void PetscMatrix<Scalar>::create(unsigned int size, unsigned int nnz, int* ap, int* ai, Scalar* ax) { this->size = size; this->nnz = nnz; PetscScalar* pax = malloc_with_check(nnz, this); for (unsigned i = 0; i < nnz; i++) pax[i] = to_petsc(ax[i]); MatCreateSeqAIJWithArrays(PETSC_COMM_SELF, size, size, ap, ai, pax, &matrix); delete pax; }
PetscErrorCode MatPtAPSymbolic_SeqAIJ_SeqAIJ_SparseAxpy(Mat A,Mat P,PetscReal fill,Mat *C) { PetscErrorCode ierr; PetscFreeSpaceList free_space=NULL,current_space=NULL; Mat_SeqAIJ *a = (Mat_SeqAIJ*)A->data,*p = (Mat_SeqAIJ*)P->data,*c; PetscInt *pti,*ptj,*ptJ,*ai=a->i,*aj=a->j,*ajj,*pi=p->i,*pj=p->j,*pjj; PetscInt *ci,*cj,*ptadenserow,*ptasparserow,*ptaj,nspacedouble=0; PetscInt an=A->cmap->N,am=A->rmap->N,pn=P->cmap->N,pm=P->rmap->N; PetscInt i,j,k,ptnzi,arow,anzj,ptanzi,prow,pnzj,cnzi,nlnk,*lnk; MatScalar *ca; PetscBT lnkbt; PetscReal afill; PetscFunctionBegin; /* Get ij structure of P^T */ ierr = MatGetSymbolicTranspose_SeqAIJ(P,&pti,&ptj);CHKERRQ(ierr); ptJ = ptj; /* Allocate ci array, arrays for fill computation and */ /* free space for accumulating nonzero column info */ ierr = PetscMalloc1(pn+1,&ci);CHKERRQ(ierr); ci[0] = 0; ierr = PetscCalloc1(2*an+1,&ptadenserow);CHKERRQ(ierr); ptasparserow = ptadenserow + an; /* create and initialize a linked list */ nlnk = pn+1; ierr = PetscLLCreate(pn,pn,nlnk,lnk,lnkbt);CHKERRQ(ierr); /* Set initial free space to be fill*(nnz(A)+ nnz(P)) */ ierr = PetscFreeSpaceGet(PetscRealIntMultTruncate(fill,PetscIntSumTruncate(ai[am],pi[pm])),&free_space);CHKERRQ(ierr); current_space = free_space; /* Determine symbolic info for each row of C: */ for (i=0; i<pn; i++) { ptnzi = pti[i+1] - pti[i]; ptanzi = 0; /* Determine symbolic row of PtA: */ for (j=0; j<ptnzi; j++) { arow = *ptJ++; anzj = ai[arow+1] - ai[arow]; ajj = aj + ai[arow]; for (k=0; k<anzj; k++) { if (!ptadenserow[ajj[k]]) { ptadenserow[ajj[k]] = -1; ptasparserow[ptanzi++] = ajj[k]; } } } /* Using symbolic info for row of PtA, determine symbolic info for row of C: */ ptaj = ptasparserow; cnzi = 0; for (j=0; j<ptanzi; j++) { prow = *ptaj++; pnzj = pi[prow+1] - pi[prow]; pjj = pj + pi[prow]; /* add non-zero cols of P into the sorted linked list lnk */ ierr = PetscLLAddSorted(pnzj,pjj,pn,nlnk,lnk,lnkbt);CHKERRQ(ierr); cnzi += nlnk; } /* If free space is not available, make more free space */ /* Double the amount of total space in the list */ if (current_space->local_remaining<cnzi) { ierr = PetscFreeSpaceGet(PetscIntSumTruncate(cnzi,current_space->total_array_size),¤t_space);CHKERRQ(ierr); nspacedouble++; } /* Copy data into free space, and zero out denserows */ ierr = PetscLLClean(pn,pn,cnzi,lnk,current_space->array,lnkbt);CHKERRQ(ierr); current_space->array += cnzi; current_space->local_used += cnzi; current_space->local_remaining -= cnzi; for (j=0; j<ptanzi; j++) ptadenserow[ptasparserow[j]] = 0; /* Aside: Perhaps we should save the pta info for the numerical factorization. */ /* For now, we will recompute what is needed. */ ci[i+1] = ci[i] + cnzi; } /* nnz is now stored in ci[ptm], column indices are in the list of free space */ /* Allocate space for cj, initialize cj, and */ /* destroy list of free space and other temporary array(s) */ ierr = PetscMalloc1(ci[pn]+1,&cj);CHKERRQ(ierr); ierr = PetscFreeSpaceContiguous(&free_space,cj);CHKERRQ(ierr); ierr = PetscFree(ptadenserow);CHKERRQ(ierr); ierr = PetscLLDestroy(lnk,lnkbt);CHKERRQ(ierr); ierr = PetscCalloc1(ci[pn]+1,&ca);CHKERRQ(ierr); /* put together the new matrix */ ierr = MatCreateSeqAIJWithArrays(PetscObjectComm((PetscObject)A),pn,pn,ci,cj,ca,C);CHKERRQ(ierr); ierr = MatSetBlockSizes(*C,PetscAbs(P->cmap->bs),PetscAbs(P->cmap->bs));CHKERRQ(ierr); /* MatCreateSeqAIJWithArrays flags matrix so PETSc doesn't free the user's arrays. */ /* Since these are PETSc arrays, change flags to free them as necessary. */ c = (Mat_SeqAIJ*)((*C)->data); c->free_a = PETSC_TRUE; c->free_ij = PETSC_TRUE; c->nonew = 0; (*C)->ops->ptapnumeric = MatPtAPNumeric_SeqAIJ_SeqAIJ_SparseAxpy; /* set MatInfo */ afill = (PetscReal)ci[pn]/(ai[am]+pi[pm] + 1.e-5); if (afill < 1.0) afill = 1.0; c->maxnz = ci[pn]; c->nz = ci[pn]; (*C)->info.mallocs = nspacedouble; (*C)->info.fill_ratio_given = fill; (*C)->info.fill_ratio_needed = afill; /* Clean up. */ ierr = MatRestoreSymbolicTranspose_SeqAIJ(P,&pti,&ptj);CHKERRQ(ierr); #if defined(PETSC_USE_INFO) if (ci[pn] != 0) { ierr = PetscInfo3((*C),"Reallocs %D; Fill ratio: given %g needed %g.\n",nspacedouble,(double)fill,(double)afill);CHKERRQ(ierr); ierr = PetscInfo1((*C),"Use MatPtAP(A,P,MatReuse,%g,&C) for best performance.\n",(double)afill);CHKERRQ(ierr); } else { ierr = PetscInfo((*C),"Empty matrix product\n");CHKERRQ(ierr); } #endif PetscFunctionReturn(0); }
static PetscErrorCode MatWrapML_SeqAIJ(ML_Operator *mlmat,MatReuse reuse,Mat *newmat) { struct ML_CSR_MSRdata *matdata = (struct ML_CSR_MSRdata *)mlmat->data; PetscErrorCode ierr; PetscInt m=mlmat->outvec_leng,n=mlmat->invec_leng,*nnz = PETSC_NULL,nz_max; PetscInt *ml_cols=matdata->columns,*ml_rowptr=matdata->rowptr,*aj,i,j,k; PetscScalar *ml_vals=matdata->values,*aa; PetscFunctionBegin; if (!mlmat->getrow) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_NULL,"mlmat->getrow = NULL"); if (m != n){ /* ML Pmat and Rmat are in CSR format. Pass array pointers into SeqAIJ matrix */ if (reuse){ Mat_SeqAIJ *aij= (Mat_SeqAIJ*)(*newmat)->data; aij->i = ml_rowptr; aij->j = ml_cols; aij->a = ml_vals; } else { /* sort ml_cols and ml_vals */ ierr = PetscMalloc((m+1)*sizeof(PetscInt),&nnz); for (i=0; i<m; i++) { nnz[i] = ml_rowptr[i+1] - ml_rowptr[i]; } aj = ml_cols; aa = ml_vals; for (i=0; i<m; i++){ ierr = PetscSortIntWithScalarArray(nnz[i],aj,aa);CHKERRQ(ierr); aj += nnz[i]; aa += nnz[i]; } ierr = MatCreateSeqAIJWithArrays(PETSC_COMM_SELF,m,n,ml_rowptr,ml_cols,ml_vals,newmat);CHKERRQ(ierr); ierr = PetscFree(nnz);CHKERRQ(ierr); } PetscFunctionReturn(0); } /* ML Amat is in MSR format. Copy its data into SeqAIJ matrix */ if (reuse) { for (nz_max=0,i=0; i<m; i++) nz_max = PetscMax(nz_max,ml_cols[i+1] - ml_cols[i] + 1); } else { ierr = MatCreate(PETSC_COMM_SELF,newmat);CHKERRQ(ierr); ierr = MatSetSizes(*newmat,m,n,PETSC_DECIDE,PETSC_DECIDE);CHKERRQ(ierr); ierr = MatSetType(*newmat,MATSEQAIJ);CHKERRQ(ierr); ierr = PetscMalloc((m+1)*sizeof(PetscInt),&nnz); nz_max = 1; for (i=0; i<m; i++) { nnz[i] = ml_cols[i+1] - ml_cols[i] + 1; if (nnz[i] > nz_max) nz_max = nnz[i]; } ierr = MatSeqAIJSetPreallocation(*newmat,0,nnz);CHKERRQ(ierr); } ierr = PetscMalloc2(nz_max,PetscScalar,&aa,nz_max,PetscInt,&aj);CHKERRQ(ierr); for (i=0; i<m; i++) { PetscInt ncols; k = 0; /* diagonal entry */ aj[k] = i; aa[k++] = ml_vals[i]; /* off diagonal entries */ for (j=ml_cols[i]; j<ml_cols[i+1]; j++){ aj[k] = ml_cols[j]; aa[k++] = ml_vals[j]; } ncols = ml_cols[i+1] - ml_cols[i] + 1; /* sort aj and aa */ ierr = PetscSortIntWithScalarArray(ncols,aj,aa);CHKERRQ(ierr); ierr = MatSetValues(*newmat,1,&i,ncols,aj,aa,INSERT_VALUES);CHKERRQ(ierr); } ierr = MatAssemblyBegin(*newmat,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr); ierr = MatAssemblyEnd(*newmat,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr); ierr = PetscFree2(aa,aj);CHKERRQ(ierr); ierr = PetscFree(nnz);CHKERRQ(ierr); PetscFunctionReturn(0); }
static PetscErrorCode MatConvert_MPIAIJ_ML(Mat A,MatType newtype,MatReuse scall,Mat *Aloc) { PetscErrorCode ierr; Mat_MPIAIJ *mpimat=(Mat_MPIAIJ*)A->data; Mat_SeqAIJ *mat,*a=(Mat_SeqAIJ*)(mpimat->A)->data,*b=(Mat_SeqAIJ*)(mpimat->B)->data; PetscInt *ai=a->i,*aj=a->j,*bi=b->i,*bj=b->j; PetscScalar *aa=a->a,*ba=b->a,*ca; PetscInt am=A->rmap->n,an=A->cmap->n,i,j,k; PetscInt *ci,*cj,ncols; PetscFunctionBegin; if (am != an) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"A must have a square diagonal portion, am: %d != an: %d",am,an); if (scall == MAT_INITIAL_MATRIX){ ierr = PetscMalloc((1+am)*sizeof(PetscInt),&ci);CHKERRQ(ierr); ci[0] = 0; for (i=0; i<am; i++){ ci[i+1] = ci[i] + (ai[i+1] - ai[i]) + (bi[i+1] - bi[i]); } ierr = PetscMalloc((1+ci[am])*sizeof(PetscInt),&cj);CHKERRQ(ierr); ierr = PetscMalloc((1+ci[am])*sizeof(PetscScalar),&ca);CHKERRQ(ierr); k = 0; for (i=0; i<am; i++){ /* diagonal portion of A */ ncols = ai[i+1] - ai[i]; for (j=0; j<ncols; j++) { cj[k] = *aj++; ca[k++] = *aa++; } /* off-diagonal portion of A */ ncols = bi[i+1] - bi[i]; for (j=0; j<ncols; j++) { cj[k] = an + (*bj); bj++; ca[k++] = *ba++; } } if (k != ci[am]) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"k: %d != ci[am]: %d",k,ci[am]); /* put together the new matrix */ an = mpimat->A->cmap->n+mpimat->B->cmap->n; ierr = MatCreateSeqAIJWithArrays(PETSC_COMM_SELF,am,an,ci,cj,ca,Aloc);CHKERRQ(ierr); /* MatCreateSeqAIJWithArrays flags matrix so PETSc doesn't free the user's arrays. */ /* Since these are PETSc arrays, change flags to free them as necessary. */ mat = (Mat_SeqAIJ*)(*Aloc)->data; mat->free_a = PETSC_TRUE; mat->free_ij = PETSC_TRUE; mat->nonew = 0; } else if (scall == MAT_REUSE_MATRIX){ mat=(Mat_SeqAIJ*)(*Aloc)->data; ci = mat->i; cj = mat->j; ca = mat->a; for (i=0; i<am; i++) { /* diagonal portion of A */ ncols = ai[i+1] - ai[i]; for (j=0; j<ncols; j++) *ca++ = *aa++; /* off-diagonal portion of A */ ncols = bi[i+1] - bi[i]; for (j=0; j<ncols; j++) *ca++ = *ba++; } } else SETERRQ1(((PetscObject)A)->comm,PETSC_ERR_ARG_WRONG,"Invalid MatReuse %d",(int)scall); PetscFunctionReturn(0); }
PetscErrorCode MatPtAPSymbolic_SeqAIJ_SeqAIJ_SparseAxpy2(Mat A,Mat P,PetscReal fill,Mat *C) { PetscErrorCode ierr; PetscFreeSpaceList free_space=PETSC_NULL,current_space=PETSC_NULL; Mat_SeqAIJ *a = (Mat_SeqAIJ*)A->data,*p = (Mat_SeqAIJ*)P->data,*c; PetscInt *pti,*ptj,*ptJ,*ai=a->i,*aj=a->j,*ajj,*pi=p->i,*pj=p->j,*pjj; PetscInt *ci,*cj,*ptadenserow,*ptasparserow,*ptaj,nspacedouble=0; PetscInt an=A->cmap->N,am=A->rmap->N,pn=P->cmap->N; PetscInt i,j,k,ptnzi,arow,anzj,ptanzi,prow,pnzj,cnzi,nlnk,*lnk; MatScalar *ca; PetscBT lnkbt; PetscFunctionBegin; /* Get ij structure of P^T */ ierr = MatGetSymbolicTranspose_SeqAIJ(P,&pti,&ptj);CHKERRQ(ierr); ptJ=ptj; /* Allocate ci array, arrays for fill computation and */ /* free space for accumulating nonzero column info */ ierr = PetscMalloc((pn+1)*sizeof(PetscInt),&ci);CHKERRQ(ierr); ci[0] = 0; ierr = PetscMalloc((2*an+1)*sizeof(PetscInt),&ptadenserow);CHKERRQ(ierr); ierr = PetscMemzero(ptadenserow,(2*an+1)*sizeof(PetscInt));CHKERRQ(ierr); ptasparserow = ptadenserow + an; /* create and initialize a linked list */ nlnk = pn+1; ierr = PetscLLCreate(pn,pn,nlnk,lnk,lnkbt);CHKERRQ(ierr); /* Set initial free space to be fill*nnz(A). */ /* This should be reasonable if sparsity of PtAP is similar to that of A. */ ierr = PetscFreeSpaceGet((PetscInt)(fill*ai[am]),&free_space); current_space = free_space; /* Determine symbolic info for each row of C: */ for (i=0;i<pn;i++) { ptnzi = pti[i+1] - pti[i]; ptanzi = 0; /* Determine symbolic row of PtA: */ for (j=0;j<ptnzi;j++) { arow = *ptJ++; anzj = ai[arow+1] - ai[arow]; ajj = aj + ai[arow]; for (k=0;k<anzj;k++) { if (!ptadenserow[ajj[k]]) { ptadenserow[ajj[k]] = -1; ptasparserow[ptanzi++] = ajj[k]; } } } /* Using symbolic info for row of PtA, determine symbolic info for row of C: */ ptaj = ptasparserow; cnzi = 0; for (j=0;j<ptanzi;j++) { prow = *ptaj++; pnzj = pi[prow+1] - pi[prow]; pjj = pj + pi[prow]; /* add non-zero cols of P into the sorted linked list lnk */ ierr = PetscLLAddSorted(pnzj,pjj,pn,nlnk,lnk,lnkbt);CHKERRQ(ierr); cnzi += nlnk; } /* If free space is not available, make more free space */ /* Double the amount of total space in the list */ if (current_space->local_remaining<cnzi) { ierr = PetscFreeSpaceGet(cnzi+current_space->total_array_size,¤t_space);CHKERRQ(ierr); nspacedouble++; } /* Copy data into free space, and zero out denserows */ ierr = PetscLLClean(pn,pn,cnzi,lnk,current_space->array,lnkbt);CHKERRQ(ierr); current_space->array += cnzi; current_space->local_used += cnzi; current_space->local_remaining -= cnzi; for (j=0;j<ptanzi;j++) { ptadenserow[ptasparserow[j]] = 0; } /* Aside: Perhaps we should save the pta info for the numerical factorization. */ /* For now, we will recompute what is needed. */ ci[i+1] = ci[i] + cnzi; } /* nnz is now stored in ci[ptm], column indices are in the list of free space */ /* Allocate space for cj, initialize cj, and */ /* destroy list of free space and other temporary array(s) */ ierr = PetscMalloc((ci[pn]+1)*sizeof(PetscInt),&cj);CHKERRQ(ierr); ierr = PetscFreeSpaceContiguous(&free_space,cj);CHKERRQ(ierr); ierr = PetscFree(ptadenserow);CHKERRQ(ierr); ierr = PetscLLDestroy(lnk,lnkbt);CHKERRQ(ierr); /* Allocate space for ca */ ierr = PetscMalloc((ci[pn]+1)*sizeof(MatScalar),&ca);CHKERRQ(ierr); ierr = PetscMemzero(ca,(ci[pn]+1)*sizeof(MatScalar));CHKERRQ(ierr); /* put together the new matrix */ ierr = MatCreateSeqAIJWithArrays(((PetscObject)A)->comm,pn,pn,ci,cj,ca,C);CHKERRQ(ierr); (*C)->rmap->bs = P->cmap->bs; (*C)->cmap->bs = P->cmap->bs; PetscPrintf(PETSC_COMM_SELF,"************%s C.bs=%d,%d\n",__FUNCT__,(*C)->rmap->bs,(*C)->cmap->bs); /* MatCreateSeqAIJWithArrays flags matrix so PETSc doesn't free the user's arrays. */ /* Since these are PETSc arrays, change flags to free them as necessary. */ c = (Mat_SeqAIJ *)((*C)->data); c->free_a = PETSC_TRUE; c->free_ij = PETSC_TRUE; c->nonew = 0; A->ops->ptapnumeric = MatPtAPNumeric_SeqAIJ_SeqAIJ_SparseAxpy2; /* should use *C->ops until PtAP insterface is updated to double dispatch as MatMatMult() */ /* Clean up. */ ierr = MatRestoreSymbolicTranspose_SeqAIJ(P,&pti,&ptj);CHKERRQ(ierr); #if defined(PETSC_USE_INFO) if (ci[pn] != 0) { PetscReal afill = ((PetscReal)ci[pn])/ai[am]; if (afill < 1.0) afill = 1.0; ierr = PetscInfo3((*C),"Reallocs %D; Fill ratio: given %G needed %G.\n",nspacedouble,fill,afill);CHKERRQ(ierr); ierr = PetscInfo1((*C),"Use MatPtAP(A,P,MatReuse,%G,&C) for best performance.\n",afill);CHKERRQ(ierr); } else { ierr = PetscInfo((*C),"Empty matrix product\n");CHKERRQ(ierr); } #endif PetscFunctionReturn(0); }
PetscErrorCode MatRARtSymbolic_SeqAIJ_SeqAIJ_colorrart(Mat A,Mat R,PetscReal fill,Mat *C) { PetscErrorCode ierr; Mat P; PetscInt *rti,*rtj; Mat_RARt *rart; MatColoring coloring; MatTransposeColoring matcoloring; ISColoring iscoloring; Mat Rt_dense,RARt_dense; Mat_SeqAIJ *c; PetscFunctionBegin; /* create symbolic P=Rt */ ierr = MatGetSymbolicTranspose_SeqAIJ(R,&rti,&rtj);CHKERRQ(ierr); ierr = MatCreateSeqAIJWithArrays(PETSC_COMM_SELF,R->cmap->n,R->rmap->n,rti,rtj,NULL,&P);CHKERRQ(ierr); /* get symbolic C=Pt*A*P */ ierr = MatPtAPSymbolic_SeqAIJ_SeqAIJ_SparseAxpy(A,P,fill,C);CHKERRQ(ierr); ierr = MatSetBlockSizes(*C,PetscAbs(R->rmap->bs),PetscAbs(R->rmap->bs));CHKERRQ(ierr); (*C)->ops->rartnumeric = MatRARtNumeric_SeqAIJ_SeqAIJ_colorrart; /* create a supporting struct */ ierr = PetscNew(&rart);CHKERRQ(ierr); c = (Mat_SeqAIJ*)(*C)->data; c->rart = rart; /* ------ Use coloring ---------- */ /* inode causes memory problem, don't know why */ if (c->inode.use) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"MAT_USE_INODES is not supported. Use '-mat_no_inode'"); /* Create MatTransposeColoring from symbolic C=R*A*R^T */ ierr = MatColoringCreate(*C,&coloring);CHKERRQ(ierr); ierr = MatColoringSetDistance(coloring,2);CHKERRQ(ierr); ierr = MatColoringSetType(coloring,MATCOLORINGSL);CHKERRQ(ierr); ierr = MatColoringSetFromOptions(coloring);CHKERRQ(ierr); ierr = MatColoringApply(coloring,&iscoloring);CHKERRQ(ierr); ierr = MatColoringDestroy(&coloring);CHKERRQ(ierr); ierr = MatTransposeColoringCreate(*C,iscoloring,&matcoloring);CHKERRQ(ierr); rart->matcoloring = matcoloring; ierr = ISColoringDestroy(&iscoloring);CHKERRQ(ierr); /* Create Rt_dense */ ierr = MatCreate(PETSC_COMM_SELF,&Rt_dense);CHKERRQ(ierr); ierr = MatSetSizes(Rt_dense,A->cmap->n,matcoloring->ncolors,A->cmap->n,matcoloring->ncolors);CHKERRQ(ierr); ierr = MatSetType(Rt_dense,MATSEQDENSE);CHKERRQ(ierr); ierr = MatSeqDenseSetPreallocation(Rt_dense,NULL);CHKERRQ(ierr); Rt_dense->assembled = PETSC_TRUE; rart->Rt = Rt_dense; /* Create RARt_dense = R*A*Rt_dense */ ierr = MatCreate(PETSC_COMM_SELF,&RARt_dense);CHKERRQ(ierr); ierr = MatSetSizes(RARt_dense,(*C)->rmap->n,matcoloring->ncolors,(*C)->rmap->n,matcoloring->ncolors);CHKERRQ(ierr); ierr = MatSetType(RARt_dense,MATSEQDENSE);CHKERRQ(ierr); ierr = MatSeqDenseSetPreallocation(RARt_dense,NULL);CHKERRQ(ierr); rart->RARt = RARt_dense; /* Allocate work array to store columns of A*R^T used in MatMatMatMultNumeric_SeqAIJ_SeqAIJ_SeqDense() */ ierr = PetscMalloc1(A->rmap->n*4,&rart->work);CHKERRQ(ierr); rart->destroy = (*C)->ops->destroy; (*C)->ops->destroy = MatDestroy_SeqAIJ_RARt; /* clean up */ ierr = MatRestoreSymbolicTranspose_SeqAIJ(R,&rti,&rtj);CHKERRQ(ierr); ierr = MatDestroy(&P);CHKERRQ(ierr); #if defined(PETSC_USE_INFO) { PetscReal density= (PetscReal)(c->nz)/(RARt_dense->rmap->n*RARt_dense->cmap->n); ierr = PetscInfo(*C,"C=R*(A*Rt) via coloring C - use sparse-dense inner products\n");CHKERRQ(ierr); ierr = PetscInfo6(*C,"RARt_den %D %D; Rt %D %D (RARt->nz %D)/(m*ncolors)=%g\n",RARt_dense->rmap->n,RARt_dense->cmap->n,R->cmap->n,R->rmap->n,c->nz,density);CHKERRQ(ierr); } #endif PetscFunctionReturn(0); }
PetscErrorCode MatRARtSymbolic_SeqAIJ_SeqAIJ(Mat A,Mat R,PetscReal fill,Mat *C) { PetscErrorCode ierr; Mat P; PetscInt *rti,*rtj; Mat_RARt *rart; PetscContainer container; MatTransposeColoring matcoloring; ISColoring iscoloring; Mat Rt_dense,RARt_dense; PetscLogDouble GColor=0.0,MCCreate=0.0,MDenCreate=0.0,t0,tf,etime=0.0; Mat_SeqAIJ *c; PetscFunctionBegin; ierr = PetscGetTime(&t0);CHKERRQ(ierr); /* create symbolic P=Rt */ ierr = MatGetSymbolicTranspose_SeqAIJ(R,&rti,&rtj);CHKERRQ(ierr); ierr = MatCreateSeqAIJWithArrays(PETSC_COMM_SELF,R->cmap->n,R->rmap->n,rti,rtj,PETSC_NULL,&P);CHKERRQ(ierr); /* get symbolic C=Pt*A*P */ ierr = MatPtAPSymbolic_SeqAIJ_SeqAIJ(A,P,fill,C);CHKERRQ(ierr); (*C)->rmap->bs = R->rmap->bs; (*C)->cmap->bs = R->rmap->bs; /* create a supporting struct */ ierr = PetscNew(Mat_RARt,&rart);CHKERRQ(ierr); /* attach the supporting struct to C */ ierr = PetscContainerCreate(PETSC_COMM_SELF,&container);CHKERRQ(ierr); ierr = PetscContainerSetPointer(container,rart);CHKERRQ(ierr); ierr = PetscContainerSetUserDestroy(container,PetscContainerDestroy_Mat_RARt);CHKERRQ(ierr); ierr = PetscObjectCompose((PetscObject)(*C),"Mat_RARt",(PetscObject)container);CHKERRQ(ierr); ierr = PetscContainerDestroy(&container);CHKERRQ(ierr); ierr = PetscGetTime(&tf);CHKERRQ(ierr); etime += tf - t0; /* Create MatTransposeColoring from symbolic C=R*A*R^T */ c=(Mat_SeqAIJ*)(*C)->data; ierr = PetscGetTime(&t0);CHKERRQ(ierr); ierr = MatGetColoring(*C,MATCOLORINGLF,&iscoloring);CHKERRQ(ierr); ierr = PetscGetTime(&tf);CHKERRQ(ierr); GColor += tf - t0; ierr = PetscGetTime(&t0);CHKERRQ(ierr); ierr = MatTransposeColoringCreate(*C,iscoloring,&matcoloring);CHKERRQ(ierr); rart->matcoloring = matcoloring; ierr = ISColoringDestroy(&iscoloring);CHKERRQ(ierr); ierr = PetscGetTime(&tf);CHKERRQ(ierr); MCCreate += tf - t0; ierr = PetscGetTime(&t0);CHKERRQ(ierr); /* Create Rt_dense */ ierr = MatCreate(PETSC_COMM_SELF,&Rt_dense);CHKERRQ(ierr); ierr = MatSetSizes(Rt_dense,A->cmap->n,matcoloring->ncolors,A->cmap->n,matcoloring->ncolors);CHKERRQ(ierr); ierr = MatSetType(Rt_dense,MATSEQDENSE);CHKERRQ(ierr); ierr = MatSeqDenseSetPreallocation(Rt_dense,PETSC_NULL);CHKERRQ(ierr); Rt_dense->assembled = PETSC_TRUE; rart->Rt = Rt_dense; /* Create RARt_dense = R*A*Rt_dense */ ierr = MatCreate(PETSC_COMM_SELF,&RARt_dense);CHKERRQ(ierr); ierr = MatSetSizes(RARt_dense,(*C)->rmap->n,matcoloring->ncolors,(*C)->rmap->n,matcoloring->ncolors);CHKERRQ(ierr); ierr = MatSetType(RARt_dense,MATSEQDENSE);CHKERRQ(ierr); ierr = MatSeqDenseSetPreallocation(RARt_dense,PETSC_NULL);CHKERRQ(ierr); rart->RARt = RARt_dense; /* Allocate work array to store columns of A*R^T used in MatMatMatMultNumeric_SeqAIJ_SeqAIJ_SeqDense() */ ierr = PetscMalloc(A->rmap->n*4*sizeof(PetscScalar),&rart->work);CHKERRQ(ierr); ierr = PetscGetTime(&tf);CHKERRQ(ierr); MDenCreate += tf - t0; rart->destroy = (*C)->ops->destroy; (*C)->ops->destroy = MatDestroy_SeqAIJ_RARt; /* clean up */ ierr = MatRestoreSymbolicTranspose_SeqAIJ(R,&rti,&rtj);CHKERRQ(ierr); ierr = MatDestroy(&P);CHKERRQ(ierr); #if defined(PETSC_USE_INFO) { PetscReal density= (PetscReal)(c->nz)/(RARt_dense->rmap->n*RARt_dense->cmap->n); ierr = PetscInfo6(*C,"RARt_den %D %D; Rt_den %D %D, (RARt->nz %D)/(m*ncolors)=%g\n",RARt_dense->rmap->n,RARt_dense->cmap->n,Rt_dense->rmap->n,Rt_dense->cmap->n,c->nz,density);CHKERRQ(ierr); ierr = PetscInfo5(*C,"Sym = GetColor %g + MColorCreate %g + MDenCreate %g + other %g = %g\n",GColor,MCCreate,MDenCreate,etime,GColor+MCCreate+MDenCreate+etime);CHKERRQ(ierr); } #endif PetscFunctionReturn(0); }
PetscErrorCode MatApplyPAPt_Symbolic_SeqAIJ_SeqAIJ(Mat A,Mat P,Mat *C) { /* Note: This code is virtually identical to that of MatApplyPtAP_SeqAIJ_Symbolic */ /* and MatMatMult_SeqAIJ_SeqAIJ_Symbolic. Perhaps they could be merged nicely. */ PetscErrorCode ierr; PetscFreeSpaceList free_space=PETSC_NULL,current_space=PETSC_NULL; Mat_SeqAIJ *a=(Mat_SeqAIJ*)A->data,*p=(Mat_SeqAIJ*)P->data,*c; PetscInt *ai=a->i,*aj=a->j,*ajj,*pi=p->i,*pj=p->j,*pti,*ptj,*ptjj; PetscInt *ci,*cj,*paj,*padenserow,*pasparserow,*denserow,*sparserow; PetscInt an=A->cmap->N,am=A->rmap->N,pn=P->cmap->N,pm=P->rmap->N; PetscInt i,j,k,pnzi,arow,anzj,panzi,ptrow,ptnzj,cnzi; MatScalar *ca; PetscFunctionBegin; /* some error checking which could be moved into interface layer */ if (pn!=am) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Matrix dimensions are incompatible, %D != %D",pn,am); if (am!=an) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Matrix 'A' must be square, %D != %D",am, an); /* Set up timers */ ierr = PetscLogEventBegin(MAT_Applypapt_symbolic,A,P,0,0);CHKERRQ(ierr); /* Create ij structure of P^T */ ierr = MatGetSymbolicTranspose_SeqAIJ(P,&pti,&ptj);CHKERRQ(ierr); /* Allocate ci array, arrays for fill computation and */ /* free space for accumulating nonzero column info */ ierr = PetscMalloc(((pm+1)*1)*sizeof(PetscInt),&ci);CHKERRQ(ierr); ci[0] = 0; ierr = PetscMalloc4(an,PetscInt,&padenserow,an,PetscInt,&pasparserow,pm,PetscInt,&denserow,pm,PetscInt,&sparserow);CHKERRQ(ierr); ierr = PetscMemzero(padenserow,an*sizeof(PetscInt));CHKERRQ(ierr); ierr = PetscMemzero(pasparserow,an*sizeof(PetscInt));CHKERRQ(ierr); ierr = PetscMemzero(denserow,pm*sizeof(PetscInt));CHKERRQ(ierr); ierr = PetscMemzero(sparserow,pm*sizeof(PetscInt));CHKERRQ(ierr); /* Set initial free space to be nnz(A) scaled by aspect ratio of Pt. */ /* This should be reasonable if sparsity of PAPt is similar to that of A. */ ierr = PetscFreeSpaceGet((ai[am]/pn)*pm,&free_space);CHKERRQ(ierr); current_space = free_space; /* Determine fill for each row of C: */ for (i=0;i<pm;i++) { pnzi = pi[i+1] - pi[i]; panzi = 0; /* Get symbolic sparse row of PA: */ for (j=0;j<pnzi;j++) { arow = *pj++; anzj = ai[arow+1] - ai[arow]; ajj = aj + ai[arow]; for (k=0;k<anzj;k++) { if (!padenserow[ajj[k]]) { padenserow[ajj[k]] = -1; pasparserow[panzi++] = ajj[k]; } } } /* Using symbolic row of PA, determine symbolic row of C: */ paj = pasparserow; cnzi = 0; for (j=0;j<panzi;j++) { ptrow = *paj++; ptnzj = pti[ptrow+1] - pti[ptrow]; ptjj = ptj + pti[ptrow]; for (k=0;k<ptnzj;k++) { if (!denserow[ptjj[k]]) { denserow[ptjj[k]] = -1; sparserow[cnzi++] = ptjj[k]; } } } /* sort sparse representation */ ierr = PetscSortInt(cnzi,sparserow);CHKERRQ(ierr); /* If free space is not available, make more free space */ /* Double the amount of total space in the list */ if (current_space->local_remaining<cnzi) { ierr = PetscFreeSpaceGet(cnzi+current_space->total_array_size,¤t_space);CHKERRQ(ierr); } /* Copy data into free space, and zero out dense row */ ierr = PetscMemcpy(current_space->array,sparserow,cnzi*sizeof(PetscInt));CHKERRQ(ierr); current_space->array += cnzi; current_space->local_used += cnzi; current_space->local_remaining -= cnzi; for (j=0;j<panzi;j++) { padenserow[pasparserow[j]] = 0; } for (j=0;j<cnzi;j++) { denserow[sparserow[j]] = 0; } ci[i+1] = ci[i] + cnzi; } /* column indices are in the list of free space */ /* Allocate space for cj, initialize cj, and */ /* destroy list of free space and other temporary array(s) */ ierr = PetscMalloc((ci[pm]+1)*sizeof(PetscInt),&cj);CHKERRQ(ierr); ierr = PetscFreeSpaceContiguous(&free_space,cj);CHKERRQ(ierr); ierr = PetscFree4(padenserow,pasparserow,denserow,sparserow);CHKERRQ(ierr); /* Allocate space for ca */ ierr = PetscMalloc((ci[pm]+1)*sizeof(MatScalar),&ca);CHKERRQ(ierr); ierr = PetscMemzero(ca,(ci[pm]+1)*sizeof(MatScalar));CHKERRQ(ierr); /* put together the new matrix */ ierr = MatCreateSeqAIJWithArrays(((PetscObject)A)->comm,pm,pm,ci,cj,ca,C);CHKERRQ(ierr); (*C)->rmap->bs = P->cmap->bs; (*C)->cmap->bs = P->cmap->bs; /* MatCreateSeqAIJWithArrays flags matrix so PETSc doesn't free the user's arrays. */ /* Since these are PETSc arrays, change flags to free them as necessary. */ c = (Mat_SeqAIJ *)((*C)->data); c->free_a = PETSC_TRUE; c->free_ij = PETSC_TRUE; c->nonew = 0; /* Clean up. */ ierr = MatRestoreSymbolicTranspose_SeqAIJ(P,&pti,&ptj);CHKERRQ(ierr); ierr = PetscLogEventEnd(MAT_Applypapt_symbolic,A,P,0,0);CHKERRQ(ierr); PetscFunctionReturn(0); }