/******************************************************************************* * Function Name : main. * Description : main routine. * Input : None. * Output : None. * Return : None. *******************************************************************************/ int main(void) { GPIO_InitTypeDef GPIO_InitStructure; NAND_IDTypeDef NAND_Id; NAND_ADDRESS NAND_Address; int i=0; #ifdef DEBUG debug(); #endif Set_System(); RCC_AHBPeriphClockCmd(RCC_AHBPeriph_FSMC, ENABLE); Serial_Init(); NAND_Init(); NAND_Reset(); NAND_ReadID(&NAND_Id); Get_Medium_Characteristics(); Set_USBClock(); USB_Interrupts_Config(); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_OD; GPIO_Init(GPIOC, &GPIO_InitStructure); USB_Init(); while (1) { } }
/** * @brief Main program. * @param None * @retval None */ int main(void) { /*!< At this stage the microcontroller clock setting is already configured, this is done through SystemInit() function which is called from startup file (startup_stm32f10x_xx.s) before to branch to application main. To reconfigure the default setting of SystemInit() function, refer to system_stm32f10x.c file */ /* Initialize Leds mounted on STM3210X-EVAL board */ STM_EVAL_LEDInit(LED1); STM_EVAL_LEDInit(LED2); STM_EVAL_LEDInit(LED3); /* Enable the FSMC Clock */ RCC_AHBPeriphClockCmd(RCC_AHBPeriph_FSMC, ENABLE); /* FSMC Initialization */ NAND_Init(); /* NAND read ID command */ NAND_ReadID(&NAND_ID); /* Verify the NAND ID */ if((NAND_ID.Maker_ID == NAND_ST_MakerID) && (NAND_ID.Device_ID == NAND_ST_DeviceID)) { /* NAND memory address to write to */ WriteReadAddr.Zone = 0x00; WriteReadAddr.Block = 0x00; WriteReadAddr.Page = 0x00; /* Erase the NAND first Block */ status = NAND_EraseBlock(WriteReadAddr); /* Write data to FSMC NAND memory */ /* Fill the buffer to send */ Fill_Buffer(TxBuffer, BUFFER_SIZE , 0x66); status = NAND_WriteSmallPage(TxBuffer, WriteReadAddr, PageNumber); /* Read back the written data */ status = NAND_ReadSmallPage (RxBuffer, WriteReadAddr, PageNumber); /* Verify the written data */ for(j = 0; j < BUFFER_SIZE; j++) { if(TxBuffer[j] != RxBuffer[j]) { WriteReadStatus++; } } if (WriteReadStatus == 0) { /* OK */ /* Turn on LED1 */ STM_EVAL_LEDOn(LED1); } else { /* KO */ /* Turn on LED2 */ STM_EVAL_LEDOn(LED2); } } else { /* Turn on LED3 */ STM_EVAL_LEDOn(LED3); } while(1) { } }
void Redbull_Init() { char buff[128] = { 0 }; USART_STDIO_Init(); Delay_Init(); Button_GPIO_Config(); RCC_AHBPeriphClockCmd(RCC_AHBPeriph_FSMC, ENABLE); STM3210E_LCD_Init(); LCD_SetFont(&Font8x12); LCD_SetColors(LCD_COLOR_WHITE, LCD_COLOR_BLACK); LCD_WriteRAM_Prepare(); for (int i = 0; i < (320 * 240); i++) { LCD_WriteRAM(LCD_COLOR_WHITE); } for (int i = 0; i < (320 * 240); i++) { LCD_WriteRAM(LCD_COLOR_BLACK); } LCD_DisplayStringLine(LINE(0), (uint8_t*) " initializing REDBULL"); LCD_DisplayStringLine(LINE(1), (uint8_t*) " CPU ..............................."); sprintf(buff, "ARM Cortex-M3 @ %dMHz", (int) SystemCoreClock / 1000000); printRight(1, buff); LCD_DisplayStringLine(LINE(2), (uint8_t*) " LCD ............................320x240"); LCD_DisplayStringLine(LINE(3), (uint8_t*) " LED .................................."); LED_Init(); toggleLED(LED1_PIN, 0); toggleLED(LED2_PIN, LED1_PIN); toggleLED(LED3_PIN, LED2_PIN); toggleLED(LED4_PIN, LED3_PIN); toggleLED(LED5_PIN, LED4_PIN); toggleLED(LED4_PIN, LED5_PIN); toggleLED(LED3_PIN, LED4_PIN); toggleLED(LED2_PIN, LED3_PIN); toggleLED(LED1_PIN, LED2_PIN); toggleLED(0, LED1_PIN); printRight(3, "5"); LCD_DisplayStringLine(LINE(4), (uint8_t*) " RTC ................"); RTC_Init(); RTC_t rtc = { .year = 2011, .month = 12, .mday = 19, .hour = 21, .min = 00 }; //RTC_SetTime(&rtc); RTC_GetTime(&rtc); sprintf(buff, "%04d/%02d/%02d %02d:%02d:%02d", rtc.year, rtc.month, rtc.mday, rtc.hour, rtc.min, rtc.sec); printRight(4, buff); LCD_DisplayStringLine(LINE(5), (uint8_t*) " USB ................................."); Set_USBClock(); Set_System(); USB_Interrupts_Config(); USB_Init(); printRight(5, "ok"); //IS61LV25616 (512KB) LCD_DisplayStringLine(LINE(6), (uint8_t*) " SRAM ................................"); SRAM_Init(); uint32_t* RAM = (uint32_t*) Bank1_SRAM3_ADDR; uint8_t TESTOK = 1; for (uint32_t i = 0; i < (512 * 1024) / 4; i++) { RAM[i] = i; } for (uint32_t i = 0; i < (512 * 1024) / 4; i++) { if (RAM[i] != i) { TESTOK = 0; } RAM[i] = 0; } if (TESTOK) { printRight(6, "IS61LV25616 512KB"); } else { printRight(6, "fail"); } //M29W128F (2MB) LCD_DisplayStringLine(LINE(7), (uint8_t*) " NOR ................................."); NOR_Init(); NOR_IDTypeDef norid; NOR_ReadID(&norid); printRight(7, "MX29LV160D 2MB"); //HY27UF081G2A (128MB) LCD_DisplayStringLine(LINE(8), (uint8_t*) " NAND ................................"); NAND_Init(); NAND_IDTypeDef nandid; NAND_ReadID(&nandid); printRight(8, "HY27UF081G2A 128MB"); LCD_DisplayStringLine(LINE(9), (uint8_t*) " SDIO ................................"); SD_Init(); SD_CardInfo cardinfo; SD_GetCardInfo(&cardinfo); printRight(9, "ok"); }