예제 #1
0
/* ************************************************************************* */
int fill_array_3d(N_array_3d * a)
{
    int rows, cols, depths, type;
    int i, j, k, res = 0;

    cols = a->cols;
    rows = a->rows;
    depths = a->depths;
    type = N_get_array_3d_type(a);

    #pragma omp parallel for private (i, j, k) shared (depths, rows, cols, type, a) reduction(+:res)
    for (k = 0; k < depths; k++) {
        for (j = 0; j < rows; j++) {
            for (i = 0; i < cols; i++) {
                if (type == FCELL_TYPE) {
                    N_put_array_3d_f_value(a, i, j, k,
                                           (float)i * (float)j * (float)k);
                    if (N_get_array_3d_f_value(a, i, j, k) !=
                            (float)i * (float)j * (float)k)
                        res++;
                }
                if (type == DCELL_TYPE) {
                    N_put_array_3d_d_value(a, i, j, k,
                                           (double)i * (double)j * (double)k);
                    if (N_get_array_3d_d_value(a, i, j, k) !=
                            (double)i * (double)j * (double)k)
                        res++;
                }
            }
        }
    }

    return res;
}
예제 #2
0
/*!
 * \brief Compute the dispersivity tensor based on the solute transport data in 3d
 *
 * The dispersivity tensor is stored in the data structure.
 * To compute the dispersivity tensor, the dispersivity lentghs and the gradient field
 * must be present.
 * 
 * This is just a simple tensor computation which should be extended.
 *
 * \todo Change the tensor calculation to a mor realistic algorithm 
 *
 * \param data N_solute_transport_data3d *
 * \return void *
 * */
void N_calc_solute_transport_disptensor_3d(N_solute_transport_data3d * data)
{
    int i, j, k;
    int cols, rows, depths;
    double vx, vy, vz, vv;
    double disp_xx, disp_yy, disp_zz, disp_xy, disp_xz, disp_yz;
    N_gradient_3d grad;

    cols = data->grad->cols;
    rows = data->grad->rows;
    depths = data->grad->depths;

    G_debug(2,
	    "N_calc_solute_transport_disptensor_3d: calculating the dispersivity tensor");

    for (k = 0; k < depths; k++) {
	for (j = 0; j < rows; j++) {
	    for (i = 0; i < cols; i++) {
		disp_xx = 0;
		disp_yy = 0;
		disp_zz = 0;
		disp_xy = 0;
		disp_xz = 0;
		disp_yz = 0;

		/*get the gradient neighbours */
		N_get_gradient_3d(data->grad, &grad, i, j, k);
		vx = (grad.WC + grad.EC) / 2;
		vy = (grad.NC + grad.SC) / 2;
		vz = (grad.BC + grad.TC) / 2;
		vv = sqrt(vx * vx + vy * vy + vz * vz);

		if (vv != 0) {
		    disp_xx =
			data->al * vx * vx / vv + data->at * vy * vy / vv +
			data->at * vz * vz / vv;
		    disp_yy =
			data->at * vx * vx / vv + data->al * vy * vy / vv +
			data->at * vz * vz / vv;
		    disp_zz =
			data->at * vx * vx / vv + data->at * vy * vy / vv +
			data->al * vz * vz / vv;
		    disp_xy = (data->al - data->at) * vx * vy / vv;
		    disp_xz = (data->al - data->at) * vx * vz / vv;
		    disp_yz = (data->al - data->at) * vy * vz / vv;
		}

		G_debug(5,
			"N_calc_solute_transport_disptensor_3d: [%i][%i][%i] disp_xx %g disp_yy %g disp_zz %g  disp_xy %g disp_xz %g disp_yz %g ",
			i, j, k, disp_xx, disp_yy, disp_zz, disp_xy, disp_xz,
			disp_yz);
		N_put_array_3d_d_value(data->disp_xx, i, j, k, disp_xx);
		N_put_array_3d_d_value(data->disp_yy, i, j, k, disp_yy);
		N_put_array_3d_d_value(data->disp_zz, i, j, k, disp_zz);
		N_put_array_3d_d_value(data->disp_xy, i, j, k, disp_xy);
		N_put_array_3d_d_value(data->disp_xz, i, j, k, disp_xz);
		N_put_array_3d_d_value(data->disp_yz, i, j, k, disp_yz);
	    }
	}
    }

    return;
}
예제 #3
0
/* *************************************************************** */
N_solute_transport_data3d *create_solute_transport_data_3d(void)
{
    N_solute_transport_data3d *data;
    int i, j, k;

    data =
	N_alloc_solute_transport_data3d(TEST_N_NUM_COLS_LOCAL,
					TEST_N_NUM_ROWS_LOCAL,
					TEST_N_NUM_DEPTHS_LOCAL);

#pragma omp parallel for private (i, j, k) shared (data)
    for (k = 0; k < TEST_N_NUM_DEPTHS_LOCAL; k++)
	for (j = 0; j < TEST_N_NUM_ROWS_LOCAL; j++) {
	    for (i = 0; i < TEST_N_NUM_COLS_LOCAL; i++) {


		if (j == 0) {
		    N_put_array_3d_d_value(data->c, i, j, k, 1);
		    N_put_array_3d_d_value(data->c_start, i, j, k, 1);
		    N_put_array_3d_d_value(data->status, i, j, k, 3);
		}
		else {

		    N_put_array_3d_d_value(data->c, i, j, k, 0);
		    N_put_array_3d_d_value(data->c_start, i, j, k, 0);
		    N_put_array_3d_d_value(data->status, i, j, k, 1);
		}
		N_put_array_3d_d_value(data->diff_x, i, j, k, 0.000001);
		N_put_array_3d_d_value(data->diff_y, i, j, k, 0.000001);
		N_put_array_3d_d_value(data->diff_z, i, j, k, 0.000001);
		N_put_array_3d_d_value(data->q, i, j, k, 0.0);
		N_put_array_3d_d_value(data->cs, i, j, k, 0.0);
		N_put_array_3d_d_value(data->R, i, j, k, 1.0);
		N_put_array_3d_d_value(data->nf, i, j, k, 0.1);
		if (j == 1 && i == 1 && k == 1)
		    N_put_array_3d_d_value(data->cs, i, j, k, 5.0);

	    }
	}

    return data;
}
예제 #4
0
/*!
 * \brief Assemble a linear equation system (les) based on 3d location data (g3d)
 *
 * The linear equation system type can be set to N_NORMAL_LES to create a regular
 * matrix, or to N_SPARSE_LES to create a sparse matrix. This function returns
 * a new created linear equation system which can be solved with 
 * linear equation solvers. An 3d array with start values and an 3d status array
 * must be provided as well as the location geometry and a void pointer to data 
 * passed to the callback which creates the les row entries. This callback
 * must be defined in the N_les_callback_3d structure.
 * 
 * The creation of the les is parallelized with OpenMP. 
 * If you implement new callbacks, please make sure that the 
 * function calls are thread safe.
 *
 * the les can be created in two ways, with dirichlet and similar cells and without them,
 * to spare some memory. If the les is created with dirichlet cell, the dirichlet boundary condition
 * must be added.
 *
 * \param les_type int
 * \param geom      N_geom_data*
 * \param status    N_array_3d *
 * \param start_val N_array_3d *
 * \param data void *
 * \param call N_les_callback_3d *
 * \param cell_type int  -- les assemble based on N_CELL_ACTIVE or N_CELL_DIRICHLET
 * \return N_les *
 * */
N_les *N_assemble_les_3d_param(int les_type, N_geom_data * geom,
			       N_array_3d * status, N_array_3d * start_val,
			       void *data, N_les_callback_3d * call,
			       int cell_type)
{
    int i, j, k, count = 0, pos = 0;
    int cell_type_count = 0;
    N_array_3d *cell_count;
    N_les *les = NULL;
    int **index_ij;

    G_debug(2,
	    "N_assemble_les_3d: starting to assemble the linear equation system");

    cell_count =
	N_alloc_array_3d(geom->cols, geom->rows, geom->depths, 1, DCELL_TYPE);

    /* First count the number of valid cells and save  
     * each number in a new 3d array. Those numbers are used 
     * to create the linear equation system.*/

    if (cell_type == N_CELL_DIRICHLET) {
	/* include dirichlet cells in the les */
	for (k = 0; k < geom->depths; k++) {
	    for (j = 0; j < geom->rows; j++) {
		for (i = 0; i < geom->cols; i++) {
		    /*use all non-inactive cells for les creation */
		    if (N_CELL_INACTIVE <
			(int)N_get_array_3d_d_value(status, i, j, k) &&
			(int)N_get_array_3d_d_value(status, i, j,
						    k) < N_MAX_CELL_STATE)
			cell_type_count++;
		}
	    }
	}
    }
    else {
	/*use only active cell in the les */
	for (k = 0; k < geom->depths; k++) {
	    for (j = 0; j < geom->rows; j++) {
		for (i = 0; i < geom->cols; i++) {
		    /*count only active cells */
		    if (N_CELL_ACTIVE
			== (int)N_get_array_3d_d_value(status, i, j, k))
			cell_type_count++;

		}
	    }
	}
    }

    G_debug(2,
	    "N_assemble_les_3d: number of  used cells %i\n", cell_type_count);

    if (cell_type_count == 0.0)
	G_fatal_error
	    ("Not enough active cells [%i] to create the linear equation system. Check the cell status. Only active cells (value = 1) are used to create the equation system.",
	     cell_type_count);

    /* allocate the memory for the linear equation system (les). 
     * Only valid cells are used to create the les. */
    les = N_alloc_les_Ax_b(cell_type_count, les_type);

    index_ij = (int **)G_calloc(cell_type_count, sizeof(int *));
    for (i = 0; i < cell_type_count; i++)
	index_ij[i] = (int *)G_calloc(3, sizeof(int));

    count = 0;
    /*count the number of cells which should be used to create the linear equation system */
    /*save the k, i and j indices and create a ordered numbering */
    for (k = 0; k < geom->depths; k++) {
	for (j = 0; j < geom->rows; j++) {
	    for (i = 0; i < geom->cols; i++) {
		if (cell_type == N_CELL_DIRICHLET) {
		    if (N_CELL_INACTIVE <
			(int)N_get_array_3d_d_value(status, i, j, k) &&
			(int)N_get_array_3d_d_value(status, i, j,
						    k) < N_MAX_CELL_STATE) {
			N_put_array_3d_d_value(cell_count, i, j, k, count);
			index_ij[count][0] = i;
			index_ij[count][1] = j;
			index_ij[count][2] = k;
			count++;
			G_debug(5,
				"N_assemble_les_3d: non-inactive cells count %i at pos x[%i] y[%i] z[%i]\n",
				count, i, j, k);
		    }
		}
		else if (N_CELL_ACTIVE ==
			 (int)N_get_array_3d_d_value(status, i, j, k)) {
		    N_put_array_3d_d_value(cell_count, i, j, k, count);
		    index_ij[count][0] = i;
		    index_ij[count][1] = j;
		    index_ij[count][2] = k;
		    count++;
		    G_debug(5,
			    "N_assemble_les_3d: active cells count %i at pos x[%i] y[%i] z[%i]\n",
			    count, i, j, k);
		}
	    }
	}
    }

    G_debug(2, "N_assemble_les_3d: starting the parallel assemble loop");

#pragma omp parallel for private(i, j, k, pos, count) schedule(static)
    for (count = 0; count < cell_type_count; count++) {
	i = index_ij[count][0];
	j = index_ij[count][1];
	k = index_ij[count][2];

	/*create the entries for the */
	N_data_star *items = call->callback(data, geom, i, j, k);

	G_math_spvector *spvect = NULL;

	/*allocate a sprase vector */
	if (les_type == N_SPARSE_LES)
	    spvect = G_math_alloc_spvector(items->count);
	/* initial conditions */

	les->x[count] = N_get_array_3d_d_value(start_val, i, j, k);

	/* the entry in the vector b */
	les->b[count] = items->V;

	/* pos describes the position in the sparse vector.
	 * the first entry is always the diagonal entry of the matrix*/
	pos = 0;

	if (les_type == N_SPARSE_LES) {
	    spvect->index[pos] = count;
	    spvect->values[pos] = items->C;
	}
	else {
	    les->A[count][count] = items->C;
	}
	/* western neighbour, entry is col - 1 */
	if (i > 0) {
	    pos =
		make_les_entry_3d(i, j, k, -1, 0, 0, count, pos, les, spvect,
				  cell_count, status, start_val, items->W,
				  cell_type);
	}
	/* eastern neighbour, entry col + 1 */
	if (i < geom->cols - 1) {
	    pos = make_les_entry_3d(i, j, k, 1, 0, 0, count, pos, les, spvect,
				    cell_count, status, start_val, items->E,
				    cell_type);
	}
	/* northern neighbour, entry row -1 */
	if (j > 0) {
	    pos =
		make_les_entry_3d(i, j, k, 0, -1, 0, count, pos, les, spvect,
				  cell_count, status, start_val, items->N,
				  cell_type);
	}
	/* southern neighbour, entry row +1 */
	if (j < geom->rows - 1) {
	    pos = make_les_entry_3d(i, j, k, 0, 1, 0, count, pos, les, spvect,
				    cell_count, status, start_val, items->S,
				    cell_type);
	}
	/*only for a 7 star entry needed */
	if (items->type == N_7_POINT_STAR || items->type == N_27_POINT_STAR) {
	    /* the upper cell (top), entry depth + 1 */
	    if (k < geom->depths - 1) {
		pos =
		    make_les_entry_3d(i, j, k, 0, 0, 1, count, pos, les,
				      spvect, cell_count, status, start_val,
				      items->T, cell_type);
	    }
	    /* the lower cell (bottom), entry depth - 1 */
	    if (k > 0) {
		pos =
		    make_les_entry_3d(i, j, k, 0, 0, -1, count, pos, les,
				      spvect, cell_count, status, start_val,
				      items->B, cell_type);
	    }
	}

	/*How many entries in the les */
	if (les->type == N_SPARSE_LES) {
	    spvect->cols = pos + 1;
	    G_math_add_spvector(les->Asp, spvect, count);
	}

	if (items)
	    G_free(items);
    }

    N_free_array_3d(cell_count);

    for (i = 0; i < cell_type_count; i++)
	G_free(index_ij[i]);

    G_free(index_ij);

    return les;
}