void split_cb_shape_sign_unquant( spx_sig_t *exc, const void *par, /* non-overlapping codebook */ int nsf, /* number of samples in subframe */ SpeexBits *bits, char *stack, spx_int32_t *seed ) { int i,j; VARDECL(int *ind); VARDECL(int *signs); const signed char *shape_cb; //int shape_cb_size; int subvect_size, nb_subvect; const split_cb_params *params; int have_sign; params = (const split_cb_params *) par; subvect_size = params->subvect_size; nb_subvect = params->nb_subvect; //shape_cb_size = 1<<params->shape_bits; shape_cb = params->shape_cb; have_sign = params->have_sign; ALLOC(ind, nb_subvect, int); ALLOC(signs, nb_subvect, int); /* Decode codewords and gains */ for (i=0;i<nb_subvect;i++) { if (have_sign) signs[i] = speex_bits_unpack_unsigned(bits, 1); else signs[i] = 0; ind[i] = speex_bits_unpack_unsigned(bits, params->shape_bits); } /* Compute decoded excitation */ for (i=0;i<nb_subvect;i++) { spx_word16_t s=1; if (signs[i]) s=-1; #ifdef FIXED_POINT if (s==1) { for (j=0;j<subvect_size;j++) exc[subvect_size*i+j]=SHL32(EXTEND32(shape_cb[ind[i]*subvect_size+j]),SIG_SHIFT-5); } else { for (j=0;j<subvect_size;j++) exc[subvect_size*i+j]=NEG32(SHL32(EXTEND32(shape_cb[ind[i]*subvect_size+j]),SIG_SHIFT-5)); } #else for (j=0;j<subvect_size;j++) exc[subvect_size*i+j]+=s*0.03125*shape_cb[ind[i]*subvect_size+j]; #endif } }
/* returns minimum mean square error */ spx_word32_t _spx_lpc( spx_coef_t *lpc, /* out: [0...p-1] LPC coefficients */ const spx_word16_t *ac, /* in: [0...p] autocorrelation values */ int p ) { int i, j; spx_word16_t r; spx_word16_t error = ac[0]; if (ac[0] == 0) { for (i = 0; i < p; i++) lpc[i] = 0; return 0; } for (i = 0; i < p; i++) { /* Sum up this iteration's reflection coefficient */ spx_word32_t rr = NEG32(SHL32(EXTEND32(ac[i + 1]),13)); for (j = 0; j < i; j++) rr = SUB32(rr,MULT16_16(lpc[j],ac[i - j])); #ifdef FIXED_POINT r = DIV32_16(rr+PSHR32(error,1),ADD16(error,8)); #else r = rr/(error+.003*ac[0]); #endif /* Update LPC coefficients and total error */ lpc[i] = r; for (j = 0; j < i>>1; j++) { spx_word16_t tmp = lpc[j]; lpc[j] = MAC16_16_P13(lpc[j],r,lpc[i-1-j]); lpc[i-1-j] = MAC16_16_P13(lpc[i-1-j],r,tmp); } if (i & 1) lpc[j] = MAC16_16_P13(lpc[j],lpc[j],r); error = SUB16(error,MULT16_16_Q13(r,MULT16_16_Q13(error,r))); } return error; }
void split_cb_search_shape_sign( spx_word16_t target[], /* target vector */ spx_coef_t ak[], /* LPCs for this subframe */ spx_coef_t awk1[], /* Weighted LPCs for this subframe */ spx_coef_t awk2[], /* Weighted LPCs for this subframe */ const void *par, /* Codebook/search parameters*/ int p, /* number of LPC coeffs */ int nsf, /* number of samples in subframe */ spx_sig_t *exc, spx_word16_t *r, SpeexBits *bits, char *stack, int complexity, int update_target ) { int i,j,k,m,n,q; VARDECL(spx_word16_t *resp); #ifdef _USE_SSE VARDECL(__m128 *resp2); VARDECL(__m128 *E); #else spx_word16_t *resp2; VARDECL(spx_word32_t *E); #endif VARDECL(spx_word16_t *t); VARDECL(spx_sig_t *e); VARDECL(spx_word16_t *tmp); VARDECL(spx_word32_t *ndist); VARDECL(spx_word32_t *odist); VARDECL(int *itmp); VARDECL(spx_word16_t **ot2); VARDECL(spx_word16_t **nt2); spx_word16_t **ot, **nt; VARDECL(int **nind); VARDECL(int **oind); VARDECL(int *ind); const signed char *shape_cb; int shape_cb_size, subvect_size, nb_subvect; const split_cb_params *params; int N=2; VARDECL(int *best_index); VARDECL(spx_word32_t *best_dist); VARDECL(int *best_nind); VARDECL(int *best_ntarget); int have_sign; N=complexity; if (N>10) N=10; /* Complexity isn't as important for the codebooks as it is for the pitch */ N=(2*N)/3; if (N<1) N=1; if (N==1) { split_cb_search_shape_sign_N1(target,ak,awk1,awk2,par,p,nsf,exc,r,bits,stack,update_target); return; } ALLOC(ot2, N, spx_word16_t*); ALLOC(nt2, N, spx_word16_t*); ALLOC(oind, N, int*); ALLOC(nind, N, int*); params = (const split_cb_params *) par; subvect_size = params->subvect_size; nb_subvect = params->nb_subvect; shape_cb_size = 1<<params->shape_bits; shape_cb = params->shape_cb; have_sign = params->have_sign; ALLOC(resp, shape_cb_size*subvect_size, spx_word16_t); #ifdef _USE_SSE ALLOC(resp2, (shape_cb_size*subvect_size)>>2, __m128); ALLOC(E, shape_cb_size>>2, __m128); #else resp2 = resp; ALLOC(E, shape_cb_size, spx_word32_t); #endif ALLOC(t, nsf, spx_word16_t); ALLOC(e, nsf, spx_sig_t); ALLOC(ind, nb_subvect, int); ALLOC(tmp, 2*N*nsf, spx_word16_t); for (i=0;i<N;i++) { ot2[i]=tmp+2*i*nsf; nt2[i]=tmp+(2*i+1)*nsf; } ot=ot2; nt=nt2; ALLOC(best_index, N, int); ALLOC(best_dist, N, spx_word32_t); ALLOC(best_nind, N, int); ALLOC(best_ntarget, N, int); ALLOC(ndist, N, spx_word32_t); ALLOC(odist, N, spx_word32_t); ALLOC(itmp, 2*N*nb_subvect, int); for (i=0;i<N;i++) { nind[i]=itmp+2*i*nb_subvect; oind[i]=itmp+(2*i+1)*nb_subvect; } SPEEX_COPY(t, target, nsf); for (j=0;j<N;j++) SPEEX_COPY(&ot[j][0], t, nsf); /* Pre-compute codewords response and energy */ compute_weighted_codebook(shape_cb, r, resp, resp2, E, shape_cb_size, subvect_size, stack); for (j=0;j<N;j++) odist[j]=0; /*For all subvectors*/ for (i=0;i<nb_subvect;i++) { /*"erase" nbest list*/ for (j=0;j<N;j++) ndist[j]=VERY_LARGE32; /* This is not strictly necessary, but it provides an additonal safety to prevent crashes in case something goes wrong in the previous steps (e.g. NaNs) */ for (j=0;j<N;j++) best_nind[j] = best_ntarget[j] = 0; /*For all n-bests of previous subvector*/ for (j=0;j<N;j++) { spx_word16_t *x=ot[j]+subvect_size*i; spx_word32_t tener = 0; for (m=0;m<subvect_size;m++) tener = MAC16_16(tener, x[m],x[m]); #ifdef FIXED_POINT tener = SHR32(tener,1); #else tener *= .5; #endif /*Find new n-best based on previous n-best j*/ #ifndef DISABLE_WIDEBAND if (have_sign) vq_nbest_sign(x, resp2, subvect_size, shape_cb_size, E, N, best_index, best_dist, stack); else #endif /* DISABLE_WIDEBAND */ vq_nbest(x, resp2, subvect_size, shape_cb_size, E, N, best_index, best_dist, stack); /*For all new n-bests*/ for (k=0;k<N;k++) { /* Compute total distance (including previous sub-vectors */ spx_word32_t err = ADD32(ADD32(odist[j],best_dist[k]),tener); /*update n-best list*/ if (err<ndist[N-1]) { for (m=0;m<N;m++) { if (err < ndist[m]) { for (n=N-1;n>m;n--) { ndist[n] = ndist[n-1]; best_nind[n] = best_nind[n-1]; best_ntarget[n] = best_ntarget[n-1]; } /* n is equal to m here, so they're interchangeable */ ndist[m] = err; best_nind[n] = best_index[k]; best_ntarget[n] = j; break; } } } } if (i==0) break; } for (j=0;j<N;j++) { /*previous target (we don't care what happened before*/ for (m=(i+1)*subvect_size;m<nsf;m++) nt[j][m]=ot[best_ntarget[j]][m]; /* New code: update the rest of the target only if it's worth it */ for (m=0;m<subvect_size;m++) { spx_word16_t g; int rind; spx_word16_t sign=1; rind = best_nind[j]; if (rind>=shape_cb_size) { sign=-1; rind-=shape_cb_size; } q=subvect_size-m; #ifdef FIXED_POINT g=sign*shape_cb[rind*subvect_size+m]; #else g=sign*0.03125*shape_cb[rind*subvect_size+m]; #endif target_update(nt[j]+subvect_size*(i+1), g, r+q, nsf-subvect_size*(i+1)); } for (q=0;q<nb_subvect;q++) nind[j][q]=oind[best_ntarget[j]][q]; nind[j][i]=best_nind[j]; } /*update old-new data*/ /* just swap pointers instead of a long copy */ { spx_word16_t **tmp2; tmp2=ot; ot=nt; nt=tmp2; } for (j=0;j<N;j++) for (m=0;m<nb_subvect;m++) oind[j][m]=nind[j][m]; for (j=0;j<N;j++) odist[j]=ndist[j]; } /*save indices*/ for (i=0;i<nb_subvect;i++) { ind[i]=nind[0][i]; speex_bits_pack(bits,ind[i],params->shape_bits+have_sign); } /* Put everything back together */ for (i=0;i<nb_subvect;i++) { int rind; spx_word16_t sign=1; rind = ind[i]; if (rind>=shape_cb_size) { sign=-1; rind-=shape_cb_size; } #ifdef FIXED_POINT if (sign==1) { for (j=0;j<subvect_size;j++) e[subvect_size*i+j]=SHL32(EXTEND32(shape_cb[rind*subvect_size+j]),SIG_SHIFT-5); } else { for (j=0;j<subvect_size;j++) e[subvect_size*i+j]=NEG32(SHL32(EXTEND32(shape_cb[rind*subvect_size+j]),SIG_SHIFT-5)); } #else for (j=0;j<subvect_size;j++) e[subvect_size*i+j]=sign*0.03125*shape_cb[rind*subvect_size+j]; #endif } /* Update excitation */ for (j=0;j<nsf;j++) exc[j]=ADD32(exc[j],e[j]); /* Update target: only update target if necessary */ if (update_target) { VARDECL(spx_word16_t *r2); ALLOC(r2, nsf, spx_word16_t); for (j=0;j<nsf;j++) r2[j] = EXTRACT16(PSHR32(e[j] ,6)); syn_percep_zero16(r2, ak, awk1, awk2, r2, nsf,p, stack); for (j=0;j<nsf;j++) target[j]=SUB16(target[j],PSHR16(r2[j],2)); } }
static void split_cb_search_shape_sign_N1( spx_word16_t target[], /* target vector */ spx_coef_t ak[], /* LPCs for this subframe */ spx_coef_t awk1[], /* Weighted LPCs for this subframe */ spx_coef_t awk2[], /* Weighted LPCs for this subframe */ const void *par, /* Codebook/search parameters*/ int p, /* number of LPC coeffs */ int nsf, /* number of samples in subframe */ spx_sig_t *exc, spx_word16_t *r, SpeexBits *bits, char *stack, int update_target ) { int i,j,m,q; VARDECL(spx_word16_t *resp); #ifdef _USE_SSE VARDECL(__m128 *resp2); VARDECL(__m128 *E); #else spx_word16_t *resp2; VARDECL(spx_word32_t *E); #endif VARDECL(spx_word16_t *t); VARDECL(spx_sig_t *e); const signed char *shape_cb; int shape_cb_size, subvect_size, nb_subvect; const split_cb_params *params; int best_index; spx_word32_t best_dist; int have_sign; params = (const split_cb_params *) par; subvect_size = params->subvect_size; nb_subvect = params->nb_subvect; shape_cb_size = 1<<params->shape_bits; shape_cb = params->shape_cb; have_sign = params->have_sign; ALLOC(resp, shape_cb_size*subvect_size, spx_word16_t); #ifdef _USE_SSE ALLOC(resp2, (shape_cb_size*subvect_size)>>2, __m128); ALLOC(E, shape_cb_size>>2, __m128); #else resp2 = resp; ALLOC(E, shape_cb_size, spx_word32_t); #endif ALLOC(t, nsf, spx_word16_t); ALLOC(e, nsf, spx_sig_t); /* FIXME: Do we still need to copy the target? */ SPEEX_COPY(t, target, nsf); compute_weighted_codebook(shape_cb, r, resp, resp2, E, shape_cb_size, subvect_size, stack); for (i=0;i<nb_subvect;i++) { spx_word16_t *x=t+subvect_size*i; /*Find new n-best based on previous n-best j*/ #ifndef DISABLE_WIDEBAND if (have_sign) vq_nbest_sign(x, resp2, subvect_size, shape_cb_size, E, 1, &best_index, &best_dist, stack); else #endif /* DISABLE_WIDEBAND */ vq_nbest(x, resp2, subvect_size, shape_cb_size, E, 1, &best_index, &best_dist, stack); speex_bits_pack(bits,best_index,params->shape_bits+have_sign); { int rind; spx_word16_t *res; spx_word16_t sign=1; rind = best_index; if (rind>=shape_cb_size) { sign=-1; rind-=shape_cb_size; } res = resp+rind*subvect_size; if (sign>0) for (m=0;m<subvect_size;m++) t[subvect_size*i+m] = SUB16(t[subvect_size*i+m], res[m]); else for (m=0;m<subvect_size;m++) t[subvect_size*i+m] = ADD16(t[subvect_size*i+m], res[m]); #ifdef FIXED_POINT if (sign==1) { for (j=0;j<subvect_size;j++) e[subvect_size*i+j]=SHL32(EXTEND32(shape_cb[rind*subvect_size+j]),SIG_SHIFT-5); } else { for (j=0;j<subvect_size;j++) e[subvect_size*i+j]=NEG32(SHL32(EXTEND32(shape_cb[rind*subvect_size+j]),SIG_SHIFT-5)); } #else for (j=0;j<subvect_size;j++) e[subvect_size*i+j]=sign*0.03125*shape_cb[rind*subvect_size+j]; #endif } for (m=0;m<subvect_size;m++) { spx_word16_t g; int rind; spx_word16_t sign=1; rind = best_index; if (rind>=shape_cb_size) { sign=-1; rind-=shape_cb_size; } q=subvect_size-m; #ifdef FIXED_POINT g=sign*shape_cb[rind*subvect_size+m]; #else g=sign*0.03125*shape_cb[rind*subvect_size+m]; #endif target_update(t+subvect_size*(i+1), g, r+q, nsf-subvect_size*(i+1)); } } /* Update excitation */ /* FIXME: We could update the excitation directly above */ for (j=0;j<nsf;j++) exc[j]=ADD32(exc[j],e[j]); /* Update target: only update target if necessary */ if (update_target) { VARDECL(spx_word16_t *r2); ALLOC(r2, nsf, spx_word16_t); for (j=0;j<nsf;j++) r2[j] = EXTRACT16(PSHR32(e[j] ,6)); syn_percep_zero16(r2, ak, awk1, awk2, r2, nsf,p, stack); for (j=0;j<nsf;j++) target[j]=SUB16(target[j],PSHR16(r2[j],2)); } }
void split_cb_search_shape_sign( spx_word16_t target[], /* target vector */ spx_coef_t ak[], /* LPCs for this subframe */ spx_coef_t awk1[], /* Weighted LPCs for this subframe */ spx_coef_t awk2[], /* Weighted LPCs for this subframe */ const void *par, /* Codebook/search parameters*/ int p, /* number of LPC coeffs */ int nsf, /* number of samples in subframe */ spx_sig_t *exc, spx_word16_t *r, SpeexBits *bits, char *stack, int complexity, int update_target ) { int i,j,m,q; const signed char *shape_cb; int shape_cb_size = 32, subvect_size = 10; int best_index; spx_word32_t best_dist; spx_word16_t resp[320]; spx_word16_t *resp2 = resp; spx_word32_t E[32]; spx_word16_t t[40]; spx_sig_t e[40]; shape_cb=exc_10_32_table; /* FIXME: Do we still need to copy the target? */ SPEEX_COPY(t, target, nsf); //compute_weighted_codebook { int i, k; spx_word16_t shape[10]; for (i=0;i<shape_cb_size;i++) { spx_word16_t *res; res = resp+i*subvect_size; for (k=0;k<subvect_size;k++) shape[k] = (spx_word16_t)shape_cb[i*subvect_size+k]; E[i]=0; /* Compute codeword response using convolution with impulse response */ { spx_word32_t resj; spx_word16_t res16; // 0 resj = MULT16_16(shape[0],r[0]); res16 = EXTRACT16(SHR32(resj, 13)); // Compute codeword energy E[i]=MAC16_16(E[i],res16,res16); res[0] = res16; //++++++++++++++++++++++++++ // 1 resj = MULT16_16(shape[0],r[1]); resj = MAC16_16(resj,shape[1],r[0]); res16 = EXTRACT16(SHR32(resj, 13)); // Compute codeword energy E[i]=MAC16_16(E[i],res16,res16); res[1] = res16; //++++++++++++++++++++++++++ // 2 resj = MULT16_16(shape[0],r[2]); resj = MAC16_16(resj,shape[1],r[1]); resj = MAC16_16(resj,shape[2],r[0]); res16 = EXTRACT16(SHR32(resj, 13)); // Compute codeword energy E[i]=MAC16_16(E[i],res16,res16); res[2] = res16; //++++++++++++++++++++++++++ // 3 resj = MULT16_16(shape[0],r[3]); resj = MAC16_16(resj,shape[1],r[2]); resj = MAC16_16(resj,shape[2],r[1]); resj = MAC16_16(resj,shape[3],r[0]); res16 = EXTRACT16(SHR32(resj, 13)); // Compute codeword energy E[i]=MAC16_16(E[i],res16,res16); res[3] = res16; //++++++++++++++++++++++++++ // 4 resj = MULT16_16(shape[0],r[4]); resj = MAC16_16(resj,shape[1],r[3]); resj = MAC16_16(resj,shape[2],r[2]); resj = MAC16_16(resj,shape[3],r[1]); resj = MAC16_16(resj,shape[4],r[0]); res16 = EXTRACT16(SHR32(resj, 13)); // Compute codeword energy E[i]=MAC16_16(E[i],res16,res16); res[4] = res16; //++++++++++++++++++++++++++ // 5 resj = MULT16_16(shape[0],r[5]); resj = MAC16_16(resj,shape[1],r[4]); resj = MAC16_16(resj,shape[2],r[3]); resj = MAC16_16(resj,shape[3],r[2]); resj = MAC16_16(resj,shape[4],r[1]); resj = MAC16_16(resj,shape[5],r[0]); res16 = EXTRACT16(SHR32(resj, 13)); // Compute codeword energy E[i]=MAC16_16(E[i],res16,res16); res[5] = res16; //++++++++++++++++++++++++++ // 6 resj = MULT16_16(shape[0],r[6]); resj = MAC16_16(resj,shape[1],r[5]); resj = MAC16_16(resj,shape[2],r[4]); resj = MAC16_16(resj,shape[3],r[3]); resj = MAC16_16(resj,shape[4],r[2]); resj = MAC16_16(resj,shape[5],r[1]); resj = MAC16_16(resj,shape[6],r[0]); res16 = EXTRACT16(SHR32(resj, 13)); // Compute codeword energy E[i]=MAC16_16(E[i],res16,res16); res[6] = res16; //++++++++++++++++++++++++++ // 7 resj = MULT16_16(shape[0],r[7]); resj = MAC16_16(resj,shape[1],r[6]); resj = MAC16_16(resj,shape[2],r[5]); resj = MAC16_16(resj,shape[3],r[4]); resj = MAC16_16(resj,shape[4],r[3]); resj = MAC16_16(resj,shape[5],r[2]); resj = MAC16_16(resj,shape[6],r[1]); resj = MAC16_16(resj,shape[7],r[0]); res16 = EXTRACT16(SHR32(resj, 13)); // Compute codeword energy E[i]=MAC16_16(E[i],res16,res16); res[7] = res16; //++++++++++++++++++++++++++ // 8 resj = MULT16_16(shape[0],r[8]); resj = MAC16_16(resj,shape[1],r[7]); resj = MAC16_16(resj,shape[2],r[6]); resj = MAC16_16(resj,shape[3],r[5]); resj = MAC16_16(resj,shape[4],r[4]); resj = MAC16_16(resj,shape[5],r[3]); resj = MAC16_16(resj,shape[6],r[2]); resj = MAC16_16(resj,shape[7],r[1]); resj = MAC16_16(resj,shape[8],r[0]); res16 = EXTRACT16(SHR32(resj, 13)); // Compute codeword energy E[i]=MAC16_16(E[i],res16,res16); res[8] = res16; //++++++++++++++++++++++++++ // 9 resj = MULT16_16(shape[0],r[9]); resj = MAC16_16(resj,shape[1],r[8]); resj = MAC16_16(resj,shape[2],r[7]); resj = MAC16_16(resj,shape[3],r[6]); resj = MAC16_16(resj,shape[4],r[5]); resj = MAC16_16(resj,shape[5],r[4]); resj = MAC16_16(resj,shape[6],r[3]); resj = MAC16_16(resj,shape[7],r[2]); resj = MAC16_16(resj,shape[8],r[1]); resj = MAC16_16(resj,shape[9],r[0]); res16 = EXTRACT16(SHR32(resj, 13)); // Compute codeword energy E[i]=MAC16_16(E[i],res16,res16); res[9] = res16; //++++++++++++++++++++++++++ } } } for (i=0;i<4;i++) { spx_word16_t *x=t+subvect_size*i; /*Find new n-best based on previous n-best j*/ vq_nbest(x, resp2, subvect_size, shape_cb_size, E, 1, &best_index, &best_dist, stack); speex_bits_pack(bits,best_index,5); { int rind; spx_word16_t *res; spx_word16_t sign=1; rind = best_index; if (rind>=shape_cb_size) { sign=-1; rind-=shape_cb_size; } res = resp+rind*subvect_size; if (sign>0) for (m=0;m<subvect_size;m++) t[subvect_size*i+m] = SUB16(t[subvect_size*i+m], res[m]); else for (m=0;m<subvect_size;m++) t[subvect_size*i+m] = ADD16(t[subvect_size*i+m], res[m]); if (sign==1) { for (j=0;j<subvect_size;j++) e[subvect_size*i+j]=SHL32(EXTEND32(shape_cb[rind*subvect_size+j]),SIG_SHIFT-5); } else { for (j=0;j<subvect_size;j++) e[subvect_size*i+j]=NEG32(SHL32(EXTEND32(shape_cb[rind*subvect_size+j]),SIG_SHIFT-5)); } } for (m=0;m<subvect_size;m++) { spx_word16_t g; int rind; spx_word16_t sign=1; rind = best_index; if (rind>=shape_cb_size) { sign=-1; rind-=shape_cb_size; } q=subvect_size-m; g=sign*shape_cb[rind*subvect_size+m]; target_update(t+subvect_size*(i+1), g, r+q, nsf-subvect_size*(i+1)); } } /* Update excitation */ /* FIXME: We could update the excitation directly above */ for (j=0;j<nsf;j++) exc[j]=ADD32(exc[j],e[j]); }
void split_cb_search_shape_sign( spx_sig_t target[], /* target vector */ spx_coef_t ak[], /* LPCs for this subframe */ spx_coef_t awk1[], /* Weighted LPCs for this subframe */ spx_coef_t awk2[], /* Weighted LPCs for this subframe */ const void *par, /* Codebook/search parameters*/ int p, /* number of LPC coeffs */ int nsf, /* number of samples in subframe */ spx_sig_t *exc, spx_word16_t *r, SpeexBits *bits, char *stack, int complexity, int update_target ) { int i,j,k,m,n,q; VARDECL(spx_word16_t *resp); #ifdef _USE_SSE VARDECL(__m128 *resp2); VARDECL(__m128 *E); #else spx_word16_t *resp2; VARDECL(spx_word32_t *E); #endif VARDECL(spx_word16_t *t); VARDECL(spx_sig_t *e); VARDECL(spx_sig_t *r2); VARDECL(spx_word16_t *tmp); VARDECL(spx_word32_t *ndist); VARDECL(spx_word32_t *odist); VARDECL(int *itmp); VARDECL(spx_word16_t **ot2); VARDECL(spx_word16_t **nt2); spx_word16_t **ot, **nt; VARDECL(int **nind); VARDECL(int **oind); VARDECL(int *ind); const signed char *shape_cb; int shape_cb_size, subvect_size, nb_subvect; const split_cb_params *params; int N=2; VARDECL(int *best_index); VARDECL(spx_word32_t *best_dist); int have_sign; N=complexity; if (N>10) N=10; if (N<1) N=1; if (N==1) { split_cb_search_shape_sign_N1(target,ak,awk1,awk2,par,p,nsf,exc,r,bits,stack,complexity,update_target); return; } ALLOC(ot2, N, spx_word16_t*); ALLOC(nt2, N, spx_word16_t*); ALLOC(oind, N, int*); ALLOC(nind, N, int*); params = (const split_cb_params *) par; subvect_size = params->subvect_size; nb_subvect = params->nb_subvect; shape_cb_size = 1<<params->shape_bits; shape_cb = params->shape_cb; have_sign = params->have_sign; ALLOC(resp, shape_cb_size*subvect_size, spx_word16_t); #ifdef _USE_SSE ALLOC(resp2, (shape_cb_size*subvect_size)>>2, __m128); ALLOC(E, shape_cb_size>>2, __m128); #else resp2 = resp; ALLOC(E, shape_cb_size, spx_word32_t); #endif ALLOC(t, nsf, spx_word16_t); ALLOC(e, nsf, spx_sig_t); ALLOC(r2, nsf, spx_sig_t); ALLOC(ind, nb_subvect, int); ALLOC(tmp, 2*N*nsf, spx_word16_t); for (i=0;i<N;i++) { ot2[i]=tmp+2*i*nsf; nt2[i]=tmp+(2*i+1)*nsf; } ot=ot2; nt=nt2; ALLOC(best_index, N, int); ALLOC(best_dist, N, spx_word32_t); ALLOC(ndist, N, spx_word32_t); ALLOC(odist, N, spx_word32_t); ALLOC(itmp, 2*N*nb_subvect, int); for (i=0;i<N;i++) { nind[i]=itmp+2*i*nb_subvect; oind[i]=itmp+(2*i+1)*nb_subvect; for (j=0;j<nb_subvect;j++) nind[i][j]=oind[i][j]=-1; } /* FIXME: make that adaptive? */ for (i=0;i<nsf;i++) t[i]=EXTRACT16(PSHR32(target[i],6)); for (j=0;j<N;j++) for (i=0;i<nsf;i++) ot[j][i]=t[i]; /*for (i=0;i<nsf;i++) printf ("%d\n", (int)t[i]);*/ /* Pre-compute codewords response and energy */ compute_weighted_codebook(shape_cb, r, resp, resp2, E, shape_cb_size, subvect_size, stack); for (j=0;j<N;j++) odist[j]=0; /*For all subvectors*/ for (i=0;i<nb_subvect;i++) { /*"erase" nbest list*/ for (j=0;j<N;j++) ndist[j]=-2; /*For all n-bests of previous subvector*/ for (j=0;j<N;j++) { spx_word16_t *x=ot[j]+subvect_size*i; /*Find new n-best based on previous n-best j*/ if (have_sign) vq_nbest_sign(x, resp2, subvect_size, shape_cb_size, E, N, best_index, best_dist, stack); else vq_nbest(x, resp2, subvect_size, shape_cb_size, E, N, best_index, best_dist, stack); /*For all new n-bests*/ for (k=0;k<N;k++) { spx_word16_t *ct; spx_word32_t err=0; ct = ot[j]; /*update target*/ /*previous target*/ for (m=i*subvect_size;m<(i+1)*subvect_size;m++) t[m]=ct[m]; /* New code: update only enough of the target to calculate error*/ { int rind; spx_word16_t *res; spx_word16_t sign=1; rind = best_index[k]; if (rind>=shape_cb_size) { sign=-1; rind-=shape_cb_size; } res = resp+rind*subvect_size; if (sign>0) for (m=0;m<subvect_size;m++) t[subvect_size*i+m] = SUB16(t[subvect_size*i+m], res[m]); else for (m=0;m<subvect_size;m++) t[subvect_size*i+m] = ADD16(t[subvect_size*i+m], res[m]); } /*compute error (distance)*/ err=odist[j]; for (m=i*subvect_size;m<(i+1)*subvect_size;m++) err = MAC16_16(err, t[m],t[m]); /*update n-best list*/ if (err<ndist[N-1] || ndist[N-1]<-1) { /*previous target (we don't care what happened before*/ for (m=(i+1)*subvect_size;m<nsf;m++) t[m]=ct[m]; /* New code: update the rest of the target only if it's worth it */ for (m=0;m<subvect_size;m++) { spx_word16_t g; int rind; spx_word16_t sign=1; rind = best_index[k]; if (rind>=shape_cb_size) { sign=-1; rind-=shape_cb_size; } q=subvect_size-m; #ifdef FIXED_POINT g=sign*shape_cb[rind*subvect_size+m]; for (n=subvect_size*(i+1);n<nsf;n++,q++) t[n] = SUB32(t[n],MULT16_16_Q11_32(g,r[q])); #else g=sign*0.03125*shape_cb[rind*subvect_size+m]; for (n=subvect_size*(i+1);n<nsf;n++,q++) t[n] = SUB32(t[n],g*r[q]); #endif } for (m=0;m<N;m++) { if (err < ndist[m] || ndist[m]<-1) { for (n=N-1;n>m;n--) { for (q=(i+1)*subvect_size;q<nsf;q++) nt[n][q]=nt[n-1][q]; for (q=0;q<nb_subvect;q++) nind[n][q]=nind[n-1][q]; ndist[n]=ndist[n-1]; } for (q=(i+1)*subvect_size;q<nsf;q++) nt[m][q]=t[q]; for (q=0;q<nb_subvect;q++) nind[m][q]=oind[j][q]; nind[m][i]=best_index[k]; ndist[m]=err; break; } } } } if (i==0) break; } /*update old-new data*/ /* just swap pointers instead of a long copy */ { spx_word16_t **tmp2; tmp2=ot; ot=nt; nt=tmp2; } for (j=0;j<N;j++) for (m=0;m<nb_subvect;m++) oind[j][m]=nind[j][m]; for (j=0;j<N;j++) odist[j]=ndist[j]; } /*save indices*/ for (i=0;i<nb_subvect;i++) { ind[i]=nind[0][i]; speex_bits_pack(bits,ind[i],params->shape_bits+have_sign); } /* Put everything back together */ for (i=0;i<nb_subvect;i++) { int rind; spx_word16_t sign=1; rind = ind[i]; if (rind>=shape_cb_size) { sign=-1; rind-=shape_cb_size; } #ifdef FIXED_POINT if (sign==1) { for (j=0;j<subvect_size;j++) e[subvect_size*i+j]=SHL32(EXTEND32(shape_cb[rind*subvect_size+j]),SIG_SHIFT-5); } else { for (j=0;j<subvect_size;j++) e[subvect_size*i+j]=NEG32(SHL32(EXTEND32(shape_cb[rind*subvect_size+j]),SIG_SHIFT-5)); } #else for (j=0;j<subvect_size;j++) e[subvect_size*i+j]=sign*0.03125*shape_cb[rind*subvect_size+j]; #endif } /* Update excitation */ for (j=0;j<nsf;j++) exc[j]=ADD32(exc[j],e[j]); /* Update target: only update target if necessary */ if (update_target) { syn_percep_zero(e, ak, awk1, awk2, r2, nsf,p, stack); for (j=0;j<nsf;j++) target[j]=SUB32(target[j],r2[j]); } }
/** Performs echo cancellation on a frame */ EXPORT void speex_echo_cancellation(SpeexEchoState *st, const spx_int16_t *in, const spx_int16_t *far_end, spx_int16_t *out) { int i,j, chan, speak; int N,M, C, K; spx_word32_t Syy,See,Sxx,Sdd, Sff; #ifdef TWO_PATH spx_word32_t Dbf; int update_foreground; #endif spx_word32_t Sey; spx_word16_t ss, ss_1; spx_float_t Pey = FLOAT_ONE, Pyy=FLOAT_ONE; spx_float_t alpha, alpha_1; spx_word16_t RER; spx_word32_t tmp32; N = st->window_size; M = st->M; C = st->C; K = st->K; st->cancel_count++; #ifdef FIXED_POINT ss=DIV32_16(11469,M); ss_1 = SUB16(32767,ss); #else ss=.35/M; ss_1 = 1-ss; #endif for (chan = 0; chan < C; chan++) { /* Apply a notch filter to make sure DC doesn't end up causing problems */ filter_dc_notch16(in+chan, st->notch_radius, st->input+chan*st->frame_size, st->frame_size, st->notch_mem+2*chan, C); /* Copy input data to buffer and apply pre-emphasis */ /* Copy input data to buffer */ for (i=0;i<st->frame_size;i++) { spx_word32_t tmp32; /* FIXME: This core has changed a bit, need to merge properly */ tmp32 = SUB32(EXTEND32(st->input[chan*st->frame_size+i]), EXTEND32(MULT16_16_P15(st->preemph, st->memD[chan]))); #ifdef FIXED_POINT if (tmp32 > 32767) { tmp32 = 32767; if (st->saturated == 0) st->saturated = 1; } if (tmp32 < -32767) { tmp32 = -32767; if (st->saturated == 0) st->saturated = 1; } #endif st->memD[chan] = st->input[chan*st->frame_size+i]; st->input[chan*st->frame_size+i] = EXTRACT16(tmp32); } } for (speak = 0; speak < K; speak++) { for (i=0;i<st->frame_size;i++) { spx_word32_t tmp32; st->x[speak*N+i] = st->x[speak*N+i+st->frame_size]; tmp32 = SUB32(EXTEND32(far_end[i*K+speak]), EXTEND32(MULT16_16_P15(st->preemph, st->memX[speak]))); #ifdef FIXED_POINT /*FIXME: If saturation occurs here, we need to freeze adaptation for M frames (not just one) */ if (tmp32 > 32767) { tmp32 = 32767; st->saturated = M+1; } if (tmp32 < -32767) { tmp32 = -32767; st->saturated = M+1; } #endif st->x[speak*N+i+st->frame_size] = EXTRACT16(tmp32); st->memX[speak] = far_end[i*K+speak]; } } for (speak = 0; speak < K; speak++) { /* Shift memory: this could be optimized eventually*/ for (j=M-1;j>=0;j--) { for (i=0;i<N;i++) st->X[(j+1)*N*K+speak*N+i] = st->X[j*N*K+speak*N+i]; } /* Convert x (echo input) to frequency domain */ spx_fft(st->fft_table, st->x+speak*N, &st->X[speak*N]); } Sxx = 0; for (speak = 0; speak < K; speak++) { Sxx += mdf_inner_prod(st->x+speak*N+st->frame_size, st->x+speak*N+st->frame_size, st->frame_size); power_spectrum_accum(st->X+speak*N, st->Xf, N); } Sff = 0; for (chan = 0; chan < C; chan++) { #ifdef TWO_PATH /* Compute foreground filter */ spectral_mul_accum16(st->X, st->foreground+chan*N*K*M, st->Y+chan*N, N, M*K); spx_ifft(st->fft_table, st->Y+chan*N, st->e+chan*N); for (i=0;i<st->frame_size;i++) st->e[chan*N+i] = SUB16(st->input[chan*st->frame_size+i], st->e[chan*N+i+st->frame_size]); Sff += mdf_inner_prod(st->e+chan*N, st->e+chan*N, st->frame_size); #endif } /* Adjust proportional adaption rate */ /* FIXME: Adjust that for C, K*/ if (st->adapted) mdf_adjust_prop (st->W, N, M, C*K, st->prop); /* Compute weight gradient */ if (st->saturated == 0) { for (chan = 0; chan < C; chan++) { for (speak = 0; speak < K; speak++) { for (j=M-1;j>=0;j--) { weighted_spectral_mul_conj(st->power_1, FLOAT_SHL(PSEUDOFLOAT(st->prop[j]),-15), &st->X[(j+1)*N*K+speak*N], st->E+chan*N, st->PHI, N); for (i=0;i<N;i++) st->W[chan*N*K*M + j*N*K + speak*N + i] += st->PHI[i]; } } } } else { st->saturated--; } /* FIXME: MC conversion required */ /* Update weight to prevent circular convolution (MDF / AUMDF) */ for (chan = 0; chan < C; chan++) { for (speak = 0; speak < K; speak++) { for (j=0;j<M;j++) { /* This is a variant of the Alternatively Updated MDF (AUMDF) */ /* Remove the "if" to make this an MDF filter */ if (j==0 || st->cancel_count%(M-1) == j-1) { #ifdef FIXED_POINT for (i=0;i<N;i++) st->wtmp2[i] = EXTRACT16(PSHR32(st->W[chan*N*K*M + j*N*K + speak*N + i],NORMALIZE_SCALEDOWN+16)); spx_ifft(st->fft_table, st->wtmp2, st->wtmp); for (i=0;i<st->frame_size;i++) { st->wtmp[i]=0; } for (i=st->frame_size;i<N;i++) { st->wtmp[i]=SHL16(st->wtmp[i],NORMALIZE_SCALEUP); } spx_fft(st->fft_table, st->wtmp, st->wtmp2); /* The "-1" in the shift is a sort of kludge that trades less efficient update speed for decrease noise */ for (i=0;i<N;i++) st->W[chan*N*K*M + j*N*K + speak*N + i] -= SHL32(EXTEND32(st->wtmp2[i]),16+NORMALIZE_SCALEDOWN-NORMALIZE_SCALEUP-1); #else spx_ifft(st->fft_table, &st->W[chan*N*K*M + j*N*K + speak*N], st->wtmp); for (i=st->frame_size;i<N;i++) { st->wtmp[i]=0; } spx_fft(st->fft_table, st->wtmp, &st->W[chan*N*K*M + j*N*K + speak*N]); #endif } } } } /* So we can use power_spectrum_accum */ for (i=0;i<=st->frame_size;i++) st->Rf[i] = st->Yf[i] = st->Xf[i] = 0; Dbf = 0; See = 0; #ifdef TWO_PATH /* Difference in response, this is used to estimate the variance of our residual power estimate */ for (chan = 0; chan < C; chan++) { spectral_mul_accum(st->X, st->W+chan*N*K*M, st->Y+chan*N, N, M*K); spx_ifft(st->fft_table, st->Y+chan*N, st->y+chan*N); for (i=0;i<st->frame_size;i++) st->e[chan*N+i] = SUB16(st->e[chan*N+i+st->frame_size], st->y[chan*N+i+st->frame_size]); Dbf += 10+mdf_inner_prod(st->e+chan*N, st->e+chan*N, st->frame_size); for (i=0;i<st->frame_size;i++) st->e[chan*N+i] = SUB16(st->input[chan*st->frame_size+i], st->y[chan*N+i+st->frame_size]); See += mdf_inner_prod(st->e+chan*N, st->e+chan*N, st->frame_size); } #endif #ifndef TWO_PATH Sff = See; #endif #ifdef TWO_PATH /* Logic for updating the foreground filter */ /* For two time windows, compute the mean of the energy difference, as well as the variance */ st->Davg1 = ADD32(MULT16_32_Q15(QCONST16(.6f,15),st->Davg1), MULT16_32_Q15(QCONST16(.4f,15),SUB32(Sff,See))); st->Davg2 = ADD32(MULT16_32_Q15(QCONST16(.85f,15),st->Davg2), MULT16_32_Q15(QCONST16(.15f,15),SUB32(Sff,See))); st->Dvar1 = FLOAT_ADD(FLOAT_MULT(VAR1_SMOOTH, st->Dvar1), FLOAT_MUL32U(MULT16_32_Q15(QCONST16(.4f,15),Sff), MULT16_32_Q15(QCONST16(.4f,15),Dbf))); st->Dvar2 = FLOAT_ADD(FLOAT_MULT(VAR2_SMOOTH, st->Dvar2), FLOAT_MUL32U(MULT16_32_Q15(QCONST16(.15f,15),Sff), MULT16_32_Q15(QCONST16(.15f,15),Dbf))); /* Equivalent float code: st->Davg1 = .6*st->Davg1 + .4*(Sff-See); st->Davg2 = .85*st->Davg2 + .15*(Sff-See); st->Dvar1 = .36*st->Dvar1 + .16*Sff*Dbf; st->Dvar2 = .7225*st->Dvar2 + .0225*Sff*Dbf; */ update_foreground = 0; /* Check if we have a statistically significant reduction in the residual echo */ /* Note that this is *not* Gaussian, so we need to be careful about the longer tail */ if (FLOAT_GT(FLOAT_MUL32U(SUB32(Sff,See),ABS32(SUB32(Sff,See))), FLOAT_MUL32U(Sff,Dbf))) update_foreground = 1; else if (FLOAT_GT(FLOAT_MUL32U(st->Davg1, ABS32(st->Davg1)), FLOAT_MULT(VAR1_UPDATE,(st->Dvar1)))) update_foreground = 1; else if (FLOAT_GT(FLOAT_MUL32U(st->Davg2, ABS32(st->Davg2)), FLOAT_MULT(VAR2_UPDATE,(st->Dvar2)))) update_foreground = 1; /* Do we update? */ if (update_foreground) { st->Davg1 = st->Davg2 = 0; st->Dvar1 = st->Dvar2 = FLOAT_ZERO; /* Copy background filter to foreground filter */ for (i=0;i<N*M*C*K;i++) st->foreground[i] = EXTRACT16(PSHR32(st->W[i],16)); /* Apply a smooth transition so as to not introduce blocking artifacts */ for (chan = 0; chan < C; chan++) for (i=0;i<st->frame_size;i++) st->e[chan*N+i+st->frame_size] = MULT16_16_Q15(st->window[i+st->frame_size],st->e[chan*N+i+st->frame_size]) + MULT16_16_Q15(st->window[i],st->y[chan*N+i+st->frame_size]); } else { int reset_background=0; /* Otherwise, check if the background filter is significantly worse */ if (FLOAT_GT(FLOAT_MUL32U(NEG32(SUB32(Sff,See)),ABS32(SUB32(Sff,See))), FLOAT_MULT(VAR_BACKTRACK,FLOAT_MUL32U(Sff,Dbf)))) reset_background = 1; if (FLOAT_GT(FLOAT_MUL32U(NEG32(st->Davg1), ABS32(st->Davg1)), FLOAT_MULT(VAR_BACKTRACK,st->Dvar1))) reset_background = 1; if (FLOAT_GT(FLOAT_MUL32U(NEG32(st->Davg2), ABS32(st->Davg2)), FLOAT_MULT(VAR_BACKTRACK,st->Dvar2))) reset_background = 1; if (reset_background) { /* Copy foreground filter to background filter */ for (i=0;i<N*M*C*K;i++) st->W[i] = SHL32(EXTEND32(st->foreground[i]),16); /* We also need to copy the output so as to get correct adaptation */ for (chan = 0; chan < C; chan++) { for (i=0;i<st->frame_size;i++) st->y[chan*N+i+st->frame_size] = st->e[chan*N+i+st->frame_size]; for (i=0;i<st->frame_size;i++) st->e[chan*N+i] = SUB16(st->input[chan*st->frame_size+i], st->y[chan*N+i+st->frame_size]); } See = Sff; st->Davg1 = st->Davg2 = 0; st->Dvar1 = st->Dvar2 = FLOAT_ZERO; } } #endif Sey = Syy = Sdd = 0; for (chan = 0; chan < C; chan++) { /* Compute error signal (for the output with de-emphasis) */ for (i=0;i<st->frame_size;i++) { spx_word32_t tmp_out; #ifdef TWO_PATH tmp_out = SUB32(EXTEND32(st->input[chan*st->frame_size+i]), EXTEND32(st->e[chan*N+i+st->frame_size])); #else tmp_out = SUB32(EXTEND32(st->input[chan*st->frame_size+i]), EXTEND32(st->y[chan*N+i+st->frame_size])); #endif tmp_out = ADD32(tmp_out, EXTEND32(MULT16_16_P15(st->preemph, st->memE[chan]))); /* This is an arbitrary test for saturation in the microphone signal */ if (in[i*C+chan] <= -32000 || in[i*C+chan] >= 32000) { if (st->saturated == 0) st->saturated = 1; } out[i*C+chan] = WORD2INT(tmp_out); st->memE[chan] = tmp_out; } #ifdef DUMP_ECHO_CANCEL_DATA dump_audio(in, far_end, out, st->frame_size); #endif /* Compute error signal (filter update version) */ for (i=0;i<st->frame_size;i++) { st->e[chan*N+i+st->frame_size] = st->e[chan*N+i]; st->e[chan*N+i] = 0; } /* Compute a bunch of correlations */ /* FIXME: bad merge */ Sey += mdf_inner_prod(st->e+chan*N+st->frame_size, st->y+chan*N+st->frame_size, st->frame_size); Syy += mdf_inner_prod(st->y+chan*N+st->frame_size, st->y+chan*N+st->frame_size, st->frame_size); Sdd += mdf_inner_prod(st->input+chan*st->frame_size, st->input+chan*st->frame_size, st->frame_size); /* Convert error to frequency domain */ spx_fft(st->fft_table, st->e+chan*N, st->E+chan*N); for (i=0;i<st->frame_size;i++) st->y[i+chan*N] = 0; spx_fft(st->fft_table, st->y+chan*N, st->Y+chan*N); /* Compute power spectrum of echo (X), error (E) and filter response (Y) */ power_spectrum_accum(st->E+chan*N, st->Rf, N); power_spectrum_accum(st->Y+chan*N, st->Yf, N); } /*printf ("%f %f %f %f\n", Sff, See, Syy, Sdd, st->update_cond);*/ /* Do some sanity check */ if (!(Syy>=0 && Sxx>=0 && See >= 0) #ifndef FIXED_POINT || !(Sff < N*1e9 && Syy < N*1e9 && Sxx < N*1e9) #endif ) { /* Things have gone really bad */ st->screwed_up += 50; for (i=0;i<st->frame_size*C;i++) out[i] = 0; } else if (SHR32(Sff, 2) > ADD32(Sdd, SHR32(MULT16_16(N, 10000),6))) { /* AEC seems to add lots of echo instead of removing it, let's see if it will improve */ st->screwed_up++; } else { /* Everything's fine */ st->screwed_up=0; } if (st->screwed_up>=50) { speex_warning("The echo canceller started acting funny and got slapped (reset). It swears it will behave now."); speex_echo_state_reset(st); return; } /* Add a small noise floor to make sure not to have problems when dividing */ See = MAX32(See, SHR32(MULT16_16(N, 100),6)); for (speak = 0; speak < K; speak++) { Sxx += mdf_inner_prod(st->x+speak*N+st->frame_size, st->x+speak*N+st->frame_size, st->frame_size); power_spectrum_accum(st->X+speak*N, st->Xf, N); } /* Smooth far end energy estimate over time */ for (j=0;j<=st->frame_size;j++) st->power[j] = MULT16_32_Q15(ss_1,st->power[j]) + 1 + MULT16_32_Q15(ss,st->Xf[j]); /* Compute filtered spectra and (cross-)correlations */ for (j=st->frame_size;j>=0;j--) { spx_float_t Eh, Yh; Eh = PSEUDOFLOAT(st->Rf[j] - st->Eh[j]); Yh = PSEUDOFLOAT(st->Yf[j] - st->Yh[j]); Pey = FLOAT_ADD(Pey,FLOAT_MULT(Eh,Yh)); Pyy = FLOAT_ADD(Pyy,FLOAT_MULT(Yh,Yh)); #ifdef FIXED_POINT st->Eh[j] = MAC16_32_Q15(MULT16_32_Q15(SUB16(32767,st->spec_average),st->Eh[j]), st->spec_average, st->Rf[j]); st->Yh[j] = MAC16_32_Q15(MULT16_32_Q15(SUB16(32767,st->spec_average),st->Yh[j]), st->spec_average, st->Yf[j]); #else st->Eh[j] = (1-st->spec_average)*st->Eh[j] + st->spec_average*st->Rf[j]; st->Yh[j] = (1-st->spec_average)*st->Yh[j] + st->spec_average*st->Yf[j]; #endif } Pyy = FLOAT_SQRT(Pyy); Pey = FLOAT_DIVU(Pey,Pyy); /* Compute correlation updatete rate */ tmp32 = MULT16_32_Q15(st->beta0,Syy); if (tmp32 > MULT16_32_Q15(st->beta_max,See)) tmp32 = MULT16_32_Q15(st->beta_max,See); alpha = FLOAT_DIV32(tmp32, See); alpha_1 = FLOAT_SUB(FLOAT_ONE, alpha); /* Update correlations (recursive average) */ st->Pey = FLOAT_ADD(FLOAT_MULT(alpha_1,st->Pey) , FLOAT_MULT(alpha,Pey)); st->Pyy = FLOAT_ADD(FLOAT_MULT(alpha_1,st->Pyy) , FLOAT_MULT(alpha,Pyy)); if (FLOAT_LT(st->Pyy, FLOAT_ONE)) st->Pyy = FLOAT_ONE; /* We don't really hope to get better than 33 dB (MIN_LEAK-3dB) attenuation anyway */ if (FLOAT_LT(st->Pey, FLOAT_MULT(MIN_LEAK,st->Pyy))) st->Pey = FLOAT_MULT(MIN_LEAK,st->Pyy); if (FLOAT_GT(st->Pey, st->Pyy)) st->Pey = st->Pyy; /* leak_estimate is the linear regression result */ st->leak_estimate = FLOAT_EXTRACT16(FLOAT_SHL(FLOAT_DIVU(st->Pey, st->Pyy),14)); /* This looks like a stupid bug, but it's right (because we convert from Q14 to Q15) */ if (st->leak_estimate > 16383) st->leak_estimate = 32767; else st->leak_estimate = SHL16(st->leak_estimate,1); /*printf ("%f\n", st->leak_estimate);*/ /* Compute Residual to Error Ratio */ #ifdef FIXED_POINT tmp32 = MULT16_32_Q15(st->leak_estimate,Syy); tmp32 = ADD32(SHR32(Sxx,13), ADD32(tmp32, SHL32(tmp32,1))); /* Check for y in e (lower bound on RER) */ { spx_float_t bound = PSEUDOFLOAT(Sey); bound = FLOAT_DIVU(FLOAT_MULT(bound, bound), PSEUDOFLOAT(ADD32(1,Syy))); if (FLOAT_GT(bound, PSEUDOFLOAT(See))) tmp32 = See; else if (tmp32 < FLOAT_EXTRACT32(bound)) tmp32 = FLOAT_EXTRACT32(bound); } if (tmp32 > SHR32(See,1)) tmp32 = SHR32(See,1); RER = FLOAT_EXTRACT16(FLOAT_SHL(FLOAT_DIV32(tmp32,See),15)); #else RER = (.0001*Sxx + 3.*MULT16_32_Q15(st->leak_estimate,Syy)) / See; /* Check for y in e (lower bound on RER) */ if (RER < Sey*Sey/(1+See*Syy)) RER = Sey*Sey/(1+See*Syy); if (RER > .5) RER = .5; #endif /* We consider that the filter has had minimal adaptation if the following is true*/ if (!st->adapted && st->sum_adapt > SHL32(EXTEND32(M),15) && MULT16_32_Q15(st->leak_estimate,Syy) > MULT16_32_Q15(QCONST16(.03f,15),Syy)) { st->adapted = 1; } if (st->adapted) { /* Normal learning rate calculation once we're past the minimal adaptation phase */ for (i=0;i<=st->frame_size;i++) { spx_word32_t r, e; /* Compute frequency-domain adaptation mask */ r = MULT16_32_Q15(st->leak_estimate,SHL32(st->Yf[i],3)); e = SHL32(st->Rf[i],3)+1; #ifdef FIXED_POINT if (r>SHR32(e,1)) r = SHR32(e,1); #else if (r>.5*e) r = .5*e; #endif r = MULT16_32_Q15(QCONST16(.7,15),r) + MULT16_32_Q15(QCONST16(.3,15),(spx_word32_t)(MULT16_32_Q15(RER,e))); /*st->power_1[i] = adapt_rate*r/(e*(1+st->power[i]));*/ st->power_1[i] = FLOAT_SHL(FLOAT_DIV32_FLOAT(r,FLOAT_MUL32U(e,st->power[i]+10)),WEIGHT_SHIFT+16); } } else { /* Temporary adaption rate if filter is not yet adapted enough */ spx_word16_t adapt_rate=0; if (Sxx > SHR32(MULT16_16(N, 1000),6)) { tmp32 = MULT16_32_Q15(QCONST16(.25f, 15), Sxx); #ifdef FIXED_POINT if (tmp32 > SHR32(See,2)) tmp32 = SHR32(See,2); #else if (tmp32 > .25*See) tmp32 = .25*See; #endif adapt_rate = FLOAT_EXTRACT16(FLOAT_SHL(FLOAT_DIV32(tmp32, See),15)); } for (i=0;i<=st->frame_size;i++) st->power_1[i] = FLOAT_SHL(FLOAT_DIV32(EXTEND32(adapt_rate),ADD32(st->power[i],10)),WEIGHT_SHIFT+1); /* How much have we adapted so far? */ st->sum_adapt = ADD32(st->sum_adapt,adapt_rate); } /* FIXME: MC conversion required */ for (i=0;i<st->frame_size;i++) st->last_y[i] = st->last_y[st->frame_size+i]; if (st->adapted) { /* If the filter is adapted, take the filtered echo */ for (i=0;i<st->frame_size;i++) st->last_y[st->frame_size+i] = in[i]-out[i]; } else { /* If filter isn't adapted yet, all we can do is take the far end signal directly */ /* moved earlier: for (i=0;i<N;i++) st->last_y[i] = st->x[i];*/ } }