예제 #1
0
void
FreeImageStack::loadImage(unsigned int iSlice, npp::ImageNPP_8u_C1 & rImage)
const
{
    NPP_ASSERT_MSG(iSlice < slices(), "Slice index exceeded number of slices in stack.");
    FIBITMAP * pBitmap = FreeImage_LockPage(pImageStack_, iSlice);
    NPP_ASSERT_NOT_NULL(pBitmap);
            // make sure this is an 8-bit single channel image
    NPP_DEBUG_ASSERT(FreeImage_GetColorType(pBitmap) == FIC_MINISBLACK);
    NPP_DEBUG_ASSERT(FreeImage_GetBPP(pBitmap) == 8);
    
    NPP_DEBUG_ASSERT(FreeImage_GetWidth(pBitmap) == nWidth_);
    NPP_DEBUG_ASSERT(FreeImage_GetHeight(pBitmap) == nHeight_);
    unsigned int    nSrcPitch = FreeImage_GetPitch(pBitmap);
    unsigned char * pSrcData  = FreeImage_GetBits(pBitmap);
    
    if (rImage.width() == nWidth_ && rImage.height() == nHeight_)
    {
        NPP_CHECK_CUDA(cudaMemcpy2D(rImage.data(), rImage.pitch(), pSrcData, nSrcPitch, 
                                    nWidth_, nHeight_, cudaMemcpyHostToDevice));
    }
    else
    {
                // create new NPP image
        npp::ImageNPP_8u_C1 oImage(nWidth_, nHeight_);
                // transfer slice data into new device image
        NPP_CHECK_CUDA(cudaMemcpy2D(oImage.data(), oImage.pitch(), pSrcData, nSrcPitch, 
                                    nWidth_, nHeight_, cudaMemcpyHostToDevice));
                // swap the result image with the reference passed into this method
        rImage.swap(oImage);
    }
                // release locked slice
    FreeImage_UnlockPage(pImageStack_, pBitmap, FALSE);
}
예제 #2
0
 static 
 Npp32f * 
 Malloc2D(unsigned int nWidth, unsigned int nHeight, unsigned int * pPitch)    
 {
     NPP_ASSERT(nWidth * nHeight > 0);
     Npp32f * pResult;
     *pPitch = nWidth *sizeof(float);
     NPP_CHECK_CUDA(cudaMalloc(reinterpret_cast<void **>(&pResult), (*pPitch) * nHeight));
     NPP_ASSERT(pResult != 0);
     
     return pResult;
 };
예제 #3
0
void
FreeImageStack::appendImage(const npp::ImageNPP_32f_C1 & rImage)
{
    NPP_ASSERT(rImage.width() == nWidth_);
    NPP_ASSERT(rImage.height() == nHeight_);
    
            // create the result image storage using FreeImage so we can easily 
            // save
    unsigned int nResultPitch   = FreeImage_GetPitch(pBitmap_32f_);
    float * pResultData = reinterpret_cast<float *>(FreeImage_GetBits(pBitmap_32f_));

    NPP_CHECK_CUDA(cudaMemcpy2D(pResultData, nResultPitch, rImage.data(), rImage.pitch(),
                                nWidth_ * 4, nHeight_, cudaMemcpyDeviceToHost));
    FreeImage_AppendPage(pImageStack_, pBitmap_32f_);

    appendAzimuthalAnalysis(pResultData, nResultPitch);
}
예제 #4
0
int
main(int argc, char *argv[])
{
    printf("%s Starting...\n\n", argv[0]);

    try
    {
        std::string sFilename;
        char *filePath = sdkFindFilePath("Lena.pgm", argv[0]);

        if (filePath)
        {
            sFilename = filePath;
        }
        else
        {
            printf("Error unable to find Lena.pgm\n");
            exit(EXIT_FAILURE);
        }

        // set your own FreeImage error handler
        FreeImage_SetOutputMessage(FreeImageErrorHandler);

        cudaDeviceInit(argc, (const char **)argv);

		// Min spec is SM 1.0 devices
		if (printfNPPinfo(argc, argv, 1, 0) == false) 
		{
	        cudaDeviceReset();
			exit(EXIT_SUCCESS);
		}

        if (argc > 1)
        {
            sFilename = argv[1];
        }

        // if we specify the filename at the command line, then we only test sFilename
        // otherwise we will check both sFilename[0,1]
        int file_errors = 0;
        std::ifstream infile(sFilename.data(), std::ifstream::in);

        if (infile.good())
        {
            std::cout << "freeImageInteropNPP opened: <" << sFilename.data() << "> successfully!" << std::endl;
            file_errors = 0;
            infile.close();
        }
        else
        {
            std::cout << "freeImageInteropNPP unable to open: <" << sFilename.data() << ">" << std::endl;
            file_errors++;
            infile.close();
        }

        if (file_errors > 0)
        {
            exit(EXIT_FAILURE);
        }

        std::string sResultFilename = sFilename;

        std::string::size_type dot = sResultFilename.rfind('.');

        if (dot != std::string::npos)
        {
            sResultFilename = sResultFilename.substr(0, dot);
        }

        sResultFilename += "_boxFilterFII.pgm";

        if (argc >= 3)
        {
            sResultFilename = argv[2];
        }

        FREE_IMAGE_FORMAT eFormat = FreeImage_GetFileType(sFilename.c_str());

        // no signature? try to guess the file format from the file extension
        if (eFormat == FIF_UNKNOWN)
        {
            eFormat = FreeImage_GetFIFFromFilename(sFilename.c_str());
        }

        NPP_ASSERT(eFormat != FIF_UNKNOWN);
        // check that the plugin has reading capabilities ...
        FIBITMAP *pBitmap;

        if (FreeImage_FIFSupportsReading(eFormat))
        {
            pBitmap = FreeImage_Load(eFormat, sFilename.c_str());
        }

        NPP_ASSERT(pBitmap != 0);
        // Dump the bitmap information to the console
        std::cout << (*pBitmap) << std::endl;
        // make sure this is an 8-bit single channel image
        NPP_ASSERT(FreeImage_GetColorType(pBitmap) == FIC_MINISBLACK);
        NPP_ASSERT(FreeImage_GetBPP(pBitmap) == 8);

        unsigned int nImageWidth  = FreeImage_GetWidth(pBitmap);
        unsigned int nImageHeight = FreeImage_GetHeight(pBitmap);
        unsigned int nSrcPitch    = FreeImage_GetPitch(pBitmap);
        unsigned char *pSrcData  = FreeImage_GetBits(pBitmap);

        int nSrcPitchCUDA;
        Npp8u *pSrcImageCUDA = nppiMalloc_8u_C1(nImageWidth, nImageHeight, &nSrcPitchCUDA);
        NPP_ASSERT_NOT_NULL(pSrcImageCUDA);
        // copy image loaded via FreeImage to into CUDA device memory, i.e.
        // transfer the image-data up to the GPU's video-memory
        NPP_CHECK_CUDA(cudaMemcpy2D(pSrcImageCUDA, nSrcPitchCUDA, pSrcData, nSrcPitch,
                                    nImageWidth, nImageHeight, cudaMemcpyHostToDevice));

        // define size of the box filter
        const NppiSize  oMaskSize   = {7, 7};
        const NppiPoint oMaskAchnor = {0, 0};
        // compute maximal result image size
        const NppiSize  oSizeROI = {nImageWidth  - (oMaskSize.width - 1),
                                    nImageHeight - (oMaskSize.height - 1)
                                   };
        // allocate result image memory
        int nDstPitchCUDA;
        Npp8u *pDstImageCUDA = nppiMalloc_8u_C1(oSizeROI.width, oSizeROI.height, &nDstPitchCUDA);
        NPP_ASSERT_NOT_NULL(pDstImageCUDA);
        NPP_CHECK_NPP(nppiFilterBox_8u_C1R(pSrcImageCUDA, nSrcPitchCUDA, pDstImageCUDA, nDstPitchCUDA,
                                           oSizeROI, oMaskSize, oMaskAchnor));
        // create the result image storage using FreeImage so we can easily
        // save
        FIBITMAP *pResultBitmap = FreeImage_Allocate(oSizeROI.width, oSizeROI.height, 8 /* bits per pixel */);
        NPP_ASSERT_NOT_NULL(pResultBitmap);
        unsigned int nResultPitch   = FreeImage_GetPitch(pResultBitmap);
        unsigned char *pResultData = FreeImage_GetBits(pResultBitmap);

        NPP_CHECK_CUDA(cudaMemcpy2D(pResultData, nResultPitch, pDstImageCUDA, nDstPitchCUDA,
                                    oSizeROI.width, oSizeROI.height, cudaMemcpyDeviceToHost));
        // now save the result image
        bool bSuccess;
        bSuccess = FreeImage_Save(FIF_PGM, pResultBitmap, sResultFilename.c_str(), 0) == TRUE;
        NPP_ASSERT_MSG(bSuccess, "Failed to save result image.");

        //free nppiImage
        nppiFree(pSrcImageCUDA);
        nppiFree(pDstImageCUDA);

        cudaDeviceReset();
        exit(EXIT_SUCCESS);
    }
    catch (npp::Exception &rException)
    {
        std::cerr << "Program error! The following exception occurred: \n";
        std::cerr << rException << std::endl;
        std::cerr << "Aborting." << std::endl;
        exit(EXIT_FAILURE);
    }
    catch (...)
    {
        std::cerr << "Program error! An unknow type of exception occurred. \n";
        std::cerr << "Aborting." << std::endl;
        exit(EXIT_FAILURE);
    }

    exit(EXIT_SUCCESS);
}
예제 #5
0
int main(int argc, char* argv[])
{
    shrQAStart(argc, argv);

    try
    {
        std::string sFilename;
        char *filePath = findFilePath("Lena.pgm", argv[0]);
        if (filePath) {
            sFilename = filePath;
        } else {
            printf("Error unable to find Lena.pgm\n");
            shrQAFinishExit(argc, (const char **)argv, QA_FAILED);
        }
	// Parse the command line arguments for proper configuration
        parseCommandLineArguments(argc, argv);

        printfNPPinfo(argc, argv);

        if (g_bQATest == false && (g_nDevice == -1) && argc > 1) {
            sFilename = argv[1];
        }

        // if we specify the filename at the command line, then we only test sFilename.
        int file_errors = 0;
        std::ifstream infile(sFilename.data(), std::ifstream::in);
        if (infile.good()) {
            std::cout << "histEqualizationNPP opened: <" << sFilename.data() << "> successfully!" << std::endl;
            file_errors = 0;
			infile.close();
        } else {
            std::cout << "histEqualizationNPP unable to open: <" << sFilename.data() << ">" << std::endl;
            file_errors++;
			infile.close();
        }
        if (file_errors > 0) {
            shrQAFinishExit(argc, (const char **)argv, QA_FAILED);
        }

        std::string dstFileName = sFilename;
        
        std::string::size_type dot = dstFileName.rfind('.');
        if (dot != std::string::npos) dstFileName = dstFileName.substr(0, dot);
        dstFileName += "_histEqualization.pgm";

        if (argc >= 3 && !g_bQATest)
            dstFileName = argv[2];

        npp::ImageCPU_8u_C1 oHostSrc;
        npp::loadImage(sFilename, oHostSrc);
        npp::ImageNPP_8u_C1 oDeviceSrc(oHostSrc);

        //
        // allocate arrays for histogram and levels
        //

        const int binCount = 256;
        const int levelCount = binCount + 1; // levels array has one more element

        Npp32s * histDevice = 0;
        Npp32s * levelsDevice = 0;
            
        NPP_CHECK_CUDA(cudaMalloc((void **)&histDevice,   binCount   * sizeof(Npp32s)));
        NPP_CHECK_CUDA(cudaMalloc((void **)&levelsDevice, levelCount * sizeof(Npp32s)));

        //
        // compute histogram
        //

        NppiSize oSizeROI = {oDeviceSrc.width(), oDeviceSrc.height()}; // full image
                // create device scratch buffer for nppiHistogram
        int nDeviceBufferSize;
        nppiHistogramEvenGetBufferSize_8u_C1R(oSizeROI, levelCount ,&nDeviceBufferSize);
        Npp8u * pDeviceBuffer;
        NPP_CHECK_CUDA(cudaMalloc((void **)&pDeviceBuffer, nDeviceBufferSize));
        
                // compute levels values on host
        Npp32s levelsHost[levelCount];
        NPP_CHECK_NPP(nppiEvenLevelsHost_32s(levelsHost, levelCount, 0, binCount));
                // compute the histogram
        NPP_CHECK_NPP(nppiHistogramEven_8u_C1R(oDeviceSrc.data(), oDeviceSrc.pitch(), oSizeROI, 
                                               histDevice, levelCount, 0, binCount, 
                                               pDeviceBuffer));
                // copy histogram and levels to host memory
        Npp32s histHost[binCount];
        NPP_CHECK_CUDA(cudaMemcpy(histHost, histDevice, binCount * sizeof(Npp32s), cudaMemcpyDeviceToHost));

        Npp32s  lutHost[binCount + 1];

                // fill LUT
        {
            Npp32s * pHostHistogram = histHost;
            Npp32s totalSum = 0;
            for (; pHostHistogram < histHost + binCount; ++pHostHistogram)
                totalSum += *pHostHistogram;

            NPP_ASSERT(totalSum == oSizeROI.width * oSizeROI.height);

            if (totalSum == 0) 
                totalSum = 1;
            float multiplier = 1.0f / float(totalSum) * 0xFF;

            Npp32s runningSum = 0;
            Npp32s * pLookupTable = lutHost;
            for (pHostHistogram = histHost; pHostHistogram < histHost + binCount; ++pHostHistogram)
            {
                *pLookupTable = (Npp32s)(runningSum * multiplier + 0.5f);
                pLookupTable++;
                runningSum += *pHostHistogram;
            }

            lutHost[binCount] = 0xFF; // last element is always 1
        }

        //
        // apply LUT transformation to the image
        //
                // Create a device image for the result.
        npp::ImageNPP_8u_C1 oDeviceDst(oDeviceSrc.size());
        NPP_CHECK_NPP(nppiLUT_Linear_8u_C1R(oDeviceSrc.data(), oDeviceSrc.pitch(), 
                                            oDeviceDst.data(), oDeviceDst.pitch(), 
                                            oSizeROI, 
                                            lutHost, // value and level arrays are in host memory
                                            levelsHost, 
                                            binCount+1));

                // copy the result image back into the storage that contained the 
                // input image
        npp::ImageCPU_8u_C1 oHostDst(oDeviceDst.size());
        oDeviceDst.copyTo(oHostDst.data(), oHostDst.pitch());

                // save the result
        npp::saveImage(dstFileName.c_str(), oHostDst);

        std::cout << "Saved image file " << dstFileName << std::endl;
		shrQAFinishExit(argc, (const char **)argv, QA_PASSED);
    }
    catch (npp::Exception & rException)
    {
        std::cerr << "Program error! The following exception occurred: \n";
        std::cerr << rException << std::endl;
        std::cerr << "Aborting." << std::endl;
		shrQAFinishExit(argc, (const char **)argv, QA_FAILED);
    }
    catch (...)
    {
        std::cerr << "Program error! An unknow type of exception occurred. \n";
        std::cerr << "Aborting." << std::endl;
 		shrQAFinishExit(argc, (const char **)argv, QA_FAILED);
    }
    
    return 0;
}