 0;
          while ((adjv = List_Next_Entry(adjvlist,&idx2)))
            adj[nentries++] = MV_ID(adjv)-1;

          List_Delete(adjvlist);
          i++;
        }
      }

      /* Compute offsets into adj array */

      offset = (int *) malloc(nv*sizeof(int));
      offset[0] = 0;
      for (i = 1; i < nv; i++)
	offset[i] = offset[i-1] + nadj[i-1];

      /* Compute maximum bandwidth before renumbering */

      maxbandwidth1 = 0;
      avebandwidth1 = 0;
      for (i = 0; i < nv; i++) {
	int off = offset[i];
	int curid = i;
	for (j = 0; j < nadj[i]; j++) {
	  int adjid = adj[off+j];
	  int diff = abs(adjid-curid);
	  maxbandwidth1 = (diff > maxbandwidth1) ? diff : maxbandwidth1;
	  avebandwidth1 += diff;
	  nconn++;
	}
      }
      nconn = offset[nv-1]+nadj[nv-1];
      avebandwidth1 /= nconn;

      fprintf(stderr,
	      "Ave vertex ID difference on elements before renumbering: %-lf\n",
	      avebandwidth1);
      fprintf(stderr,
	      "Max vertex ID difference on elements before renumbering: %-d\n",
	      maxbandwidth1);
    
      fprintf(stderr,"\n");

      newmap = (int *) malloc(nv*sizeof(int));
      Graph_Renumber_GPS(nv, MV_ID(v0)-1, nadj, adj, newmap, &depth, &maxwidth);


      /* Compute bandwidth after renumbering */

      maxbandwidth2 = 0;
      avebandwidth2 = 0;
      for (i = 0; i < nv; i++) {
	int off = offset[i];
	int curid = newmap[i];
	for (j = 0; j < nadj[i]; j++) {
	  int adjid = newmap[adj[off+j]];
	  int diff = abs(adjid-curid);
	  maxbandwidth2 = (diff > maxbandwidth2) ? diff : maxbandwidth2;
	  avebandwidth2 += diff;
	  nconn++;
	}
      }
      nconn = offset[nv-1]+nadj[nv-1];
      avebandwidth2 /= nconn;


      if (maxbandwidth2 < maxbandwidth1 && avebandwidth2 < avebandwidth1) {

        /* Renumber */
      
        idx = 0; i = 0;
        while ((mv = MESH_Next_Vertex(mesh,&idx))) {
          MV_Set_ID(mv,newmap[i]+1);
          i++;
        }

        fprintf(stderr,
                "Ave vertex ID difference on elements after renumbering: %-lf\n",
                avebandwidth2);
        fprintf(stderr,
                "Max vertex ID difference on elements after renumbering: %-d\n",
                maxbandwidth2);    
      }
      else {
        nv = 0;
        idx = 0; 
        while ((mv = MESH_Next_Vertex(mesh,&idx)))
          MV_Set_ID(mv,++nv);

        fprintf(stderr,"Bandwidth did not improve. Keeping old numbering with gaps eliminated\n");
      }
      fprintf(stderr,"\n\n\n");
      
      free(nadj);
      free(adj);
      free(offset);
      free(newmap);

    }
 



    /* Reorder edges according to a breadth first algorithm applied to
       edges (differs from RCM in that it does not add adjacent nodes
       in ascending order of their valence) */

    if (mtype == MEDGE || mtype == MALLTYPE) {
      int ne = MESH_Num_Edges(mesh);
      MEdge_ptr ve;
      List_ptr elist;

      /************************* renumbering code ****************************/

      ne = MESH_Num_Edges(mesh);

      if (mtype == MALLTYPE) { 

	/* RCM algorithm already applied on the vertices. Use an edge
	   connected to the starting vertex as the first edge */

	List_ptr vedges = MV_Edges(v0);
	e0 = List_Entry(vedges,0);
	List_Delete(vedges);
      }
      else {
	/* Find the edge whose mid point is a minimum point */
	minx = miny = minz = 1.0e+12;
	e0 = NULL;
	idx = 0;
	while ((me = MESH_Next_Edge(mesh,&idx))) {
          double exyz[2][3];

	  MV_Coords(ME_Vertex(me,0),exyz[0]);
	  MV_Coords(ME_Vertex(me,1),exyz[1]);
	  xyz[0] = (exyz[0][0]+exyz[1][0])/2.0;
	  xyz[1] = (exyz[0][1]+exyz[1][1])/2.0;
	  xyz[2] = (exyz[0][2]+exyz[1][2])/2.0;
	  if (xyz[0] < minx && xyz[1] < miny && xyz[2] < minz) {
	    minx = xyz[0];
	    miny = xyz[1];
	    minz = xyz[2];
	    e0 = me;
	  }
	}
      }


      nadj = (int *) malloc(ne*sizeof(int));
      nalloc = ne*5;
      adj = (int *) malloc(nalloc*sizeof(int));

      if (!MESH_Num_Regions(mesh)) {
        int nentries = 0;
        i = 0;
        idx = 0;
        while ((me = MESH_Next_Edge(mesh,&idx))) {
          List_ptr efaces, adjelist;
          MFace_ptr ef;
          MEdge_ptr adje;

          adjelist = List_New(0);
          efaces = ME_Faces(me);
          idx2 = 0;
          while ((ef = List_Next_Entry(efaces,&idx2))) {
            List_ptr fedges = MF_Edges(ef,1,0);
            idx3 = 0;
            while ((adje = List_Next_Entry(fedges,&idx3))) {
              if (adje != me) {
                int emarked;
#ifdef MSTK_USE_MARKERS
                emarked = MEnt_IsMarked(adje,mkid);
#else
                MEnt_Get_AttVal(adje, mkatt, &emarked, &rval, &pval);
#endif
                if (!emarked) {
                  List_Add(adjelist,adje);
#ifdef MSTK_USE_MARKERS
                  MEnt_Mark(adje,mkid);
#else
                  MEnt_Set_AttVal(adje, mkatt, 1, 0.0, NULL);
#endif
                }
              }
            }
            List_Delete(fedges);
          }
          List_Delete(efaces);
#ifdef MSTK_USE_MARKERS
          List_Unmark(adjelist,mkid);
#endif

          nadj[i] = List_Num_Entries(adjelist);

          if (nentries+nadj[i] > nalloc) {
            nalloc *= 2;
            adj = (int *) realloc(adj,nalloc*sizeof(int));
          }

          idx2 = 0;
          while ((adje = List_Next_Entry(adjelist,&idx2)))
            adj[nentries++] = ME_ID(adje)-1;

          List_Delete(adjelist);
          i++;
        }
      }
      else {
        int nentries = 0;
        i = 0;
        idx = 0;
        while ((me = MESH_Next_Edge(mesh,&idx))) {
          List_ptr eregions, adjelist;
          MRegion_ptr er;
          MEdge_ptr adje;

          adjelist = List_New(0);
          eregions = ME_Regions(me);
          idx2 = 0;
          while ((er = List_Next_Entry(eregions,&idx2))) {
            List_ptr redges = MR_Edges(er);
            idx3 = 0;
            while ((adje = List_Next_Entry(redges,&idx3))) {
              if (adje != me) {
                int emarked;
#ifdef MSTK_USE_MARKERS
                emarked = MEnt_IsMarked(adje,mkid);
#else
                MEnt_Get_AttVal(adje, mkatt, &emarked, &rval, &pval);
#endif
                if (!emarked) {
                  List_Add(adjelist,adje);
#ifdef MSTK_USE_MARKERS
                  MEnt_Mark(adje,mkid);
#else
                  MEnt_Set_AttVal(adje, mkatt, 1, 0.0, NULL);
#endif
                }
              }
            }
            List_Delete(redges);
          }
          List_Delete(eregions);
#ifdef MSTK_USE_MARKERS
          List_Unmark(adjelist,mkid);
#endif
          
          nadj[i] = List_Num_Entries(adjelist);
          
          if (nentries+nadj[i] > nalloc) {
            nalloc *= 2;
            adj = (int *) realloc(adj,nalloc*sizeof(int));
          }
          
          idx2 = 0;
          while ((adje = List_Next_Entry(adjelist,&idx2)))
            adj[nentries++] = ME_ID(adje)-1;
          
          List_Delete(adjelist);
          i++;
        }
      }

      /* Compute offsets into adj array */

      offset = (int *) malloc(ne*sizeof(int));
      offset[0] = 0;
      for (i = 1; i < ne; i++)
        offset[i] = offset[i-1] + nadj[i-1];


      /* Compute maximum bandwidth before renumbering */

      maxbandwidth1 = 0;
      avebandwidth1 = 0;
      for (i = 0; i < ne; i++) {
        int off = offset[i];
        int curid = i;
        for (j = 0; j < nadj[i]; j++) {
          int adjid = adj[off+j];
          int diff = abs(adjid-curid);
          maxbandwidth1 = (diff > maxbandwidth1) ? diff : maxbandwidth1;
          avebandwidth1 += diff;
          nconn++;
        }
      }
      nconn = offset[ne-1]+nadj[ne-1];
      avebandwidth1 /= nconn;

      fprintf(stderr,
              "Ave edge ID difference on elements before renumbering: %-lf\n",
              avebandwidth1);
      fprintf(stderr,
              "Max edge ID difference on elements before renumbering: %-d\n",
              maxbandwidth1);
    
      fprintf(stderr,"\n");


      /* Call Graph Renumbering algorithm */

      newmap = (int *) malloc(ne*sizeof(int));
      Graph_Renumber_GPS(ne, ME_ID(e0)-1, nadj, adj, newmap, &depth, &maxwidth);


      /* Compute bandwidth after renumbering */

      maxbandwidth2 = 0;
      avebandwidth2 = 0;
      for (i = 0; i < ne; i++) {
        int off = offset[i];
        int curid = newmap[i];
        for (j = 0; j < nadj[i]; j++) {
          int adjid = newmap[adj[off+j]];
          int diff = abs(adjid-curid);
          maxbandwidth2 = (diff > maxbandwidth2) ? diff : maxbandwidth2;
          avebandwidth2 += diff;
          nconn++;
        }
      }
      nconn = offset[ne-1]+nadj[ne-1];
      avebandwidth2 /= nconn;

      if (maxbandwidth2 < maxbandwidth1 && avebandwidth2 < avebandwidth1) {
        /* Renumber */
      
        idx = 0; i = 0;
        while ((me = MESH_Next_Edge(mesh,&idx))) {
          ME_Set_ID(me,newmap[i]+1);
          i++;
        }

        fprintf(stderr,
                "Ave edge ID difference on elements after renumbering: %-lf\n",
                avebandwidth2);
        fprintf(stderr,
                "Max edge ID difference on elements after renumbering: %-d\n",
                maxbandwidth2);
        
      }
      else {
        ne = 0;
        idx = 0; 
        while ((me = MESH_Next_Edge(mesh,&idx)))
          ME_Set_ID(me,++ne);

        fprintf(stderr,"Bandwidth did not improve. Keeping old numbering with gaps eliminated\n");
      }
      fprintf(stderr,"\n\n\n");


      free(nadj);
      free(adj);
      free(offset);
      free(newmap);

    }


    /* Reorder faces according to a breadth first algorithm applied to
       edges (differs from RCM in that it does not add adjacent graph nodes
       in ascending order of their valence) */

    if (mtype == MFACE || mtype == MALLTYPE) {      
      int nf = MESH_Num_Faces(mesh);

      if (mtype == MALLTYPE) { 

        /* RCM algorithm already applied on the vertices. Use an edge
           connected to the starting vertex as the first edge */

        List_ptr vfaces = MV_Faces(v0);
        f0 = List_Entry(vfaces,0);
        List_Delete(vfaces);
      }
      else {
        /* Find the face whose mid point is a minimum point */
        minx = miny = minz = 1.0e+12;
        f0 = NULL;
        idx = 0;
        while ((mf = MESH_Next_Face(mesh,&idx))) {
          double fxyz[MAXPV2][3];
          int nfv;

          MF_Coords(mf,&nfv,fxyz);
          xyz[0] = fxyz[0][0];
          xyz[1] = fxyz[0][1];
          xyz[2] = fxyz[0][2];
          for (i = 1; i < nfv; i++) {
            xyz[0] += fxyz[i][0];
            xyz[1] += fxyz[i][1];
            xyz[2] += fxyz[i][2];
          }
          xyz[0] /= nfv; xyz[1] /= nfv; xyz[2] /= nfv;
          if (xyz[0] < minx && xyz[1] < miny && xyz[2] < minz) {
            minx = xyz[0];
            miny = xyz[1];
            minz = xyz[2];
            f0 = mf;
          }
        }
      }


      nadj = (int *) malloc(nf*sizeof(int));
      nalloc = nf*5;
      adj = (int *) malloc(nalloc*sizeof(int));

      if (!MESH_Num_Regions(mesh)) {
        int nentries = 0;
        i = 0;
        idx = 0;
        while ((mf = MESH_Next_Face(mesh,&idx))) {
          List_ptr vfaces, fverts, adjflist;
          MFace_ptr vf, adjf;
          MVertex_ptr fv;

          adjflist = List_New(0);
          fverts = MF_Vertices(mf,1,0);
          idx2 = 0;
          while ((fv = List_Next_Entry(fverts,&idx2))) {
            List_ptr vfaces = MV_Faces(fv);
            idx3 = 0;
            while ((adjf = List_Next_Entry(vfaces,&idx3))) {
              if (adjf != mf) {
                int fmarked;
#ifdef MSTK_USE_MARKERS
                fmarked = MEnt_IsMarked(adjf,mkid);
#else
                MEnt_Get_AttVal(adjf, mkatt, &fmarked, &rval, &pval);
#endif
                if (fmarked) {
                  List_Add(adjflist,adjf);
#ifdef MSTK_USE_MARKERS                  
                  MEnt_Mark(adjf,mkid);
#else
                  MEnt_Set_AttVal(adjf, mkatt, 1, 0.0, NULL);
#endif
                }
              }
            }	    
            List_Delete(vfaces);
          }
          List_Delete(fverts);
#ifdef MSTK_USE_MARKERS
          List_Unmark(adjflist,mkid);
#endif

          nadj[i] = List_Num_Entries(adjflist);

          if (nentries+nadj[i] > nalloc) {
            nalloc *= 2;
            adj = (int *) realloc(adj,nalloc*sizeof(int));
          }

          idx2 = 0;
          while ((adjf = List_Next_Entry(adjflist,&idx2)))
            adj[nentries++] = MF_ID(adjf)-1;

          List_Delete(adjflist);
          i++;
        }
      }
      else {
        int nentries = 0;
        i = 0;
        idx = 0;
        while ((mf = MESH_Next_Face(mesh,&idx))) {
          List_ptr fregions, adjflist;
          MRegion_ptr fr;
          MFace_ptr adjf;

          adjflist = List_New(0);
          fregions = MF_Regions(mf);
          idx2 = 0;
          while ((fr = List_Next_Entry(fregions,&idx2))) {
            List_ptr rfaces = MR_Faces(fr);
            idx3 = 0;
            while ((adjf = List_Next_Entry(rfaces,&idx3))) {
              if (adjf != mf) {
                int fmarked;
#ifdef MSTK_USE_MARKERS
                fmarked = MEnt_IsMarked(adjf,mkid);
#else
                MEnt_Get_AttVal(adjf, mkatt, &fmarked, &rval, &pval);
#endif
                if (fmarked) {
                  List_Add(adjflist,adjf);
#ifdef MSTK_USE_MARKERS                  
                  MEnt_Mark(adjf,mkid);
#else
                  MEnt_Set_AttVal(adjf, mkatt, 1, 0.0, NULL);
#endif
                }
              }
            }
            List_Delete(rfaces);
          }
          List_Delete(fregions);
#ifdef MSTK_USE_MARKERS
          List_Unmark(adjflist,mkid);
#endif

          nadj[i] = List_Num_Entries(adjflist);

          if (nentries+nadj[i] > nalloc) {
            nalloc *= 2;
            adj = (int *) realloc(adj,nalloc*sizeof(int));
          }

          idx2 = 0;
          while ((adjf = List_Next_Entry(adjflist,&idx2)))
            adj[nentries++] = MF_ID(adjf)-1;

          List_Delete(adjflist);
          i++;
        }
      }

      /* Compute offsets into adj array */

      offset = (int *) malloc(nf*sizeof(int));
      offset[0] = 0;
      for (i = 1; i < nf; i++)
        offset[i] = offset[i-1] + nadj[i-1];


      /* Compute maximum bandwidth before renumbering */

      maxbandwidth1 = 0;
      avebandwidth1 = 0;
      for (i = 0; i < nf; i++) {
        int off = offset[i];
        int curid = i;
        for (j = 0; j < nadj[i]; j++) {
          int adjid = adj[off+j];
          int diff = abs(adjid-curid);
          maxbandwidth1 = (diff > maxbandwidth1) ? diff : maxbandwidth1;
          avebandwidth1 += diff;
          nconn++;
        }
      }
      nconn = offset[nf-1]+nadj[nf-1];
      avebandwidth1 /= nconn;

      if (MESH_Num_Regions(mesh)) {
        fprintf(stderr,
                "Ave face ID difference on elements before renumbering: %-lf\n",
                avebandwidth1);
        fprintf(stderr,
                "Max face ID difference on elements before renumbering: %-d\n",
                maxbandwidth1);
      }
      else {
        fprintf(stderr,
                "Ave face ID difference before renumbering: %-lf\n",
                avebandwidth1);
        fprintf(stderr,
                "Max face ID difference before renumbering: %-d\n",
                maxbandwidth1);
      }
    
      fprintf(stderr,"\n");


      /* Call Graph Renumbering algorithm */

      newmap = (int *) malloc(nf*sizeof(int));
      Graph_Renumber_GPS(nf, MF_ID(f0)-1, nadj, adj, newmap, &depth, &maxwidth);


      /* Compute bandwidth after renumbering */

      maxbandwidth2 = 0;
      avebandwidth2 = 0;
      for (i = 0; i < nf; i++) {
        int off = offset[i];
        int curid = newmap[i];
        for (j = 0; j < nadj[i]; j++) {
          int adjid = newmap[adj[off+j]];
          int diff = abs(adjid-curid);
          maxbandwidth2 = (diff > maxbandwidth2) ? diff : maxbandwidth2;
          avebandwidth2 += diff;
          nconn++;
        }
      }
      nconn = offset[nf-1]+nadj[nf-1];
      avebandwidth2 /= nconn;


      if (maxbandwidth2 < maxbandwidth1 && avebandwidth2 < avebandwidth1) {
        /* Renumber */
      
        idx = 0; i = 0;
        while ((mf = MESH_Next_Face(mesh,&idx))) {
          MF_Set_ID(mf,newmap[i]+1);
          i++;
        }

        if (MESH_Num_Regions(mesh)) {
          fprintf(stderr,
                  "Ave face ID difference on elements after renumbering: %-lf\n",
                  avebandwidth2);
          fprintf(stderr,
                  "Max face ID difference on elements after renumbering: %-d\n",
                  maxbandwidth2);
        }
        else {
          fprintf(stderr,
                  "Ave face ID difference after renumbering: %-lf\n",
                  avebandwidth2);
          fprintf(stderr,
                  "Max face ID difference after renumbering: %-d\n",
                  maxbandwidth2);
        }
    
      }
      else {
        nf = 0;
        idx = 0; 
        while ((mf = MESH_Next_Face(mesh,&idx)))
          MF_Set_ID(mf,++nf);

        fprintf(stderr,"Bandwidth did not improve. Keeping old numbering with gaps eliminated\n");
      }
      fprintf(stderr,"\n\n\n");

      free(nadj);
      free(adj);
      free(offset);
      free(newmap);
    }


    if (mtype == MREGION || mtype == MALLTYPE) {
      int nr = MESH_Num_Regions(mesh);

      if (nr) {

        if (mtype == MALLTYPE) { 

          /* Renumbering algorithm already applied on the vertices. Use
             a region connected to the starting vertex as the first
             region */

          List_ptr vregions = MV_Regions(v0);
          r0 = List_Entry(vregions,0);
          List_Delete(vregions);
        }
        else {
          /* Find the region whose center point is a minimum point */
          minx = miny = minz = 1.0e+12;
          r0 = NULL;
          idx = 0;
          while ((mr = MESH_Next_Region(mesh,&idx))) {
            double rxyz[MAXPV3][3];
            int nrv;

            MR_Coords(mr,&nrv,rxyz);
            xyz[0] = rxyz[0][0];
            xyz[1] = rxyz[0][1];
            xyz[2] = rxyz[0][2];
            for (i = 1; i < nrv; i++) {
              xyz[0] += rxyz[i][0];
              xyz[1] += rxyz[i][1];
              xyz[2] += rxyz[i][2];
            }
            xyz[0] /= nrv; xyz[1] /= nrv; xyz[2] /= nrv;
            if (xyz[0] < minx && xyz[1] < miny && xyz[2] < minz) {
              minx = xyz[0];
              miny = xyz[1];
              minz = xyz[2];
              r0 = mr;
            }
          }
        }


        nadj = (int *) malloc(nr*sizeof(int));
        nalloc = nr*5;
        adj = (int *) malloc(nalloc*sizeof(int));

        int nentries = 0;
        i = 0;
        idx = 0;
        while ((mr = MESH_Next_Region(mesh,&idx))) {
          List_ptr vregions, rverts, adjrlist;
          MRegion_ptr vr, adjr;
          MVertex_ptr rv;

          adjrlist = List_New(0);
          rverts = MR_Vertices(mr);
          idx2 = 0;
          while ((rv = List_Next_Entry(rverts,&idx2))) {
            List_ptr vregions = MV_Regions(rv);
            idx3 = 0;
            while ((adjr = List_Next_Entry(vregions,&idx3))) {
              if (adjr != mr) {
                int rmarked;
#ifdef MSTK_USE_MARKERS
                rmarked = MEnt_IsMarked(adjr,mkid);
#else
                MEnt_Get_AttVal(adjr, mkatt, &rmarked, &rval, &pval);
#endif
                List_Add(adjrlist,adjr);
#ifdef MSTK_USE_MARKERS
                MEnt_Mark(adjr,mkid);
#else
                MEnt_Set_AttVal(adjr, mkatt, 1, 0.0, NULL);
#endif
              }
            }	    
            List_Delete(vregions);
          }
          List_Delete(rverts);
#ifdef MSTK_USE_MARKERS
          List_Unmark(adjrlist,mkid);
#endif

          nadj[i] = List_Num_Entries(adjrlist);

          if (nentries+nadj[i] > nalloc) {
            nalloc *= 2;
            adj = (int *) realloc(adj,nalloc*sizeof(int));
          }

          idx2 = 0;
          while ((adjr = List_Next_Entry(adjrlist,&idx2)))
            adj[nentries++] = MR_ID(adjr)-1;

          List_Delete(adjrlist);
          i++;
        }

        /* Compute offsets into adj array */

        offset = (int *) malloc(nr*sizeof(int));
        offset[0] = 0;
        for (i = 1; i < nr; i++)
          offset[i] = offset[i-1] + nadj[i-1];


        /* Compute maximum bandwidth before renumbering */

        maxbandwidth1 = 0;
        avebandwidth1 = 0;
        for (i = 0; i < nr; i++) {
          int off = offset[i];
          int curid = i;
          for (j = 0; j < nadj[i]; j++) {
            int adjid = adj[off+j];
            int diff = abs(adjid-curid);
            maxbandwidth1 = (diff > maxbandwidth1) ? diff : maxbandwidth1;
            avebandwidth1 += diff;
            nconn++;
          }
        }
        nconn = offset[nr-1]+nadj[nr-1];
        avebandwidth1 /= nconn;

        fprintf(stderr,
                "Ave region ID difference before renumbering: %-lf\n",
                avebandwidth1);
        fprintf(stderr,
                "Max region ID difference before renumbering: %-d\n",
                maxbandwidth1);
    
        fprintf(stderr,"\n");


        /* Call Graph Renumbering algorithm */

        newmap = (int *) malloc(nr*sizeof(int));
        Graph_Renumber_GPS(nr, MR_ID(r0)-1, nadj, adj, newmap, &depth, &maxwidth);

        /* Compute bandwidth after renumbering */

        maxbandwidth2 = 0;
        avebandwidth2 = 0;
        for (i = 0; i < nr; i++) {
          int off = offset[i];
          int curid = newmap[i];
          for (j = 0; j < nadj[i]; j++) {
            int adjid = newmap[adj[off+j]];
            int diff = abs(adjid-curid);
            maxbandwidth2 = (diff > maxbandwidth2) ? diff : maxbandwidth2;
            avebandwidth2 += diff;
            nconn++;
          }
        }
        nconn = offset[nr-1]+nadj[nr-1];
        avebandwidth2 /= nconn;

        if (maxbandwidth2 < maxbandwidth1 && avebandwidth2 < avebandwidth1) {

          /* Renumber */
      
          idx = 0; i = 0;
          while ((mr = MESH_Next_Region(mesh,&idx))) {
            MR_Set_ID(mr,newmap[i]+1);
            i++;
          }

          fprintf(stderr,
                  "Ave region ID difference after renumbering: %-lf\n",
                  avebandwidth2);
          fprintf(stderr,
                  "Max region ID difference after renumbering: %-d\n",
                  maxbandwidth2);
    
        }
        else {
          nr = 0;
          idx = 0; 
          while ((mr = MESH_Next_Region(mesh,&idx)))
            MR_Set_ID(mr,++nr);

          fprintf(stderr,"Bandwidth did not improve. Keeping old numbering with gaps eliminated\n");
        }
        fprintf(stderr,"\n\n\n");


        free(nadj);
        free(adj);
        free(offset);
        free(newmap);
      }
    }

#ifdef MSTK_USE_MARKERS
    MSTK_FreeMarker(mkid);
#endif
  }
  

  vidatt = MAttrib_New(mesh,"vidrcm",INT,MVERTEX);
  idx = 0;
  while ((mv = MESH_Next_Vertex(mesh,&idx))) {
    MEnt_Set_AttVal(mv,vidatt,MV_ID(mv),0.0,NULL);
  }
 

  /* We have to reset the max IDs stored in the mesh so that we can correctly
     assign IDs to new entities */

  MESH_Reset_Cached_MaxIDs(mesh);

  return;
}
예제 #5
0
  int MESH_ConcatSubMesh_Region(Mesh_ptr mesh, int num, Mesh_ptr *submeshes) {
    int nrf, nre, nrv, nfe, i, j, k, num_parbndry_verts, num_parbndry_edges, num_parbndry_faces, ival;
    MVertex_ptr mv, new_mv, sub_mv;
    MEdge_ptr me, new_me, sub_me;
    MFace_ptr mf, new_mf, sub_mf;
    MRegion_ptr new_mr, sub_mr;
    List_ptr mrfaces, mredges, mrverts, mfedges;
    int add_region, idx, global_id, iloc, *loc;
    double coor[3], rval;
    void *pval;
    Mesh_ptr submesh;

    List_ptr parbndry_verts = List_New(10);        
    List_ptr parbndry_edges = List_New(10);
    List_ptr parbndry_faces = List_New(10);

    MFace_ptr *rfaces = (MFace_ptr *) malloc(MAXPF3*sizeof(MFace_ptr));
    int *rfdirs = (int *) malloc(MAXPF3*sizeof(int));
    MEdge_ptr *fedges = (MEdge_ptr *) malloc(MAXPV2*sizeof(MEdge_ptr));
    int *fedirs = (int *) malloc(MAXPV2*sizeof(int));

    MAttrib_ptr parbndryatt = MAttrib_New(mesh, "on_parbndry", INT, MVERTEX);
    
    /* collect faces, edges and vertices on the partition boundary */
    idx = 0; num_parbndry_faces = 0;
    while ((mf = MESH_Next_Face(mesh,&idx))) 
      if (MF_PType(mf) != PINTERIOR) {
        List_Add(parbndry_faces,mf);
        num_parbndry_faces++;
      }
    idx = 0; num_parbndry_edges = 0;
    while ((me = MESH_Next_Edge(mesh,&idx))) 
      if (ME_PType(me) != PINTERIOR) {
        List_Add(parbndry_edges,me);
        num_parbndry_edges++;
      }
    idx = 0; num_parbndry_verts = 0;
    while ((mv = MESH_Next_Vertex(mesh,&idx)))
      if (MV_PType(mv) != PINTERIOR) {
        List_Add(parbndry_verts,mv);
        MEnt_Set_AttVal(mv, parbndryatt, 1, 0.0, NULL);
        num_parbndry_verts++;
      }
    
    /* sort based on global ID */
    List_Sort(parbndry_faces,num_parbndry_faces,sizeof(MFace_ptr),compareGlobalID);
    List_Sort(parbndry_edges,num_parbndry_edges,sizeof(MEdge_ptr),compareGlobalID);
    List_Sort(parbndry_verts,num_parbndry_verts,sizeof(MVertex_ptr),compareGlobalID);

    int *parbndry_vert_gids = (int *)malloc(num_parbndry_verts*sizeof(int));
    int *parbndry_edge_gids = (int *)malloc(num_parbndry_edges*sizeof(int));
    int *parbndry_face_gids = (int *)malloc(num_parbndry_faces*sizeof(int));

    /* store them in array for binary search */
    for (i = 0; i < num_parbndry_faces; i++) {
      mf = List_Entry(parbndry_faces,i);
      parbndry_face_gids[i] = MF_GlobalID(mf);
    }
    for (i = 0; i < num_parbndry_edges; i++) {
      me = List_Entry(parbndry_edges,i);
      parbndry_edge_gids[i] = ME_GlobalID(me);
    }
    for (i = 0; i < num_parbndry_verts; i++) {
      mv = List_Entry(parbndry_verts,i);
      parbndry_vert_gids[i] = MV_GlobalID(mv);
    }

   /* Make list of new edges and vertices which will be updated
       with each mesh that is concatenated */
    int max_vnew = 0, max_enew = 0, max_fnew = 0;
    for (i = 0; i < num; i++) {
      max_vnew += MESH_Num_Vertices(submeshes[i]);
      max_enew += MESH_Num_Edges(submeshes[i]);
      max_fnew += MESH_Num_Faces(submeshes[i]);
    }

    int num_new_verts = 0, num_new_edges = 0, num_new_faces = 0; 
    int *new_vert_gids = (int *) malloc(max_vnew*sizeof(int));
    int *new_edge_gids = (int *) malloc(max_enew*sizeof(int));
    int *new_face_gids = (int *) malloc(max_fnew*sizeof(int));

    List_ptr new_verts = List_New(max_vnew);
    List_ptr new_edges = List_New(max_enew);
    List_ptr new_faces = List_New(max_fnew);
  

    /* Now process each mesh and add a layer of ghost elements from
       each of them to the main partition */
       
    for (i = 0; i < num; i++) {
      submesh = submeshes[i];

      MAttrib_ptr vidatt = MAttrib_New(submesh, "tempvid", POINTER, MVERTEX);
      MAttrib_ptr eidatt = MAttrib_New(submesh, "tempeid", POINTER, MEDGE);
      MAttrib_ptr fidatt = MAttrib_New(submesh, "tempfid", POINTER, MFACE);

      idx = 0;
      while ((sub_mr = MESH_Next_Region(submesh, &idx))) {
        add_region = 0;

        /* Find matching vertices between submesh and main mesh */

        mrverts = MR_Vertices(sub_mr);
        nrv = List_Num_Entries(mrverts);
        for (j = 0; j < nrv; j++) {
          sub_mv = List_Entry(mrverts,j);

          MEnt_Get_AttVal(sub_mv, &vidatt, &ival, &rval, &mv);

          if (mv) {
            int on_parbndry=0;
            MEnt_Get_AttVal(mv, &parbndryatt, &on_parbndry, &rval, &pval);
            if (on_parbndry)
              add_region = 1; 
          } else {

            /* Does the global ID of this vertex of the sub mesh region
             * match the global ID of a boundary vertex in the main
             * mesh? */
            
            global_id = MV_GlobalID(sub_mv);
            loc = (int *) bsearch(&global_id, parbndry_vert_gids, num_parbndry_verts, sizeof(int),
                                  compareINT);
            if (loc) {
              add_region = 1; 
              iloc = loc - parbndry_vert_gids;
              mv = List_Entry(parbndry_verts,iloc); 
              /* here set the ghost vertex property, only necessary when the input submeshes are not consistent */
              if(MV_PType(mv) == PGHOST && MV_PType(sub_mv) != PGHOST) {
                MV_Set_GEntDim(mv,MV_GEntDim(sub_mv));
                MV_Set_GEntID(mv,MV_GEntID(sub_mv));
              }
              
              MEnt_Set_AttVal(sub_mv, vidatt, 0, 0.0, mv);
            }
          }
        }
        List_Delete(mrverts);

        /* Find matching edges between submesh and main mesh */

        mredges = MR_Edges(sub_mr);
        nre = List_Num_Entries(mredges);
        for (j = 0; j < nre; j++) {
          sub_me = List_Entry(mredges,j);
          
          /* Does the edge already have a counterpart in the main mesh? */
          MEnt_Get_AttVal(sub_me, eidatt, &ival, &rval, &me);

          if (!me) {
            /* Does the global ID of this edge of the sub mesh region
             * match the global ID of a boundary edge in the main
             * mesh? */
            
            global_id = ME_GlobalID(sub_me);
            loc = (int *) bsearch(&global_id, parbndry_edge_gids, num_parbndry_edges, sizeof(int),
                                  compareINT);
            if (loc) {
              add_region = 1; 
              iloc = loc - parbndry_edge_gids;
              me = List_Entry(parbndry_edges,iloc); 
              /* here set the ghost edge property, only necessary when the input submeshes are not consistent */
              if(ME_PType(me) == PGHOST && ME_PType(sub_me) != PGHOST) {
                ME_Set_GEntDim(me,ME_GEntDim(sub_me));
                ME_Set_GEntID(me,ME_GEntID(sub_me));
              }

              MEnt_Set_AttVal(sub_me, eidatt, 0, 0.0, me);
            }
          }
        }
        List_Delete(mredges);
          
        /* Find matching faces between submesh and main mesh */

        mrfaces = MR_Faces(sub_mr);
        nrf = List_Num_Entries(mrfaces);
        for (j = 0; j < nrf; j++) {
          sub_mf = List_Entry(mrfaces,j);

          MEnt_Get_AttVal(sub_mf, fidatt, &ival, &rval, &mf);

          if (!mf) {
            /* Does the global ID of this face of the sub mesh region
             * match the global ID of a boundary face in the main
             * mesh? */
            
            global_id = MF_GlobalID(sub_mf);
            loc = (int *) bsearch(&global_id, parbndry_face_gids, num_parbndry_faces, sizeof(int),
                                  compareINT);
            if (loc) {
              iloc = loc - parbndry_face_gids;
              mf = List_Entry(parbndry_faces,iloc); 
              /* here set the ghost edge property, only necessary when the input submeshes are not consistent */
              if (MF_PType(mf) == PGHOST && MF_PType(sub_mf) != PGHOST) {
                MF_Set_GEntDim(mf,MF_GEntDim(sub_mf));
                MF_Set_GEntID(mf,MF_GEntID(sub_mf));
              }

              MEnt_Set_AttVal(sub_mf, fidatt, 0, 0.0, mf);
            }
          }
        }

        if (!add_region) {
          List_Delete(mrfaces);
          continue;
        }
        
        new_mr = MR_New(mesh);                  /* add region */
        MR_Set_GEntDim(new_mr,MR_GEntDim(sub_mr));
        MR_Set_GEntID(new_mr,MR_GEntID(sub_mr));
        MR_Set_PType(new_mr,PGHOST);
        MR_Set_MasterParID(new_mr,MR_MasterParID(sub_mr));
        MR_Set_GlobalID(new_mr,MR_GlobalID(sub_mr));
	
        nrf = List_Num_Entries(mrfaces);
        int i2;
        for(i2 = 0; i2 < nrf; i2++) {
          sub_mf = List_Entry(mrfaces,i2);
          global_id = MF_GlobalID(sub_mf);
          rfdirs[i2] = MR_FaceDir_i(sub_mr,i2) == 1 ? 1 : 0;

          new_mf = NULL;
          MEnt_Get_AttVal(sub_mf, fidatt, &ival, &rval, &new_mf);

          if (!new_mf) {
            /* search in the ghost layer if another face with
             * this global ID has been added */
            loc = (int *) bsearch(&global_id, new_face_gids, num_new_faces,
                                  sizeof(int), compareINT);
            if (loc) {
              iloc = loc - new_face_gids;
              new_mf = List_Entry(new_faces, iloc);
              MEnt_Set_AttVal(sub_mf, fidatt, 0, 0.0, new_mf);
            }
          }

          if (new_mf) {
            List_ptr mfverts = MF_Vertices(sub_mf,1,0);
            int fvgid0[2];
            fvgid0[0] = MF_GlobalID(List_Entry(mfverts,0));
            fvgid0[1] = MF_GlobalID(List_Entry(mfverts,1));
            List_Delete(mfverts);

            mfverts = MF_Vertices(new_mf,1,0);
            int nfv = List_Num_Entries(mfverts);
            int fvgid1[MAXPV2];
            for (j = 0; j < nfv; j++)
              fvgid1[j] = MF_GlobalID(List_Entry(mfverts,j));
            List_Delete(mfverts);

            for (j = 0; j < nfv; j++) {
              if (fvgid1[j] == fvgid0[0]) {
                if (fvgid1[(j+nfv-1)%nfv] == fvgid0[1]) /* reverse dir */
                  rfdirs[i2] = !rfdirs[i2];
                break;
              }
            }                  
          }
          else {  /* add a new face to main mesh */
            new_mf = MF_New(mesh); /* add face */
            MF_Set_GEntDim(new_mf,MF_GEntDim(sub_mf));
            MF_Set_GEntID(new_mf,MF_GEntID(sub_mf));
            MF_Set_PType(new_mf,PGHOST);
            MF_Set_MasterParID(new_mf,MF_MasterParID(sub_mf));
            MF_Set_GlobalID(new_mf,MF_GlobalID(sub_mf));
	    
            MEnt_Set_AttVal(sub_mf, fidatt, 0, 0.0, new_mf);
            List_Add(new_faces, new_mf);
	    
            mfedges = MF_Edges(sub_mf,1,0);
            nfe = List_Num_Entries(mfedges);
            for(j = 0; j < nfe; j++) {
              sub_me = List_Entry(mfedges,j);
              global_id = ME_GlobalID(sub_me);
              
              fedirs[j] = MF_EdgeDir_i(sub_mf,j) == 1 ? 1 : 0;

              new_me = NULL;
              MEnt_Get_AttVal(sub_me, eidatt, &ival, &rval, &new_me);

              if (!new_me) {
                /* search in the ghost layer if another edge with
                 * this global ID has been added */
                loc = (int *) bsearch(&global_id, new_edge_gids, num_new_edges,
                                      sizeof(int), compareINT);
                if (loc) {
                  iloc = loc - new_edge_gids;
                  new_me = List_Entry(new_edges, iloc);
                  MEnt_Set_AttVal(sub_me, eidatt, 0, 0.0, new_me);
                }
              }
              
              if (new_me) {
                if(MV_GlobalID(ME_Vertex(new_me,0)) != MV_GlobalID(ME_Vertex(sub_me,0)))
                  fedirs[j] = 1 - fedirs[j];  /* if the edge dir is not the same, reverse the edge dir */
	      
              } else {  /* add a new edge to main mesh */
                new_me = ME_New(mesh);      /* add new edge and copy information */
                ME_Set_GEntDim(new_me,ME_GEntDim(sub_me));
                ME_Set_GEntID(new_me,ME_GEntID(sub_me));
                ME_Set_PType(new_me,PGHOST);
                ME_Set_MasterParID(new_me,ME_MasterParID(sub_me));
                ME_Set_GlobalID(new_me,ME_GlobalID(sub_me));
		
                MEnt_Set_AttVal(sub_me, eidatt, 0, 0.0, new_me);
                List_Add(new_edges, new_me);

                for(k = 0; k < 2; k++) {
                  sub_mv = ME_Vertex(sub_me,k);
                  global_id = MV_GlobalID(sub_mv);

                  new_mv = NULL;
                  MEnt_Get_AttVal(sub_mv, vidatt, &ival, &rval, &new_mv);

                  if (!new_mv) {
                    /* search in the ghost layer if another vertex with
                     * this global ID has been added */
                    loc = (int *) bsearch(&global_id, new_vert_gids, num_new_verts,
                                          sizeof(int), compareINT);
                    if (loc) {
                      iloc = loc - new_vert_gids;
                      new_mv = List_Entry(new_verts, iloc);
                      MEnt_Set_AttVal(sub_mv, vidatt, 0, 0.0, new_mv);
                    }
                  }
              
                  if (!new_mv) {  /* add new vertex to main mesh */
                    new_mv = MV_New(mesh);  /* add new vertex and copy information */
                    MV_Set_GEntDim(new_mv,MV_GEntDim(sub_mv));
                    MV_Set_GEntID(new_mv,MV_GEntID(sub_mv));
                    MV_Set_PType(new_mv,PGHOST);
                    MV_Set_MasterParID(new_mv,MV_MasterParID(sub_mv));
                    MV_Set_GlobalID(new_mv,MV_GlobalID(sub_mv));
                    MV_Coords(sub_mv,coor);
                    MV_Set_Coords(new_mv,coor);
		    
                    MEnt_Set_AttVal(sub_mv, vidatt, 0, 0.0, new_mv);
                    List_Add(new_verts, new_mv);
                  }
                  ME_Set_Vertex(new_me,k,new_mv);  /* set edge-vertex */
                }
              }							
              fedges[j] = new_me;
            }
            MF_Set_Edges(new_mf,nfe,fedges,fedirs); /* set face-edge */
            List_Delete(mfedges);
          }
          rfaces[i2] = new_mf;
        }
        MR_Set_Faces(new_mr,nrf,rfaces,rfdirs); /* set region-face */

        List_Delete(mrfaces);
      }

      idx = 0;
      while ((sub_mv = MESH_Next_Vertex(submesh, &idx)))
	MEnt_Rem_AttVal(sub_mv, vidatt);
      MAttrib_Delete(vidatt);
      idx = 0;
      while ((sub_me = MESH_Next_Edge(submesh, &idx)))
	MEnt_Rem_AttVal(sub_me, eidatt);
      MAttrib_Delete(eidatt);
      idx = 0;
      while ((sub_mf = MESH_Next_Face(submesh, &idx)))
	MEnt_Rem_AttVal(sub_mf, fidatt);
      MAttrib_Delete(fidatt);

      /* Sort the added entity lists by GlobalID */
      num_new_faces = List_Num_Entries(new_faces);
      List_Sort(new_faces, num_new_faces, sizeof(MFace_ptr), compareGlobalID);
      for (j = 0; j < num_new_faces; j++)
        new_face_gids[j] = MF_GlobalID(List_Entry(new_faces, j));

      num_new_edges = List_Num_Entries(new_edges);
      List_Sort(new_edges, num_new_edges, sizeof(MEdge_ptr), compareGlobalID);
      for (j = 0; j < num_new_edges; j++)
        new_edge_gids[j] = ME_GlobalID(List_Entry(new_edges, j));

      num_new_verts = List_Num_Entries(new_verts);
      List_Sort(new_verts, num_new_verts, sizeof(MVertex_ptr), compareGlobalID);
      for (j = 0; j < num_new_verts; j++)
        new_vert_gids[j] = MV_GlobalID(List_Entry(new_verts, j));
      
    }      

    idx = 0;
    while ((mv = List_Next_Entry(parbndry_verts, &idx)))
      MEnt_Rem_AttVal(mv, parbndryatt);
    MAttrib_Delete(parbndryatt);
    
    List_Delete(parbndry_faces);
    List_Delete(parbndry_edges);
    List_Delete(parbndry_verts);
    List_Delete(new_faces);
    List_Delete(new_edges);
    List_Delete(new_verts);

    free(parbndry_vert_gids);
    free(parbndry_edge_gids);
    free(parbndry_face_gids);
    free(new_face_gids);
    free(new_edge_gids);
    free(new_vert_gids);
    free(fedges);
    free(fedirs);
    free(rfaces);
    free(rfdirs);

    return 1;
  }
예제 #6
0
  int MESH_WriteToFile(Mesh_ptr mesh, const char *filename, RepType rtype, MSTK_Comm comm) {
  FILE *fp;
  char mesg[80], attname[256];
  int i, j, k, idx;
  int gdim, gid;
  int mvid, mvid0, mvid1, mvid2, mrid2, meid, mfid, mrid;
  int nav, nar, nfe, nfv, nrf, nrv, dir=0;
  int nv, ne, nf, nr;
  int natt, ncomp, ival, nent;
  double xyz[3], rval, rdummy, *rval_arr;
  void *pval, *pdummy;
  MVertex_ptr mv, mv0, mv1, mv2;
  MEdge_ptr me;
  MFace_ptr mf;
  MRegion_ptr mr, mr2;
  List_ptr adjverts, mfedges, mfverts, mrfaces, mrverts, adjregs;
  RepType reptype;
  MAttrib_ptr attrib, vidatt, eidatt, fidatt, ridatt;
  MType attentdim;
  MAttType atttype;

  char modfilename[256];
  strcpy(modfilename, filename);
  
  int rank = 0, numprocs = 1;
#ifdef MSTK_HAVE_MPI
  if (comm) {
    MPI_Comm_size((MPI_Comm)comm, &numprocs);
    MPI_Comm_rank((MPI_Comm)comm, &rank);
  }
  if (numprocs > 1) {
    int ndigits = 0;
    int div = 1;
    while (numprocs/div) {div *= 10; ndigits++;}
    sprintf(modfilename,"%s.%d.%0*d",filename,numprocs,ndigits,rank);
  }
#endif
  
  if (!(fp = fopen(modfilename,"w"))) {
    sprintf(mesg,"Cannot open file %-s for writing",modfilename);
    MSTK_Report("MESH_WriteToFile",mesg,MSTK_ERROR);
    return 0;
  }

  if (rtype != UNKNOWN_REP) {
    reptype = rtype;
  }
  else {
    reptype = MESH_RepType(mesh);
  }

  nv = MESH_Num_Vertices(mesh);
  ne = MESH_Num_Edges(mesh);
  nf = MESH_Num_Faces(mesh);
  nr = MESH_Num_Regions(mesh);

  fprintf(fp,"MSTK %-2.1lf\n",MSTK_FILE_VER);
  fprintf(fp,"%s %d %d %d %d\n",
	  MESH_rtype_str[reptype], 
	  nv, 
	  (reptype >= R1 && reptype <= R4)?0:ne, 
	  (reptype >= R1 && reptype <= R2 && nr)?0:nf, 
	  nr);

  vidatt = MAttrib_New(mesh,"vidatt",INT,MVERTEX);
  eidatt = MAttrib_New(mesh,"eidatt",INT,MEDGE);
  fidatt = MAttrib_New(mesh,"fidatt",INT,MFACE);
  ridatt = MAttrib_New(mesh,"ridatt",INT,MREGION);

  idx = 0; i = 0;
  while ((mv = MESH_Next_Vertex(mesh,&idx)))
    MEnt_Set_AttVal(mv,vidatt,++i,0.0,NULL);

  idx = 0; i = 0;
  while ((me = MESH_Next_Edge(mesh,&idx)))
    MEnt_Set_AttVal(me,eidatt,++i,0.0,NULL);

  idx = 0; i = 0;
  while ((mf = MESH_Next_Face(mesh,&idx)))
    MEnt_Set_AttVal(mf,fidatt,++i,0.0,NULL);

  idx = 0; i = 0;
  while ((mr = MESH_Next_Region(mesh,&idx)))
    MEnt_Set_AttVal(mr,ridatt,++i,0.0,NULL);
  
  
  fprintf(fp,"vertices\n");
  idx = 0;
  while ((mv = MESH_Next_Vertex(mesh,&idx))) {

    MV_Coords(mv,xyz);

    gdim = MV_GEntDim(mv);
    gid = MV_GEntID(mv);

    fprintf(fp,"%24.16lf %24.16lf %24.16lf   %d %d\n",
	    xyz[0],xyz[1],xyz[2],gdim,gid);
    
  }

  if (reptype == R2 || reptype == R4) {
    fprintf(fp,"adjvertices\n");

    idx = 0;
    while ((mv = MESH_Next_Vertex(mesh,&idx))) {

      nav = MV_Num_AdjVertices(mv);
      fprintf(fp,"%d ",nav);
      
      adjverts = MV_AdjVertices(mv);
      for (j = 0; j < nav; j++) {
	mv2 = List_Entry(adjverts,j);
	MEnt_Get_AttVal(mv2,vidatt,&mvid2,&rval,&pval);
	fprintf(fp,"%d ",mvid2);
      }
      fprintf(fp,"\n");
      List_Delete(adjverts);
    }
  }



  if (reptype <= F4 && ne) {
    fprintf(fp,"edges\n");

    idx = 0;
    while ((me = MESH_Next_Edge(mesh,&idx))) {

      mv0 = ME_Vertex(me,0);
      MEnt_Get_AttVal(mv0,vidatt,&mvid0,&rval,&pval);
      mv1 = ME_Vertex(me,1);
      MEnt_Get_AttVal(mv1,vidatt,&mvid1,&rval,&pval);

      gdim = ME_GEntDim(me);
      gid = ME_GEntID(me);

      fprintf(fp,"%d %d \t%d %d\n",mvid0,mvid1,gdim,gid);
    }
  }



  if (reptype <= F4) {

    /* For full representations, always write out faces in terms of edges */

    fprintf(fp,"faces edge\n");
    
    idx = 0;
    while ((mf = MESH_Next_Face(mesh,&idx))) {
      
      nfe = MF_Num_Edges(mf);
      fprintf(fp,"%d ",nfe);
      
      mfedges = MF_Edges(mf,1,0);
      for (j = 0; j < nfe; j++) {
	me = List_Entry(mfedges,j);
	dir = MF_EdgeDir_i(mf,j);
	MEnt_Get_AttVal(me,eidatt,&meid,&rval,&pval);
	if (dir != 1) meid = -meid;
	fprintf(fp,"%d ",meid);
      }
      List_Delete(mfedges);
      
      gdim = MF_GEntDim(mf);
      /*
	gent = MF_GEntity(mf);
	gid = gent ? -99 : 0;
      */
      gid = MF_GEntID(mf);
      
      fprintf(fp,"\t%d %d\n",gdim,gid);
    }
  }
  else {

    /* For reduced representations, R3 and R4 always write out faces
       in terms of vertices. For reduced representations, R1 and R2
       write out faces in terms of vertices only when there are no
       regions (i.e. faces are the highest level mesh entities) */

    if ((reptype > R2) || (nr == 0)) {

      fprintf(fp,"faces vertex\n");

      idx = 0;
      while ((mf = MESH_Next_Face(mesh,&idx))) {
	
	nfv = MF_Num_Edges(mf);
	fprintf(fp,"%d ",nfv);
	
	mfverts = MF_Vertices(mf,1,0);
	for (j = 0; j < nfv; j++) {
	  mv = List_Entry(mfverts,j);
	  MEnt_Get_AttVal(mv,vidatt,&mvid,&rval,&pval);
	  fprintf(fp,"%d ",mvid);
	}
	List_Delete(mfverts);

	gdim = MF_GEntDim(mf);
	gid = MF_GEntID(mf);
	
	fprintf(fp,"\t%d %d\n",gdim,gid);
      }
    }
	
  }


  if (nr) {
    if (reptype <= F4 || reptype >= R2) {
      fprintf(fp,"regions face\n");

      idx = 0;
      while ((mr = MESH_Next_Region(mesh,&idx))) {

	nrf = MR_Num_Faces(mr);
	fprintf(fp,"%d ",nrf);

	mrfaces = MR_Faces(mr);
	for (j = 0; j < nrf; j++) {
	  mf = List_Entry(mrfaces,j);
	  dir = MR_FaceDir_i(mr,j);
	  MEnt_Get_AttVal(mf,fidatt,&mfid,&rval,&pval);
	  if (dir != 1) mfid = -mfid;
	  fprintf(fp,"%d ",mfid);
	}
	List_Delete(mrfaces);
	
	gdim = MF_GEntDim(mr);
	gid = MR_GEntID(mr);

	fprintf(fp,"\t%d %d\n",gdim,gid);
      }
    }
    else {
      fprintf(fp,"regions vertex\n");

      idx = 0;
      while ((mr = MESH_Next_Region(mesh,&idx))) {

	nrv = MR_Num_Vertices(mr);
	fprintf(fp,"%d ",nrv);

	mrverts = MR_Vertices(mr);
	for (j = 0; j < nrv; j++) {
	  mv = List_Entry(mrverts,j);
	  MEnt_Get_AttVal(mv,vidatt,&mvid,&rval,&pval);
	  fprintf(fp,"%d ",mvid);
	}
	List_Delete(mrverts);
	
	gdim = MR_GEntDim(mr);
	gid = MR_GEntID(mr);

	fprintf(fp,"\t%d %d\n",gdim,gid);
      }
    }

    if (reptype == R2 || reptype == R4) {
      fprintf(fp,"adjregions\n");
      
      idx = 0;
      while ((mr = MESH_Next_Region(mesh,&idx))) {

	nar = MR_Num_Faces(mr);
	fprintf(fp,"%d ",nar);

	adjregs = MR_AdjRegions(mr);

	for (j = 0; j < nar; j++) {
	  mr2 = List_Entry(adjregs,j);
	  if ((long) mr2 == -1) 
	    fprintf(fp,"%d ",0);
	  else {
	    MEnt_Get_AttVal(mr2,ridatt,&mrid2,&rval,&pval);
	    fprintf(fp,"%d ",mrid2);
	  }
	}
	fprintf(fp,"\n");
	List_Delete(adjregs);
      }
    }
  }


  /* Write out attributes if there are more than the 4 that we created 
    in this routine */


  if ((natt = MESH_Num_Attribs(mesh)) > 4) {

    fprintf(fp,"attributes\n");

    for (i = 0; i < natt; i++) {
      
      attrib = MESH_Attrib(mesh,i);

      /* Don't write out attribs we created for the internal use of 
	 this routine */
      if (attrib == vidatt || attrib == eidatt || attrib == fidatt || 
	  attrib == ridatt) continue;
      
      MAttrib_Get_Name(attrib,attname);

      atttype = MAttrib_Get_Type(attrib);
      if (atttype == POINTER) continue;  /* cannot write it out */

      ncomp = MAttrib_Get_NumComps(attrib);

      attentdim = MAttrib_Get_EntDim(attrib);


      /* First count how many entities actually have the attribute assigned */

      nent = 0;
      switch(attentdim) {
      case MVERTEX:
	idx = 0;
	while ((mv = MESH_Next_Vertex(mesh,&idx)))
	  if (MEnt_Get_AttVal(mv,attrib,&ival,&rval,&pval)) nent++;
	break;
      case MEDGE:
	idx = 0;
	while ((me = MESH_Next_Edge(mesh,&idx)))
	  if (MEnt_Get_AttVal(me,attrib,&ival,&rval,&pval)) nent++;
	break;
      case MFACE:
	idx = 0;
	while ((mf = MESH_Next_Face(mesh,&idx)))
	  if (MEnt_Get_AttVal(mf,attrib,&ival,&rval,&pval)) nent++;	    
	break;
      case MREGION: 
	idx = 0;
	while ((mr = MESH_Next_Region(mesh,&idx)))
	  if (MEnt_Get_AttVal(mr,attrib,&ival,&rval,&pval)) nent++;
	break;
      case MALLTYPE:
	idx = 0;
	while ((mv = MESH_Next_Vertex(mesh,&idx)))
	  if (MEnt_Get_AttVal(mv,attrib,&ival,&rval,&pval)) nent++;
	idx = 0;
	while ((me = MESH_Next_Edge(mesh,&idx)))
	  if (MEnt_Get_AttVal(me,attrib,&ival,&rval,&pval)) nent++;
	idx = 0;
	while ((mf = MESH_Next_Face(mesh,&idx)))
	  if (MEnt_Get_AttVal(mf,attrib,&ival,&rval,&pval)) nent++;	    
	idx = 0;
	while ((mr = MESH_Next_Region(mesh,&idx)))
	  if (MEnt_Get_AttVal(mr,attrib,&ival,&rval,&pval)) nent++;
	break;	
      default:
	break;
      } /* switch (attentdim) */


      /* No point in writing out attribute if no entity uses it! Or is there? */

      if (!nent) continue;



      fprintf(fp,"%-s\n",attname);

      switch(atttype) {
      case INT:
	fprintf(fp,"INT\n");
	break;
      case DOUBLE:
	fprintf(fp,"DOUBLE\n");
	break;
      case VECTOR:
	fprintf(fp,"VECTOR\n");
	break;
      case TENSOR:
	fprintf(fp,"TENSOR\n");
	break;
      default:
	MSTK_Report("MESH_WriteToFile",
		    "Unrecognizable or unprintable attribute type\n",MSTK_WARN);
	continue;	
      }

      fprintf(fp,"%-d\n",ncomp);

      switch(attentdim) {
      case MVERTEX:
	fprintf(fp,"MVERTEX\n");
	break;
      case MEDGE:
	fprintf(fp,"MEDGE\n");
	break;
      case MFACE:
	fprintf(fp,"MFACE\n");
	break;
      case MREGION:
	fprintf(fp,"MREGION\n");
	break;
      case MALLTYPE:
	fprintf(fp,"MALLTYPE\n");
	break;
      default:
	MSTK_Report("Mesh_WriteToFile","Unrecognized entity type",MSTK_WARN);
	break;
      }

      fprintf(fp,"%-d\n",nent);


      switch(attentdim) {
      case MVERTEX:
	idx = 0;
	while ((mv = MESH_Next_Vertex(mesh,&idx))) {
	  if (MEnt_Get_AttVal(mv,attrib,&ival,&rval,&pval)) {
	    MEnt_Get_AttVal(mv,vidatt,&mvid,&rdummy,&pdummy);
	    fprintf(fp,"0 %-d ",mvid);
	    switch (atttype) {
	    case INT:
	      fprintf(fp," %-d",ival);
	      break;
	    case DOUBLE: 
	      fprintf(fp," %-lf ",rval);
	      break;
	    case VECTOR: case TENSOR:
	      rval_arr = (double *) pval;
	      for (k = 0; k < ncomp; k++)
		fprintf(fp," %-lf ",rval_arr[k]);
	      break;
	    default:
	      break;
	    }
	    fprintf(fp,"\n");
	  }
	}
	break;
      case MEDGE:
	idx = 0;
	while ((me = MESH_Next_Edge(mesh,&idx))) {
	  if (MEnt_Get_AttVal(me,attrib,&ival,&rval,&pval)) {
	    MEnt_Get_AttVal(me,eidatt,&meid,&rdummy,&pdummy);
	    fprintf(fp,"1 %-d ",meid);
	    switch (atttype) {
	    case INT:
	      fprintf(fp," %-d",ival);
	      break;
	    case DOUBLE: 
	      fprintf(fp," %-lf ",rval);
	      break;
	    case VECTOR: case TENSOR:
	      rval_arr = (double *) pval;
	      for (k = 0; k < ncomp; k++)
		fprintf(fp," %-lf ",rval_arr[k]);
	      break;
	    default:
	      break;
	    }
	    fprintf(fp,"\n");
	  }
	}
	break;
      case MFACE:
	idx = 0;
	while ((mf = MESH_Next_Face(mesh,&idx))) {
	  if (MEnt_Get_AttVal(mf,attrib,&ival,&rval,&pval)) {
	    MEnt_Get_AttVal(mf,fidatt,&mfid,&rdummy,&pdummy);
	    fprintf(fp,"2 %-d ",mfid);
	    switch (atttype) {
	    case INT:
	      fprintf(fp," %-d",ival);
	      break;
	    case DOUBLE: 
	      fprintf(fp," %-lf ",rval);
	      break;
	    case VECTOR: case TENSOR:
	      rval_arr = (double *) pval;
	      for (k = 0; k < ncomp; k++)
		fprintf(fp," %-lf ",rval_arr[k]);
	      break;
	    default:
	      break;
	    }
	    fprintf(fp,"\n");
	  }
	}
	break;

      case MREGION: 
	idx = 0;
	while ((mr = MESH_Next_Region(mesh,&idx))) {
	  if (MEnt_Get_AttVal(mr,attrib,&ival,&rval,&pval)) {
	    MEnt_Get_AttVal(mr,ridatt,&mrid,&rdummy,&pdummy);
	    fprintf(fp,"3 %-d ",mrid);
	    switch (atttype) {
	    case INT:
	      fprintf(fp," %-d",ival);
	      break;
	    case DOUBLE: 
	      fprintf(fp," %-lf ",rval);
	      break;
	    case VECTOR: case TENSOR:
	      rval_arr = (double *) pval;
	      for (k = 0; k < ncomp; k++)
		fprintf(fp," %-lf ",rval_arr[k]);
	      break;
	    default:
	      break;
	    }
	    fprintf(fp,"\n");
	  }
	}
	break;

      case MALLTYPE:
	idx = 0;
	while ((mv = MESH_Next_Vertex(mesh,&idx))) {
	  if (MEnt_Get_AttVal(mv,attrib,&ival,&rval,&pval)) {
	    MEnt_Get_AttVal(mv,vidatt,&mvid,&rdummy,&pdummy);
	    fprintf(fp,"0 %-d ",mvid);
	    switch (atttype) {
	    case INT:
	      fprintf(fp," %-d",ival);
	      break;
	    case DOUBLE: 
	      fprintf(fp," %-lf ",rval);
	      break;
	    case VECTOR: case TENSOR:
	      rval_arr = (double *) pval;
	      for (k = 0; k < ncomp; k++)
		fprintf(fp," %-lf ",rval_arr[k]);
	      break;
	    default:
	      break;
	    }
	    fprintf(fp,"\n");
	  }
	}
	idx = 0;
	while ((me = MESH_Next_Edge(mesh,&idx))) {
	  if (MEnt_Get_AttVal(me,attrib,&ival,&rval,&pval)) {
	    MEnt_Get_AttVal(me,eidatt,&meid,&rdummy,&pdummy);
	    fprintf(fp,"1 %-d ",meid);
	    switch (atttype) {
	    case INT:
	      fprintf(fp," %-d",ival);
	      break;
	    case DOUBLE: 
	      fprintf(fp," %-lf ",rval);
	      break;
	    case VECTOR: case TENSOR:
	      rval_arr = (double *) pval;
	      for (k = 0; k < ncomp; k++)
		fprintf(fp," %-lf ",rval_arr[k]);
	      break;
	    default:
	      break;
	    }
	    fprintf(fp,"\n");
	  }
	}
	idx = 0;
	while ((mf = MESH_Next_Face(mesh,&idx))) {
	  if (MEnt_Get_AttVal(mf,attrib,&ival,&rval,&pval)) {
	    MEnt_Get_AttVal(mf,fidatt,&mfid,&rdummy,&pdummy);
	    fprintf(fp,"2 %-d ",mfid);
	    switch (atttype) {
	    case INT:
	      fprintf(fp," %-d",ival);
	      break;
	    case DOUBLE: 
	      fprintf(fp," %-lf ",rval);
	      break;
	    case VECTOR: case TENSOR:
	      rval_arr = (double *) pval;
	      for (k = 0; k < ncomp; k++)
		fprintf(fp," %-lf ",rval_arr[k]);
	      break;
	    default:
	      break;
	    }
	    fprintf(fp,"\n");
	  }
	}
	idx = 0;
	while ((mr = MESH_Next_Region(mesh,&idx))) {
	  if (MEnt_Get_AttVal(mr,attrib,&ival,&rval,&pval)) {
	    MEnt_Get_AttVal(mr,ridatt,&mrid,&rdummy,&pdummy);
	    fprintf(fp,"3 %-d ",mrid);
	    switch (atttype) {
	    case INT:
	      fprintf(fp," %-d",ival);
	      break;
	    case DOUBLE: 
	      fprintf(fp," %-lf ",rval);
	      break;
	    case VECTOR: case TENSOR:
	      rval_arr = (double *) pval;
	      for (k = 0; k < ncomp; k++)
		fprintf(fp," %-lf ",rval_arr[k]);
	      break;
	    default:
	      break;
	    }
	    fprintf(fp,"\n");
	  }
	}
	break;	
      default:
	break;
      } /* switch (attentdim) */

    } /* for (i = 0; i < natt) */
    
  } /* if (Mesh_Num_Attribs(mesh)) */
  

  idx = 0; i = 0;
  while ((mv = MESH_Next_Vertex(mesh,&idx)))
    MEnt_Rem_AttVal(mv,vidatt);

  idx = 0; i = 0;
  while ((me = MESH_Next_Edge(mesh,&idx)))
    MEnt_Rem_AttVal(me,eidatt);

  idx = 0; i = 0;
  while ((mf = MESH_Next_Face(mesh,&idx)))
    MEnt_Rem_AttVal(mf,fidatt);

  idx = 0; i = 0;
  while ((mr = MESH_Next_Region(mesh,&idx)))
    MEnt_Rem_AttVal(mr,ridatt);
  
  MAttrib_Delete(vidatt);
  MAttrib_Delete(eidatt);
  MAttrib_Delete(fidatt);
  MAttrib_Delete(ridatt);




  fclose(fp);

  return 1;
}