예제 #1
0
double DotProduct(const SparseMatrix& lhs, const SparseMatrix& rhs)
{
  double result = 0.;
  for (int lQ = 0; lQ < lhs.nrows(); ++lQ)
    for (int rQ = 0; rQ < lhs.ncols (); ++rQ)
      if (lhs.allowed(lQ, rQ) && rhs.allowed(lQ, rQ))
	result += MatrixDotProduct(lhs.operator_element(lQ, rQ), rhs.operator_element(lQ, rQ));

  return result;
}
예제 #2
0
/* x are the indipendent value of the polynomial equation
   y are the dependent value
 */
void OrdinaryLeastSquares(matrix *x, dvector *y, dvector *coefficients)
{
  /*y->size = x->row 
   * 
   * Z' = n  x m => n = x->col; m = x->row
   * 
   * Z'Z = m x n * n x m  =  m x m  => m = x->row 
   * 
   * Z'y = 
   * 
   * 
   */
  matrix *x_t; /* Z' that is x transposed */
  matrix *x_x_t; /* Z'*Z is the product between x and x_t */
  matrix *x_x_t_i; /* x_x_t_i inverted matrix  (Z' * Z')^-1 */
  dvector *x_t_y; /* Z'* y  = x->col */
    
  /* transpose x to x_t*/
  NewMatrix(&x_t, x->col, x->row);
  MatrixTranspose(x, x_t);

  /* Z'*Z */
  NewMatrix(&x_x_t, x->col, x->col);
  MatrixDotProduct(x_t, x, x_x_t);

  /* (Z'*Z)^-1 */
  initMatrix(&x_x_t_i);
  MatrixInversion(x_x_t, &x_x_t_i);
  
  /* create a vector for store the results of Z'y */
  NewDVector(&x_t_y, x->col);
  
  /* Z'y */
  MatrixDVectorDotProduct(x_t, y, x_t_y);
  
  /* final data coefficient value */
  DVectorResize(&coefficients, x->col);
  MatrixDVectorDotProduct(x_x_t_i, x_t_y, coefficients);

  /*
  for(i = 0; i < 10; i++)
    printf("%f\n", coefficients->data[i]);
  */
  DelDVector(&x_t_y);
  DelMatrix(&x_x_t_i);
  DelMatrix(&x_x_t);
  DelMatrix(&x_t);
}
예제 #3
0
/* last column must be an integer column which define the classes */
void LDA(matrix *mx, uivector *y, LDAMODEL *lda)
{
  size_t i, j, l, k, cc, imin, imax;
  array *classes;
  array *S;
  matrix *X, *X_T, *Sb, *Sw, *InvSw_Sb;
  dvector *mutot;
  dvector *classmu;
  dvector *evect_, *ldfeature;
  matrix *covmx;
  
  
  lda->nclass = 0;
  
  
  imin = imax = y->data[0];
  
  for(i = 1; i < y->size; i++){
    if(y->data[i] > imax){
      imax = y->data[i];
    }
    
    if(y->data[i] < imin){
      imin = y->data[i];
    }
  }
  
  /* get the number of classes */
  if(imin == 0){
    lda->class_start = 0;
    lda->nclass = imax + 1;
  }
  else{
    lda->class_start = 1;
    lda->nclass = imax;
  }
  
  /*printf("nclass %d\n", (int)lda->nclass);*/
  
  /* Copy data */
  NewMatrix(&X, mx->row, mx->col);
  MatrixCopy(mx, &X);
  MatrixCheck(X);
  /*
  for(j = 0; j < mx->col-1; j++){
    for(i = 0; i < mx->row; i++){
      X->data[i][j] = mx->data[i][j];
    }
  }
  */
  
  /*create classes of objects */
  NewArray(&classes, lda->nclass);
  UIVectorResize(&lda->classid, mx->row);
  j = 0;
  if(imin == 0){
    for(k = 0; k < lda->nclass; k++){
      cc = 0;
      for(i = 0; i < X->row; i++){
        if(y->data[i] == k)
          cc++;
        else
          continue;
      }
      NewArrayMatrix(&classes, k, cc, X->col);
      
      cc = 0;
      for(i = 0; i < X->row; i++){
        if(y->data[i] == k){
          for(l = 0; l < X->col; l++){
            classes->m[k]->data[cc][l] = X->data[i][l];
          }
          lda->classid->data[j] = i;
          j++;
          cc++;
        }
        else{
          continue;
        }
      }
    }
  }
  else{
    for(k = 0; k < lda->nclass; k++){
      cc = 0;
      for(i = 0; i < X->row; i++){
        if(y->data[i] == k+1)
          cc++;
        else
          continue;
      }
      NewArrayMatrix(&classes, k, cc, X->col);
      
      cc = 0;
      for(i = 0; i < X->row; i++){
        if(y->data[i] == k+1){
          for(l = 0; l < X->col; l++){
            classes->m[k]->data[cc][l] = X->data[i][l];
          }
          lda->classid->data[j] = i;
          j++;
          cc++;
        }
        else{
          continue;
        }
      }
    }
  }
  
  /*puts("Classes"); PrintArray(classes);*/
  
  /* Compute the prior probability */
  for(k = 0; k < classes->order; k++){
    DVectorAppend(&lda->pprob, (classes->m[k]->row/(double)X->row));
  }
  
  /*
  puts("Prior Probability"); 
  PrintDVector(lda->pprob);
  */
  
  /*Compute the mean of each class*/
  for(k = 0; k < classes->order; k++){
    initDVector(&classmu);
    MatrixColAverage(classes->m[k], &classmu);

    MatrixAppendRow(&lda->mu, classmu);

    DelDVector(&classmu);
  }
  
  /*puts("Class Mu");
  FindNan(lda->mu);
  PrintMatrix(lda->mu);*/
  
  /*Calculate the total mean of samples..*/
  initDVector(&mutot);
  MatrixColAverage(X, &mutot);
  
  /*puts("Mu tot");
  PrintDVector(mutot);*/
  
  /*NewDVector(&mutot, mu->col);
  
  for(k = 0; k < mu->row; k++){
    for(i = 0; i < mu->col; i++){
      mutot->data[i] += mu->data[k][i];
    }
  }
  
  for(i = 0; i < mutot->size; i++){
    mutot->data[i] /= nclasses;
  }*/
  
  
  /*Centering data before computing the scatter matrix*/
  for(k = 0; k < classes->order; k++){
    for(i = 0; i < classes->m[k]->row; i++){
      for(j = 0; j < classes->m[k]->col; j++){
        classes->m[k]->data[i][j] -= mutot->data[j];
      }
    }
  }
  
  /*
  puts("Classes");
  for(i = 0; i < classes->order; i++){
    FindNan(classes->m[i]);
  }
   PrintArray(classes);
  */
  /*Compute the scatter matrix
   * S = nobj - 1 * covmx
   */
  initArray(&S);
  NewMatrix(&covmx, X->col, X->col);
  for(k = 0; k < classes->order; k++){
    matrix *m_T;
    NewMatrix(&m_T, classes->m[k]->col, classes->m[k]->row);
    MatrixTranspose(classes->m[k], m_T);
    
    MatrixDotProduct(m_T, classes->m[k], covmx);
    
    for(i = 0; i < covmx->row; i++){
      for(j = 0; j < covmx->col; j++){
        covmx->data[i][j] /= classes->m[k]->row;
      }
    }
    ArrayAppendMatrix(&S, covmx);
    MatrixSet(covmx, 0.f);
    DelMatrix(&m_T);
  }
  /*
  puts("Scatter Matrix");
  for(i = 0; i < S->order; i++)
    FindNan(S->m[i]);

  PrintArray(S);*/
  
  /* Compute the class scatter which represent the covariance matrix */
  NewMatrix(&Sw, X->col, X->col);
  
  for(k = 0; k < S->order; k++){
    for(i = 0; i  < S->m[k]->row; i++){
      for(j = 0; j  < S->m[k]->col; j++){
        Sw->data[i][j] += (double)(classes->m[k]->row/(double)X->row) *  S->m[k]->data[i][j];
      }
    }
  }
  /*
  puts("Class scatter matrix Sw");
  FindNan(Sw);
  PrintMatrix(Sw);
  */
  /*Compute the between class scatter matrix Sb*/
  NewMatrix(&Sb, X->col, X->col);
  for(k = 0; k < lda->mu->row; k++){ /*for each class of object*/
    cc = classes->m[k]->row;
    for(i = 0; i < Sb->row; i++){
      for(j = 0; j < Sb->col; j++){
        Sb->data[i][j] += cc * (lda->mu->data[k][i] - mutot->data[i]) * (lda->mu->data[k][j] - mutot->data[j]);
      }
    }
  }

  /*
  puts("Between class scatter matrix Sb");
  FindNan(Sb);
  PrintMatrix(Sb); */
  
  /* Computing the LDA projection */
  /*puts("Compute Matrix Inversion");*/
  MatrixInversion(Sw, &lda->inv_cov);

  double ss = 0.f;
  for(i = 0; i < lda->inv_cov->row; i++){
    for(j = 0; j < lda->inv_cov->col; j++){
      ss += square(lda->inv_cov->data[i][j]);
    }
    if(_isnan_(ss))
      break;
  }
  
  if(FLOAT_EQ(ss, 0.f, EPSILON) || _isnan_(ss)){
    /*Do SVD as pseudoinversion accordin to Liu et al. because matrix is nonsingular
     *
     * JUN LIU et al, Int. J. Patt. Recogn. Artif. Intell. 21, 1265 (2007). DOI: 10.1142/S0218001407005946
     * EFFICIENT PSEUDOINVERSE LINEAR DISCRIMINANT ANALYSIS AND ITS NONLINEAR FORM FOR FACE RECOGNITION
     *
     *
     * Sw`^-1 = Q * G^-1 * Q_T
     * Q G AND Q_T come from SVD
     */
    MatrixPseudoinversion(Sw, &lda->inv_cov);

    /*
    NewMatrix(&A_T, Sw->col, Sw->row);
    MatrixInversion(Sw, &A_T);
    NewMatrix(&A_T_Sw, A_T->row, Sw->col);
    MatrixDotProduct(A_T, Sw, A_T_Sw);
    
    initMatrix(&A_T_Sw_inv);
    MatrixInversion(A_T_Sw, &A_T_Sw_inv);
    
    MatrixDotProduct(A_T_Sw_inv, A_T, lda->inv_cov);
    DelMatrix(&A_T);
    DelMatrix(&A_T_Sw);
    DelMatrix(&A_T_Sw_inv);
    */
  }

  /*puts("Inverted Covariance Matrix from Sw");
   FindNan(lda->inv_cov);
   PrintMatrix(lda->inv_cov);
  */
  /*puts("Compute Matrix Dot Product");*/
  NewMatrix(&InvSw_Sb, lda->inv_cov->row, Sb->col);
  MatrixDotProduct(lda->inv_cov, Sb, InvSw_Sb);
  
  /*puts("InvSw_Sb"); PrintMatrix(InvSw_Sb);*/
  /*puts("Compute Eigenvectors");*/
  EVectEval(InvSw_Sb, &lda->eval, &lda->evect);
  /*EvectEval3(InvSw_Sb, InvSw_Sb->row, &lda->eval, &lda->evect);*/
  /*EVectEval(InvSw_Sb, &lda->eval, &lda->evect); */
  
  /* Calculate the new projection in the feature space 
   * 
   * and the multivariate normal distribution
   */
/*       Remove centering data   */
  for(k = 0; k < classes->order; k++){
    for(i = 0; i < classes->m[k]->row; i++){
      for(j = 0; j < classes->m[k]->col; j++){
        classes->m[k]->data[i][j] += mutot->data[j];
      }
    }
  }
    
  initMatrix(&X_T);
  
  for(k = 0; k < classes->order; k++){
    /*printf("row %d  col %d\n", (int)classes->m[k]->row, (int)classes->m[k]->col);*/
    AddArrayMatrix(&lda->features, classes->m[k]->row, classes->m[k]->col);
    AddArrayMatrix(&lda->mnpdf, classes->m[k]->row, classes->m[k]->col);
  }
  
  NewDVector(&evect_, lda->evect->row);
  initDVector(&ldfeature);
  
  ResizeMatrix(&lda->fmean, classes->order, lda->evect->col);
  ResizeMatrix(&lda->fsdev, classes->order, lda->evect->col);
  
  for(l = 0; l < lda->evect->col; l++){
    
    for(i = 0; i < lda->evect->row; i++){
      evect_->data[i] = lda->evect->data[i][l];
    }
    
    for(k = 0; k < classes->order; k++){
      
      ResizeMatrix(&X_T, classes->m[k]->col, classes->m[k]->row);
      MatrixTranspose(classes->m[k], X_T);
      DVectorResize(&ldfeature, classes->m[k]->row);
      
      DVectorMatrixDotProduct(X_T, evect_, ldfeature);
      
      for(i = 0; i < ldfeature->size; i++){
        lda->features->m[k]->data[i][l] = ldfeature->data[i];
      }
      
/*        Calculate the multivariate normal distribution  */
      double mean = 0.f, sdev = 0.f;
      DVectorMean(ldfeature, &mean);
      DVectorSDEV(ldfeature, &sdev);
      
      lda->fmean->data[k][l] = mean;
      lda->fsdev->data[k][l] = sdev;
      for(i = 0; i < ldfeature->size; i++){
        lda->mnpdf->m[k]->data[i][l] = 1./sqrt(2 * pi* sdev) * exp(-square((ldfeature->data[i] - mean)/sdev)/2.f);
      }
    }
  }
  
  DelDVector(&evect_);
  DelMatrix(&covmx);
  DelDVector(&ldfeature);
  DelDVector(&mutot);
  DelMatrix(&Sb);
  DelMatrix(&InvSw_Sb);
  DelArray(&classes);
  DelArray(&S);
  DelMatrix(&Sw);
  DelMatrix(&X_T);
  DelMatrix(&X);
}
예제 #4
0
void SpinAdapted::MatrixNormalise(Matrix& a)
{
  double norm = MatrixDotProduct(a, a);
  MatrixScale(1./sqrt(norm), a);
}