예제 #1
0
/**
  * @brief  Run the self calibration of the 3 OPAMPs in parallel.
  * @note   Trimming values (PMOS & NMOS) are updated and user trimming is 
  *         enabled is calibration is succesful.
  * @note   Calibration is performed in the mode specified in OPAMP init
  *         structure (mode normal or low-power). To perform calibration for
  *         both modes, repeat this function twice after OPAMP init structure
  *         accordingly updated.
  * @note   Calibration runs about 10 ms (5 dichotmy steps, repeated for P  
  *         and N transistors: 10 steps with 1 ms for each step).
  * @param  hopamp1 handle
  * @param  hopamp2 handle
  * @param  hopamp3 handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_OPAMPEx_SelfCalibrateAll(OPAMP_HandleTypeDef *hopamp1, OPAMP_HandleTypeDef *hopamp2, OPAMP_HandleTypeDef *hopamp3)
{
  HAL_StatusTypeDef status = HAL_OK;
  
  uint32_t* opamp1_trimmingvalue = 0;
  uint32_t opamp1_trimmingvaluen = 0;
  uint32_t opamp1_trimmingvaluep = 0;
  
  uint32_t* opamp2_trimmingvalue = 0;
  uint32_t opamp2_trimmingvaluen = 0;
  uint32_t opamp2_trimmingvaluep = 0;
  
  uint32_t* opamp3_trimmingvalue = 0;
  uint32_t opamp3_trimmingvaluen = 0;
  uint32_t opamp3_trimmingvaluep = 0;
  
  uint32_t trimming_diff_pair = 0;          /* Selection of differential transistors pair high or low */

  __IO uint32_t* tmp_opamp1_reg_trimming;   /* Selection of register of trimming depending on power mode: OTR or LPOTR */
  __IO uint32_t* tmp_opamp2_reg_trimming;
  __IO uint32_t* tmp_opamp3_reg_trimming;
  uint32_t tmp_opamp1_otr_otuser = 0;       /* Selection of bit OPAMP_OTR_OT_USER depending on trimming register pointed: OTR or LPOTR */
  uint32_t tmp_opamp2_otr_otuser = 0;
  uint32_t tmp_opamp3_otr_otuser = 0;
  
  uint32_t tmp_Opa1calout_DefaultSate = 0;  /* Bit OPAMP_CSR_OPA1CALOUT default state when trimming value is 00000b. Used to detect the bit toggling */
  uint32_t tmp_Opa2calout_DefaultSate = 0;  /* Bit OPAMP_CSR_OPA2CALOUT default state when trimming value is 00000b. Used to detect the bit toggling */
  uint32_t tmp_Opa3calout_DefaultSate = 0;  /* Bit OPAMP_CSR_OPA3CALOUT default state when trimming value is 00000b. Used to detect the bit toggling */

  uint32_t tmp_OpaxSwitchesContextBackup = 0;
  
  uint8_t trimming_diff_pair_iteration_count = 0;       /* For calibration loop algorithm: to repeat the calibration loop for both differential transistors pair high and low */
  uint8_t delta = 0;                                    /* For calibration loop algorithm: Variable for dichotomy steps value */
  uint8_t final_step_check = 0;                         /* For calibration loop algorithm: Flag for additional check of last trimming step */
  
  /* Check the OPAMP handle allocation */
  /* Check if OPAMP locked */
  if((hopamp1 == NULL) || (hopamp1->State == HAL_OPAMP_STATE_BUSYLOCKED) ||
     (hopamp2 == NULL) || (hopamp2->State == HAL_OPAMP_STATE_BUSYLOCKED) ||
     (hopamp3 == NULL) || (hopamp3->State == HAL_OPAMP_STATE_BUSYLOCKED)   ) 
  {
    status = HAL_ERROR;
  }
  else
  {
  
    /* Check if OPAMP in calibration mode and calibration not yet enable */
    if((hopamp1->State == HAL_OPAMP_STATE_READY) &&
       (hopamp2->State == HAL_OPAMP_STATE_READY) &&
       (hopamp3->State == HAL_OPAMP_STATE_READY)   )
    {
      /* Check the parameter */
      assert_param(IS_OPAMP_ALL_INSTANCE(hopamp1->Instance));
      assert_param(IS_OPAMP_ALL_INSTANCE(hopamp2->Instance));
      assert_param(IS_OPAMP_ALL_INSTANCE(hopamp3->Instance));
      assert_param(IS_OPAMP_POWERMODE(hopamp1->Init.PowerMode));
      assert_param(IS_OPAMP_POWERMODE(hopamp2->Init.PowerMode));
      assert_param(IS_OPAMP_POWERMODE(hopamp3->Init.PowerMode));
      
      /* Update OPAMP state */
      hopamp1->State = HAL_OPAMP_STATE_CALIBBUSY;
      hopamp2->State = HAL_OPAMP_STATE_CALIBBUSY;
      hopamp3->State = HAL_OPAMP_STATE_CALIBBUSY;
      
      /* Backup of switches configuration to restore it at the end of the     */
      /* calibration.                                                         */
      tmp_OpaxSwitchesContextBackup = READ_BIT(OPAMP->CSR, OPAMP_CSR_ALL_SWITCHES_ALL_OPAMPS);
      
      /* Open all switches on non-inverting input, inverting input and output */
      /* feedback.                                                            */
      CLEAR_BIT(OPAMP->CSR, OPAMP_CSR_ALL_SWITCHES_ALL_OPAMPS);
      
      /* Set calibration mode to user programmed trimming values */
      SET_BIT(OPAMP->OTR, OPAMP_OTR_OT_USER);
      
      /* Select trimming settings depending on power mode */
      if (hopamp1->Init.PowerMode == OPAMP_POWERMODE_NORMAL)
      {
        tmp_opamp1_otr_otuser = OPAMP_OTR_OT_USER;
        tmp_opamp1_reg_trimming = &OPAMP->OTR;
      }
      else
      {
        tmp_opamp1_otr_otuser = 0x00000000;
        tmp_opamp1_reg_trimming = &OPAMP->LPOTR;
      }
      
      if (hopamp2->Init.PowerMode == OPAMP_POWERMODE_NORMAL)
      {
        tmp_opamp2_otr_otuser = OPAMP_OTR_OT_USER;
        tmp_opamp2_reg_trimming = &OPAMP->OTR;
      }
      else
      {
        tmp_opamp2_otr_otuser = 0x00000000;
        tmp_opamp2_reg_trimming = &OPAMP->LPOTR;
      }
      
      if (hopamp3->Init.PowerMode == OPAMP_POWERMODE_NORMAL)
      {
        tmp_opamp3_otr_otuser = OPAMP_OTR_OT_USER;
        tmp_opamp3_reg_trimming = &OPAMP->OTR;
      }
      else
      {
        tmp_opamp3_otr_otuser = 0x00000000;
        tmp_opamp3_reg_trimming = &OPAMP->LPOTR;
      }
      
      /* Enable the selected opamp */
      CLEAR_BIT (OPAMP->CSR, OPAMP_CSR_OPAXPD_ALL);
      
      /* Perform trimming for both differential transistors pair high and low */
      for (trimming_diff_pair_iteration_count = 0; trimming_diff_pair_iteration_count <=1; trimming_diff_pair_iteration_count++)
      {
        if (trimming_diff_pair_iteration_count == 0)
        {
          /* Calibration of transistors differential pair high (NMOS) */
          trimming_diff_pair = OPAMP_FACTORYTRIMMING_N;
          opamp1_trimmingvalue = &opamp1_trimmingvaluen;
          opamp2_trimmingvalue = &opamp2_trimmingvaluen;
          opamp3_trimmingvalue = &opamp3_trimmingvaluen;
          
          /* Set bit OPAMP_CSR_OPAXCALOUT default state when trimming value   */
          /* is 00000b. Used to detect the bit toggling during trimming.      */
          tmp_Opa1calout_DefaultSate = RESET;
          tmp_Opa2calout_DefaultSate = RESET;
          tmp_Opa3calout_DefaultSate = RESET;
          
          /* Enable calibration for N differential pair */
          MODIFY_REG(OPAMP->CSR, OPAMP_CSR_OPAXCAL_L_ALL,
                                 OPAMP_CSR_OPAXCAL_H_ALL);
        }
        else /* (trimming_diff_pair_iteration_count == 1) */
        {
          /* Calibration of transistors differential pair low (PMOS) */
          trimming_diff_pair = OPAMP_FACTORYTRIMMING_P;
          opamp1_trimmingvalue = &opamp1_trimmingvaluep;
          opamp2_trimmingvalue = &opamp2_trimmingvaluep;
          opamp3_trimmingvalue = &opamp3_trimmingvaluep;
          
          /* Set bit OPAMP_CSR_OPAXCALOUT default state when trimming value   */
          /* is 00000b. Used to detect the bit toggling during trimming.      */
          tmp_Opa1calout_DefaultSate = OPAMP_CSR_OPAXCALOUT(hopamp1);
          tmp_Opa2calout_DefaultSate = OPAMP_CSR_OPAXCALOUT(hopamp2);
          tmp_Opa3calout_DefaultSate = OPAMP_CSR_OPAXCALOUT(hopamp3);
          
          /* Enable calibration for P differential pair */
          MODIFY_REG(OPAMP->CSR, OPAMP_CSR_OPAXCAL_H_ALL,
                                 OPAMP_CSR_OPAXCAL_L_ALL);
        }
        
      
        /* Perform calibration parameter search by dichotomy sweep */
        /*  - Delta initial value 16: for 5 dichotomy steps: 16 for the       */
        /*    initial range, then successive delta sweeps (8, 4, 2, 1).       */
        /*    can extend the search range to +/- 15 units.                    */
        /*  - Trimming initial value 15: search range will go from 0 to 30    */
        /*    (Trimming value 31 is forbidden).                               */
        /* Note: After dichotomy sweep, the trimming result is determined.    */
        /*       However, the final trimming step is deduced from previous    */
        /*       trimming steps tested but is not effectively tested.         */
        /*       An additional test step (using variable "final_step_check")  */
        /*       allow to Test the final trimming step.                       */
        *opamp1_trimmingvalue = 15;
        *opamp2_trimmingvalue = 15;
        *opamp3_trimmingvalue = 15;
        delta = 16;
        
        while ((delta != 0) || (final_step_check == 1))
        {
          /* Set candidate trimming */
          MODIFY_REG(*tmp_opamp1_reg_trimming, OPAMP_OFFSET_TRIM_SET(hopamp1, trimming_diff_pair, OPAMP_TRIM_VALUE_MASK) ,
                                               OPAMP_OFFSET_TRIM_SET(hopamp1, trimming_diff_pair, *opamp1_trimmingvalue) | tmp_opamp1_otr_otuser);

          MODIFY_REG(*tmp_opamp2_reg_trimming, OPAMP_OFFSET_TRIM_SET(hopamp2, trimming_diff_pair, OPAMP_TRIM_VALUE_MASK) ,
                                               OPAMP_OFFSET_TRIM_SET(hopamp2, trimming_diff_pair, *opamp2_trimmingvalue) | tmp_opamp2_otr_otuser);

          MODIFY_REG(*tmp_opamp3_reg_trimming, OPAMP_OFFSET_TRIM_SET(hopamp3, trimming_diff_pair, OPAMP_TRIM_VALUE_MASK) ,
                                               OPAMP_OFFSET_TRIM_SET(hopamp3, trimming_diff_pair, *opamp3_trimmingvalue) | tmp_opamp3_otr_otuser);
          
          /* Offset trimming time: during calibration, minimum time needed    */
          /* between two steps to have 1 mV accuracy.                         */
          HAL_Delay(OPAMP_TRIMMING_DELAY);
          
          /* Set flag for additional check of last trimming step equal to     */
          /* dichotomy step before its division by 2 (equivalent to previous  */
          /* value of dichotomy step).                                        */
          final_step_check = delta;
          
          /* Divide range by 2 to continue dichotomy sweep */
          delta >>= 1;
          
          /* Set trimming values for next iteration in function of trimming   */
          /* result toggle (versus initial state).                            */
          /* Trimming values update with dichotomy delta of previous          */
          /* iteration.                                                       */
          /* Note: on the last trimming loop, delta is equal to 0 and         */
          /*       therefore has no effect.                                   */
          if (READ_BIT(OPAMP->CSR, OPAMP_CSR_OPAXCALOUT(hopamp1)) != tmp_Opa1calout_DefaultSate)
          {
            /* If calibration output is has toggled, try lower trimming */
            *opamp1_trimmingvalue -= delta;
          }
          else
          {
            /* If calibration output is has not toggled, try higher trimming */
            *opamp1_trimmingvalue += delta;
          }
          
          if (READ_BIT(OPAMP->CSR, OPAMP_CSR_OPAXCALOUT(hopamp2)) != tmp_Opa2calout_DefaultSate)
          {
            /* If calibration output is has toggled, try lower trimming */
            *opamp2_trimmingvalue -= delta;
          }
          else
          {
            /* If calibration output is has not toggled, try higher trimming */
            *opamp2_trimmingvalue += delta;
          }

          if (READ_BIT(OPAMP->CSR, OPAMP_CSR_OPAXCALOUT(hopamp3)) != tmp_Opa3calout_DefaultSate)
          {
            /* If calibration output is has toggled, try lower trimming */
            *opamp3_trimmingvalue -= delta;
          }
          else
          {
            /* If calibration output is has not toggled, try higher trimming */
            *opamp3_trimmingvalue += delta;
          }
        }
        
        /* Check trimming result of the selected step and perform final fine  */
        /* trimming.                                                          */
        /*  - If calibration output is has toggled: the current step is       */
        /*    already optimized.                                              */
        /*  - If calibration output is has not toggled: the current step can  */
        /*    be optimized by incrementing it of one step.                    */
        if (READ_BIT(OPAMP->CSR, OPAMP_CSR_OPAXCALOUT(hopamp1)) == tmp_Opa1calout_DefaultSate)
        {
          *opamp1_trimmingvalue += 1;
          
          /* Set final fine trimming */
          MODIFY_REG(*tmp_opamp1_reg_trimming, OPAMP_OFFSET_TRIM_SET(hopamp1, trimming_diff_pair, OPAMP_TRIM_VALUE_MASK) ,
                                               OPAMP_OFFSET_TRIM_SET(hopamp1, trimming_diff_pair, *opamp1_trimmingvalue) | tmp_opamp1_otr_otuser);
        }
        if (READ_BIT(OPAMP->CSR, OPAMP_CSR_OPAXCALOUT(hopamp2)) == tmp_Opa2calout_DefaultSate)
        {
          *opamp2_trimmingvalue += 1;
          
          /* Set final fine trimming */
          MODIFY_REG(*tmp_opamp2_reg_trimming, OPAMP_OFFSET_TRIM_SET(hopamp2, trimming_diff_pair, OPAMP_TRIM_VALUE_MASK) ,
                                               OPAMP_OFFSET_TRIM_SET(hopamp2, trimming_diff_pair, *opamp2_trimmingvalue) | tmp_opamp2_otr_otuser);
        }
        if (READ_BIT(OPAMP->CSR, OPAMP_CSR_OPAXCALOUT(hopamp3)) == tmp_Opa3calout_DefaultSate)
        {
          *opamp3_trimmingvalue += 1;
          
          /* Set final fine trimming */
          MODIFY_REG(*tmp_opamp3_reg_trimming, OPAMP_OFFSET_TRIM_SET(hopamp3, trimming_diff_pair, OPAMP_TRIM_VALUE_MASK) ,
                                               OPAMP_OFFSET_TRIM_SET(hopamp3, trimming_diff_pair, *opamp3_trimmingvalue) | tmp_opamp3_otr_otuser);
        }
        
      }
       

      /* Disable calibration for P and N differential pairs */
      /* Disable the selected opamp */
      CLEAR_BIT (OPAMP->CSR, (OPAMP_CSR_OPAXCAL_H_ALL | 
                              OPAMP_CSR_OPAXCAL_L_ALL |
                              OPAMP_CSR_OPAXPD_ALL     ));
      
      /* Backup of switches configuration to restore it at the end of the     */
      /* calibration.                                                         */
      SET_BIT(OPAMP->CSR, tmp_OpaxSwitchesContextBackup);
      
      /* Self calibration is successful */
      /* Store calibration (user trimming) results in init structure. */
      
      /* Set user trimming mode */  
      hopamp1->Init.UserTrimming = OPAMP_TRIMMING_USER;
      hopamp2->Init.UserTrimming = OPAMP_TRIMMING_USER;
      hopamp3->Init.UserTrimming = OPAMP_TRIMMING_USER;
      
      /* Affect calibration parameters depending on mode normal/low power */
      if (hopamp1->Init.PowerMode != OPAMP_POWERMODE_LOWPOWER)
      {
        /* Write calibration result N */
        hopamp1->Init.TrimmingValueN = opamp1_trimmingvaluen;
        /* Write calibration result P */
        hopamp1->Init.TrimmingValueP = opamp1_trimmingvaluep;
      }
      else
      {
        /* Write calibration result N */
        hopamp1->Init.TrimmingValueNLowPower = opamp1_trimmingvaluen;
        /* Write calibration result P */
        hopamp1->Init.TrimmingValuePLowPower = opamp1_trimmingvaluep;
      }
      
      if (hopamp2->Init.PowerMode != OPAMP_POWERMODE_LOWPOWER)
      {
        /* Write calibration result N */
        hopamp2->Init.TrimmingValueN = opamp2_trimmingvaluen;
        /* Write calibration result P */
        hopamp2->Init.TrimmingValueP = opamp2_trimmingvaluep;
      }
      else
      {
        /* Write calibration result N */
        hopamp2->Init.TrimmingValueNLowPower = opamp2_trimmingvaluen;
        /* Write calibration result P */
        hopamp2->Init.TrimmingValuePLowPower = opamp2_trimmingvaluep;
      }
      
      if (hopamp3->Init.PowerMode != OPAMP_POWERMODE_LOWPOWER)
      {
        /* Write calibration result N */
        hopamp3->Init.TrimmingValueN = opamp3_trimmingvaluen;
        /* Write calibration result P */
        hopamp3->Init.TrimmingValueP = opamp3_trimmingvaluep;
      }
      else
      {
        /* Write calibration result N */
        hopamp3->Init.TrimmingValueNLowPower = opamp3_trimmingvaluen;
        /* Write calibration result P */
        hopamp3->Init.TrimmingValuePLowPower = opamp3_trimmingvaluep;
      }

      /* Update OPAMP state */
      hopamp1->State = HAL_OPAMP_STATE_READY;
      hopamp2->State = HAL_OPAMP_STATE_READY;
      hopamp3->State = HAL_OPAMP_STATE_READY;

    }
    else
    {
예제 #2
0
/**
  * @brief  Initializes the OPAMP according to the specified
  *         parameters in the OPAMP_InitTypeDef and create the associated handle.
  * @note   If the selected opamp is locked, initialization can't be performed.
  *         To unlock the configuration, perform a system reset.
  * @param  hopamp: OPAMP handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_OPAMP_Init(OPAMP_HandleTypeDef* hopamp)
{ 
  HAL_StatusTypeDef status = HAL_OK;
  uint32_t tmp_csr = 0;       /* Temporary variable to update register CSR, except bits ANAWSSELx, S7SEL2, OPA_RANGE, OPAxCALOUT */
  
  /* Check the OPAMP handle allocation and lock status */
  /* Init not allowed if calibration is ongoing */
  if((hopamp == NULL) || (hopamp->State == HAL_OPAMP_STATE_BUSYLOCKED)
                      || (hopamp->State == HAL_OPAMP_STATE_CALIBBUSY) )
  {
    status = HAL_ERROR;
  }
  else
  {
    /* Check the parameter */
    assert_param(IS_OPAMP_ALL_INSTANCE(hopamp->Instance));
       
    /* Set OPAMP parameters */
    assert_param(IS_OPAMP_POWER_SUPPLY_RANGE(hopamp->Init.PowerSupplyRange));
    assert_param(IS_OPAMP_POWERMODE(hopamp->Init.PowerMode));
    assert_param(IS_OPAMP_FUNCTIONAL_NORMALMODE(hopamp->Init.Mode));
    assert_param(IS_OPAMP_NONINVERTING_INPUT_CHECK_INSTANCE(hopamp, hopamp->Init.NonInvertingInput));
    assert_param(IS_OPAMP_TRIMMING(hopamp->Init.UserTrimming));
    
    if (hopamp->Init.Mode != OPAMP_FOLLOWER_MODE)
    {
      assert_param(IS_OPAMP_INVERTING_INPUT(hopamp->Init.InvertingInput));
    }
    
    if (hopamp->Init.UserTrimming == OPAMP_TRIMMING_USER)
    {
      if (hopamp->Init.PowerMode == OPAMP_POWERMODE_NORMAL)
      {
        assert_param(IS_OPAMP_TRIMMINGVALUE(hopamp->Init.TrimmingValueP));
        assert_param(IS_OPAMP_TRIMMINGVALUE(hopamp->Init.TrimmingValueN));
      }
      else
      {
        assert_param(IS_OPAMP_TRIMMINGVALUE(hopamp->Init.TrimmingValuePLowPower));
        assert_param(IS_OPAMP_TRIMMINGVALUE(hopamp->Init.TrimmingValueNLowPower));
      }
    }
    
    if(hopamp->State == HAL_OPAMP_STATE_RESET)
    {
      /* Allocate lock resource and initialize it */
      hopamp->Lock = HAL_UNLOCKED;
    }

    /* Call MSP init function */
    HAL_OPAMP_MspInit(hopamp);
    
    /* Set OPAMP parameters                                                   */
    /* - Set internal switches in function of:                                */
    /*   - OPAMP selected mode: standalone or follower.                       */
    /*   - Non-inverting input connection                                     */
    /*   - Inverting input connection                                         */
    /* - Set power supply range                                               */
    /* - Set power mode and associated calibration parameters                 */
    
    /* Get OPAMP CSR register into temporary variable */
    /* Note: OPAMP register CSR is written directly, independently of OPAMP   */
    /*       instance, because all OPAMP settings are dispatched in the same  */
    /*       register.                                                        */
    /*       Settings of bits for each OPAMP instances are managed case by    */
    /*       case using macro (OPAMP_CSR_S3SELX(), OPAMP_CSR_ANAWSELX(), ...) */
    tmp_csr = OPAMP->CSR;
    
    /* Open all switches on non-inverting input, inverting input and output   */
    /* feedback.                                                              */
    CLEAR_BIT(tmp_csr, OPAMP_CSR_ALL_SWITCHES(hopamp));
    
    /* Set internal switches in function of OPAMP mode selected: standalone   */
    /* or follower.                                                           */
    /* If follower mode is selected, feedback switch S3 is closed and         */
    /* inverting inputs switches are let opened.                              */
    /* If standalone mode is selected, feedback switch S3 is let opened and   */
    /* the selected inverting inputs switch is closed.                        */
    if (hopamp->Init.Mode == OPAMP_FOLLOWER_MODE)
    {
      /* Follower mode: Close switches S3 and SanB */
      SET_BIT(tmp_csr, OPAMP_CSR_S3SELX(hopamp));
    }
    else
    {
      /* Set internal switches in function of inverting input selected:       */
      /* Close switch to connect OPAMP inverting input to the selected        */
      /* input: dedicated IO pin or alternative IO pin available on some      */
      /* device packages.                                                     */
      if (hopamp->Init.InvertingInput == OPAMP_INVERTINGINPUT_IO0)
      {
        /* Close switch to connect OPAMP non-inverting input to               */
        /* dedicated IO pin low-leakage.                                      */
        SET_BIT(tmp_csr, OPAMP_CSR_S4SELX(hopamp));
      }
      else
      {
        /* Close switch to connect OPAMP inverting input to alternative       */
        /* IO pin available on some device packages.                          */
        SET_BIT(tmp_csr, OPAMP_CSR_ANAWSELX(hopamp));
      }
    }
    
    /* Set internal switches in function of non-inverting input selected:     */
    /* Close switch to connect OPAMP non-inverting input to the selected      */
    /* input: dedicated IO pin or DAC channel.                                */
    if (hopamp->Init.NonInvertingInput == OPAMP_NONINVERTINGINPUT_IO0)
    {
      /* Close switch to connect OPAMP non-inverting input to                 */
      /* dedicated IO pin low-leakage.                                        */
      SET_BIT(tmp_csr, OPAMP_CSR_S5SELX(hopamp));
    }
    else if (hopamp->Init.NonInvertingInput == OPAMP_NONINVERTINGINPUT_DAC_CH1)
    {
      
      /* Particular case for connection to DAC channel 1:                     */
      /* OPAMP_NONINVERTINGINPUT_DAC_CH1 available on OPAMP1 and OPAMP2 only  */
      /* (OPAMP3 availability depends on device category).                    */
      if ((hopamp->Instance == OPAMP1) || (hopamp->Instance == OPAMP2))
      {
        /* Close switch to connect OPAMP non-inverting input to               */
        /* DAC channel 1.                                                     */
        SET_BIT(tmp_csr, OPAMP_CSR_S6SELX(hopamp));
      }
      else
      {
        /* Set HAL status to error if another OPAMP instance as OPAMP1 or     */
        /* OPAMP2 is intended to be connected to DAC channel 2.               */
        status = HAL_ERROR;
      }
    }
    else /* if (hopamp->Init.NonInvertingInput ==                             */
         /*     OPAMP_NONINVERTINGINPUT_DAC_CH2  )                            */
    {
      /* Particular case for connection to DAC channel 2:                     */
      /* OPAMP_NONINVERTINGINPUT_DAC_CH2 available on OPAMP2 and OPAMP3 only  */
      /* (OPAMP3 availability depends on device category).                    */
      if (hopamp->Instance == OPAMP2)
      {
        /* Close switch to connect OPAMP non-inverting input to               */
        /* DAC channel 2.                                                     */
        SET_BIT(tmp_csr, OPAMP_CSR_S7SEL2);
      }
      /* If OPAMP3 is selected (if available) */
      else if (hopamp->Instance != OPAMP1)
      {
        /* Close switch to connect OPAMP non-inverting input to               */
        /* DAC channel 2.                                                     */
        SET_BIT(tmp_csr, OPAMP_CSR_S6SELX(hopamp));
      }
      else
      {
        /* Set HAL status to error if another OPAMP instance as OPAMP2 or     */
        /* OPAMP3 (if available) is intended to be connected to DAC channel 2.*/
        status = HAL_ERROR;
      }
    }
    
    /* Continue OPAMP configuration if settings of switches are correct */
    if (status != HAL_ERROR)
    {
      /* Set power mode and associated calibration parameters */
      if (hopamp->Init.PowerMode != OPAMP_POWERMODE_LOWPOWER)
      {
        /* Set normal mode */
        CLEAR_BIT(tmp_csr, OPAMP_CSR_OPAXLPM(hopamp));
        
        if (hopamp->Init.UserTrimming == OPAMP_TRIMMING_USER)
        {
          /* Set calibration mode (factory or user) and values for            */
          /* transistors differential pair high (PMOS) and low (NMOS) for     */
          /* normal mode.                                                     */
          MODIFY_REG(OPAMP->OTR, OPAMP_OTR_OT_USER                                                                     |
                                 OPAMP_OFFSET_TRIM_SET(hopamp, OPAMP_FACTORYTRIMMING_N, OPAMP_TRIM_VALUE_MASK)       |
                                 OPAMP_OFFSET_TRIM_SET(hopamp, OPAMP_FACTORYTRIMMING_P, OPAMP_TRIM_VALUE_MASK)        ,
                                 hopamp->Init.UserTrimming                                                             |
                                 OPAMP_OFFSET_TRIM_SET(hopamp, OPAMP_FACTORYTRIMMING_N, hopamp->Init.TrimmingValueN) |
                                 OPAMP_OFFSET_TRIM_SET(hopamp, OPAMP_FACTORYTRIMMING_P, hopamp->Init.TrimmingValueP)  );
        }
        else
        {
          /* Set calibration mode to factory */
          CLEAR_BIT(OPAMP->OTR, OPAMP_OTR_OT_USER);
        }
        
      }
      else
      {
        /* Set low power mode */
        SET_BIT(tmp_csr, OPAMP_CSR_OPAXLPM(hopamp));
        
        if (hopamp->Init.UserTrimming == OPAMP_TRIMMING_USER)
        {
          /* Set calibration mode to user trimming */
          SET_BIT(OPAMP->OTR, OPAMP_OTR_OT_USER);
          
          /* Set values for transistors differential pair high (PMOS) and low */
          /* (NMOS) for low power mode.                                       */
          MODIFY_REG(OPAMP->LPOTR, OPAMP_OFFSET_TRIM_SET(hopamp, OPAMP_FACTORYTRIMMING_N, OPAMP_TRIM_VALUE_MASK)               |
                                   OPAMP_OFFSET_TRIM_SET(hopamp, OPAMP_FACTORYTRIMMING_P, OPAMP_TRIM_VALUE_MASK)                ,
                                   OPAMP_OFFSET_TRIM_SET(hopamp, OPAMP_FACTORYTRIMMING_N, hopamp->Init.TrimmingValueNLowPower) |
                                   OPAMP_OFFSET_TRIM_SET(hopamp, OPAMP_FACTORYTRIMMING_P, hopamp->Init.TrimmingValuePLowPower)  );
        }
        else
        {
          /* Set calibration mode to factory trimming */
          CLEAR_BIT(OPAMP->OTR, OPAMP_OTR_OT_USER);
        }
        
      }
      
      
      /* Configure the power supply range */
      MODIFY_REG(tmp_csr, OPAMP_CSR_AOP_RANGE,
                          hopamp->Init.PowerSupplyRange);
      
      /* Set OPAMP CSR register from temporary variable */
      /* This allows to apply all changes on one time, in case of update on   */
      /* the fly with OPAMP previously set and running:                       */
      /*  - to avoid hazardous transient switches settings (risk of short     */
      /*    circuit)                                                          */
      /*  - to avoid interruption of input signal                             */
      OPAMP->CSR = tmp_csr;

                
      /* Update the OPAMP state */
      /* If coming from state reset: Update from state RESET to state READY */
      if (hopamp->State == HAL_OPAMP_STATE_RESET)
      {
        hopamp->State = HAL_OPAMP_STATE_READY;
      }
      /* else: OPAMP state remains READY or BUSY state (no update) */
    }
  }
  
  return status;
}