// The primitive handles PositionableStream>>atEnd, but only for arrays/strings // Does not use successFlag. Unary, so does not modify the stack pointer BOOL __fastcall Interpreter::primitiveAtEnd() { PosStreamOTE* streamPointer = reinterpret_cast<PosStreamOTE*>(stackTop()); // Access receiver //ASSERT(!ObjectMemoryIsIntegerObject(streamPointer) && ObjectMemory::isKindOf(streamPointer, Pointers.ClassPositionableStream)); PositionableStream* readStream = streamPointer->m_location; // Ensure valid stream (see BBB p632) if (!ObjectMemoryIsIntegerObject(readStream->m_index) || !ObjectMemoryIsIntegerObject(readStream->m_readLimit)) return primitiveFailure(0); SMALLINTEGER index = ObjectMemoryIntegerValueOf(readStream->m_index); SMALLINTEGER limit = ObjectMemoryIntegerValueOf(readStream->m_readLimit); BehaviorOTE* bufClass = readStream->m_array->m_oteClass; OTE* boolResult; if (bufClass == Pointers.ClassString || bufClass == Pointers.ClassByteArray) boolResult = index >= limit || (MWORD(index) >= readStream->m_array->bytesSize()) ? Pointers.True : Pointers.False; else if (bufClass == Pointers.ClassArray) boolResult = index >= limit || (MWORD(index) >= readStream->m_array->pointersSize()) ? Pointers.True : Pointers.False; else return primitiveFailure(1); // Doesn't work for non-Strings/ByteArrays/Arrays, or if out of bounds stackTop() = reinterpret_cast<Oop>(boolResult); return primitiveSuccess(); }
Oop* Interpreter::primitiveCopyFromTo(Oop* const sp, unsigned) { Oop oopToArg = *sp; Oop oopFromArg = *(sp - 1); OTE* oteReceiver = reinterpret_cast<OTE*>(*(sp - 2)); if (ObjectMemoryIsIntegerObject(oopToArg) && ObjectMemoryIsIntegerObject(oopFromArg)) { SMALLINTEGER from = ObjectMemoryIntegerValueOf(oopFromArg); SMALLINTEGER to = ObjectMemoryIntegerValueOf(oopToArg); if (from > 0) { SMALLINTEGER count = to - from + 1; if (count >= 0) { OTE* oteAnswer = ObjectMemory::CopyElements(oteReceiver, from - 1, count); if (oteAnswer != nullptr) { *(sp - 2) = (Oop)oteAnswer; ObjectMemory::AddToZct(oteAnswer); return sp - 2; } } } // Bounds error return primitiveFailure(1); } else { // Non-SmallInteger from and/or to return primitiveFailure(0); } }
// Locate the next occurrence of the given character in the receiver between the specified indices. BOOL __fastcall Interpreter::primitiveStringNextIndexOfFromTo() { Oop integerPointer = stackTop(); if (!ObjectMemoryIsIntegerObject(integerPointer)) return primitiveFailure(0); // to not an integer const SMALLINTEGER to = ObjectMemoryIntegerValueOf(integerPointer); integerPointer = stackValue(1); if (!ObjectMemoryIsIntegerObject(integerPointer)) return primitiveFailure(1); // from not an integer SMALLINTEGER from = ObjectMemoryIntegerValueOf(integerPointer); Oop valuePointer = stackValue(2); StringOTE* receiverPointer = reinterpret_cast<StringOTE*>(stackValue(3)); Oop answer = ZeroPointer; if ((ObjectMemory::fetchClassOf(valuePointer) == Pointers.ClassCharacter) && to >= from) { ASSERT(!receiverPointer->isPointers()); // Search a byte object const SMALLINTEGER length = receiverPointer->bytesSize(); // We can only be in here if to>=from, so if to>=1, then => from >= 1 // furthermore if to <= length then => from <= length if (from < 1 || to > length) return primitiveFailure(2); // Search is in bounds, lets do it CharOTE* oteChar = reinterpret_cast<CharOTE*>(valuePointer); Character* charObj = oteChar->m_location; const char charValue = static_cast<char>(ObjectMemoryIntegerValueOf(charObj->m_asciiValue)); String* chars = receiverPointer->m_location; from--; while (from < to) { if (chars->m_characters[from++] == charValue) { answer = ObjectMemoryIntegerObjectOf(from); break; } } } stackValue(3) = answer; pop(3); return primitiveSuccess(); }
Oop* __fastcall Interpreter::primitiveNewPinned(Oop* const sp, unsigned) { BehaviorOTE* oteClass = reinterpret_cast<BehaviorOTE*>(*(sp - 1)); Oop oopArg = (*sp); SMALLINTEGER size; if (isIntegerObject(oopArg) && (size = ObjectMemoryIntegerValueOf(oopArg)) >= 0) { InstanceSpecification instSpec = oteClass->m_location->m_instanceSpec; if (!(instSpec.m_pointers || instSpec.m_nonInstantiable)) { BytesOTE* newObj = ObjectMemory::newByteObject<true, true>(oteClass, size); *(sp - 1) = reinterpret_cast<Oop>(newObj); ObjectMemory::AddToZct(reinterpret_cast<OTE*>(newObj)); return sp - 1; } else { // Not indexable, or non-instantiable return primitiveFailure(instSpec.m_nonInstantiable ? 1 : 2); } } else { return primitiveFailure(0); // Size must be positive SmallInteger } }
// Uses object identity to locate the next occurrence of the argument in the receiver from // the specified index to the specified index Oop* __fastcall Interpreter::primitiveStringSearch() { Oop* const sp = m_registers.m_stackPointer; Oop integerPointer = *sp; if (!ObjectMemoryIsIntegerObject(integerPointer)) return primitiveFailure(0); // startingAt not an integer const SMALLINTEGER startingAt = ObjectMemoryIntegerValueOf(integerPointer); Oop oopSubString = *(sp-1); BytesOTE* oteReceiver = reinterpret_cast<BytesOTE*>(*(sp-2)); if (ObjectMemory::fetchClassOf(oopSubString) != oteReceiver->m_oteClass) return primitiveFailure(2); // We know it can't be a SmallInteger because it has the same class as the receiver BytesOTE* oteSubString = reinterpret_cast<BytesOTE*>(oopSubString); VariantByteObject* bytesPattern = oteSubString->m_location; VariantByteObject* bytesReceiver = oteReceiver->m_location; const int M = oteSubString->bytesSize(); const int N = oteReceiver->bytesSize(); // Check 'startingAt' is in range if (startingAt < 1 || startingAt > N) return primitiveFailure(1); // out of bounds int nOffset = M == 0 || ((startingAt + M) - 1 > N) ? -1 : stringSearch(bytesReceiver->m_fields, N, bytesPattern->m_fields, M, startingAt - 1); *(sp-2) = ObjectMemoryIntegerObjectOf(nOffset+1); return sp-2; }
Oop* __fastcall Interpreter::primitiveNewFromStack(Oop* const stackPointer, unsigned) { BehaviorOTE* oteClass = reinterpret_cast<BehaviorOTE*>(*(stackPointer - 1)); Oop oopArg = (*stackPointer); SMALLINTEGER count; if (isIntegerObject(oopArg) && (count = ObjectMemoryIntegerValueOf(oopArg)) >= 0) { // Note that instantiateClassWithPointers counts up the class, PointersOTE* oteObj = ObjectMemory::newUninitializedPointerObject(oteClass, count); VariantObject* obj = oteObj->m_location; Oop* sp = stackPointer; sp = sp - count - 1; while (--count >= 0) { oopArg = *(sp + count); ObjectMemory::countUp(oopArg); obj->m_fields[count] = oopArg; } // Save down SP in case ZCT is reconciled on adding result m_registers.m_stackPointer = sp; *sp = reinterpret_cast<Oop>(oteObj); ObjectMemory::AddToZct((OTE*)oteObj); return sp; } else { return primitiveFailure(0); } }
// This primitive handles PositionableStream>>nextSDWORD, but only for byte-arrays // Unary message, so does not modify stack pointer BOOL __fastcall Interpreter::primitiveNextSDWORD() { PosStreamOTE* streamPointer = reinterpret_cast<PosStreamOTE*>(stackTop()); // Access receiver PositionableStream* readStream = streamPointer->m_location; // Ensure valid stream - unusually this validity check is included in the Blue Book spec // and appears to be implemented in most Smalltalks, so we implement here too. if (!ObjectMemoryIsIntegerObject(readStream->m_index) || !ObjectMemoryIsIntegerObject(readStream->m_readLimit)) return primitiveFailure(0); // Receiver fails invariant check SMALLINTEGER index = ObjectMemoryIntegerValueOf(readStream->m_index); SMALLINTEGER limit = ObjectMemoryIntegerValueOf(readStream->m_readLimit); // Is the current index within the limits of the collection? // Remember that the index is 1 based (it's a Smalltalk index), and we're 0 based, // so we don't need to increment it until after we've got the next object if (index < 0 || index >= limit) return primitiveFailure(2); // No, fail it OTE* oteBuf = readStream->m_array; BehaviorOTE* bufClass = oteBuf->m_oteClass; if (bufClass != Pointers.ClassByteArray) return primitiveFailure(1); // Collection cannot be handled by primitive, rely on Smalltalk code ByteArrayOTE* oteBytes = reinterpret_cast<ByteArrayOTE*>(oteBuf); const int newIndex = index + sizeof(SDWORD); if (MWORD(newIndex) > oteBytes->bytesSize()) return primitiveFailure(3); const Oop oopNewIndex = ObjectMemoryIntegerObjectOf(newIndex); if (int(oopNewIndex) < 0) return primitiveFailure(4); // index overflowed SmallInteger range // When incrementing the index we must allow for it overflowing a SmallInteger, even though // this is extremely unlikely in practice readStream->m_index = oopNewIndex; // Receiver is overwritten ByteArray* byteArray = oteBytes->m_location; replaceStackTopWithNew(Integer::NewSigned32(*reinterpret_cast<SDWORD*>(byteArray->m_elements+index))); return primitiveSuccess(); // Succeed }
// Answer a new process with an initial stack size specified by the first argument, and a maximum // stack size specified by the second argument. Oop* __fastcall Interpreter::primitiveNewVirtual(Oop* const sp, unsigned) { Oop maxArg = *sp; SMALLINTEGER maxSize; if (ObjectMemoryIsIntegerObject(maxArg) && (maxSize = ObjectMemoryIntegerValueOf(maxArg)) >= 0) { Oop initArg = *(sp - 1); SMALLINTEGER initialSize; if (ObjectMemoryIsIntegerObject(initArg) && (initialSize = ObjectMemoryIntegerValueOf(initArg)) >= 0) { BehaviorOTE* receiverClass = reinterpret_cast<BehaviorOTE*>(*(sp - 2)); InstanceSpecification instSpec = receiverClass->m_location->m_instanceSpec; if (instSpec.m_indexable && !instSpec.m_nonInstantiable) { unsigned fixedFields = instSpec.m_fixedFields; VirtualOTE* newObject = ObjectMemory::newVirtualObject(receiverClass, initialSize + fixedFields, maxSize); if (newObject) { *(sp - 2) = reinterpret_cast<Oop>(newObject); // No point saving down SP before potential Zct reconcile as the init & max args must be SmallIntegers ObjectMemory::AddToZct((OTE*)newObject); return sp - 2; } else return primitiveFailure(4); // OOM } else { return primitiveFailure(instSpec.m_nonInstantiable ? 3 : 2); // Non-indexable or abstract class } } else { return primitiveFailure(1); // initialSize arg not a SmallInteger } } else { return primitiveFailure(0); // maxsize arg not a SmallInteger } }
Oop* __fastcall Interpreter::primitiveNewWithArg(Oop* const sp, unsigned) { BehaviorOTE* oteClass = reinterpret_cast<BehaviorOTE*>(*(sp - 1)); Oop oopArg = (*sp); // Unfortunately the compiler can't be persuaded to perform this using just the sar and conditional jumps on no-carry and signed; // it generates both the bit test and the shift. SMALLINTEGER size; if (isIntegerObject(oopArg) && (size = ObjectMemoryIntegerValueOf(oopArg)) >= 0) { InstanceSpecification instSpec = oteClass->m_location->m_instanceSpec; if ((instSpec.m_value & (InstanceSpecification::IndexableMask | InstanceSpecification::NonInstantiableMask)) == InstanceSpecification::IndexableMask) { if (instSpec.m_pointers) { PointersOTE* newObj = ObjectMemory::newPointerObject(oteClass, size + instSpec.m_fixedFields); *(sp - 1) = reinterpret_cast<Oop>(newObj); ObjectMemory::AddToZct(reinterpret_cast<OTE*>(newObj)); return sp - 1; } else { BytesOTE* newObj = ObjectMemory::newByteObject<true, true>(oteClass, size); *(sp - 1) = reinterpret_cast<Oop>(newObj); ObjectMemory::AddToZct(reinterpret_cast<OTE*>(newObj)); return sp - 1; } } else { // Not indexable, or non-instantiable return primitiveFailure(instSpec.m_nonInstantiable ? 1 : 2); } } else { return primitiveFailure(0); // Size must be positive SmallInteger } }
/* Implements String>>replaceFrom: start to: stop with: aString startingAt: startAt But is also used for ByteArray Does not use successFlag, and nils out argument (if successful) to leave a clean stack */ BOOL __fastcall Interpreter::primitiveStringReplace() { Oop integerPointer = stackTop(); if (!ObjectMemoryIsIntegerObject(integerPointer)) return primitiveFailure(0); SMALLINTEGER startAt = ObjectMemoryIntegerValueOf(integerPointer); OTE* argPointer = reinterpret_cast<OTE*>(stackValue(1)); integerPointer = stackValue(2); if (!ObjectMemoryIsIntegerObject(integerPointer)) return primitiveFailure(1); SMALLINTEGER stop = ObjectMemoryIntegerValueOf(integerPointer); integerPointer = stackValue(3); if (!ObjectMemoryIsIntegerObject(integerPointer)) return primitiveFailure(2); SMALLINTEGER start = ObjectMemoryIntegerValueOf(integerPointer); OTE* receiverPointer = reinterpret_cast<OTE*>(stackValue(4)); // Validity checks TODO("Try to do cleverer faster check here - too many (reproducing V behaviour)") // Only works for byte objects #ifdef _DEBUG if (!receiverPointer->isBytes()) return primitiveFailure(0); #else // Assume primitive used correctly - i.e. only in byte objects #endif if (ObjectMemoryIsIntegerObject(argPointer) || !argPointer->isBytes()) return primitiveFailure(3); // Empty move if stop before start, is considered valid regardless (strange but true) TODO("Change this so that does fail if stop or start < 1, only like this for V compatibility") if (stop >= start) { POBJECT receiverBytes = receiverPointer->m_location; // The receiver can be an indirect pointer (e.g. an instance of ExternalAddress) BYTE* pTo; Behavior* byteClass = receiverPointer->m_oteClass->m_location; if (byteClass->isIndirect()) pTo = static_cast<BYTE*>(static_cast<ExternalAddress*>(receiverBytes)->m_pointer); else { int length = receiverPointer->bytesSize(); // We can only be in here if stop>=start, so if start>=1, then => stop >= 1 // furthermore if stop <= length then => start <= length if (start < 1 || stop > length) return primitiveFailure(4); pTo = static_cast<ByteArray*>(receiverBytes)->m_elements; } POBJECT argBytes = argPointer->m_location; // The argument can also be an indirect pointer (e.g. an instance of ExternalAddress) BYTE* pFrom; Behavior* argClass = argPointer->m_oteClass->m_location; if (argClass->isIndirect()) pFrom = static_cast<BYTE*>(static_cast<ExternalAddress*>(argBytes)->m_pointer); else { int length = argPointer->bytesSize(); // We can only be in here if stop>=start, so => stop-start >= 0 // therefore if startAt >= 1 then => stopAt >= 1, for similar // reasons (since stopAt >= startAt) we don't need to test // that startAt <= length int stopAt = startAt+stop-start; if (startAt < 1 || stopAt > length) return primitiveFailure(4); pFrom = static_cast<ByteArray*>(argBytes)->m_elements; } // Remember that Smalltalk indices are 1 based // Might be overlapping memmove(pTo+start-1, pFrom+startAt-1, stop-start+1); } pop(4); return TRUE; }
// This primitive handles PositionableStream>>next, but only for Arrays, Strings and ByteArrays // Unary message, so does not modify stack pointer, and is therefore called directly from the ASM // primitive table without indirection through an ASM thunk. BOOL __fastcall Interpreter::primitiveNext() { PosStreamOTE* streamPointer = reinterpret_cast<PosStreamOTE*>(stackTop()); // Access receiver // Only works for subclasses of PositionableStream (or look alikes) //ASSERT(!ObjectMemoryIsIntegerObject(streamPointer) && ObjectMemory::isKindOf(streamPointer, Pointers.ClassPositionableStream)); PositionableStream* readStream = streamPointer->m_location; // Ensure valid stream - unusually this validity check is included in the Blue Book spec // and appears to be implemented in most Smalltalks, so we implement here too. if (!ObjectMemoryIsIntegerObject(readStream->m_index) || !ObjectMemoryIsIntegerObject(readStream->m_readLimit)) return primitiveFailure(0); // Receiver fails invariant check SMALLINTEGER index = ObjectMemoryIntegerValueOf(readStream->m_index); SMALLINTEGER limit = ObjectMemoryIntegerValueOf(readStream->m_readLimit); // Is the current index within the limits of the collection? // Remember that the index is 1 based (it's a Smalltalk index), and we're 0 based, // so we don't need to increment it until after we've got the next object if (index < 0 || index >= limit) return primitiveFailure(2); // No, fail it OTE* oteBuf = readStream->m_array; BehaviorOTE* bufClass = oteBuf->m_oteClass; if (bufClass == Pointers.ClassString) { StringOTE* oteString = reinterpret_cast<StringOTE*>(oteBuf); // A sanity check - ensure within bounds of object too (again in Blue Book spec) if (MWORD(index) >= oteString->bytesSize()) return primitiveFailure(3); String* buf = oteString->m_location; stackTop() = reinterpret_cast<Oop>(Character::New(buf->m_characters[index])); } // We also support ByteArrays in our primitiveNext (unlike BB). else if (bufClass == Pointers.ClassByteArray) { ByteArrayOTE* oteBytes = reinterpret_cast<ByteArrayOTE*>(oteBuf); if (MWORD(index) >= oteBytes->bytesSize()) return primitiveFailure(3); ByteArray* buf = oteBytes->m_location; stackTop() = ObjectMemoryIntegerObjectOf(buf->m_elements[index]); } else if (bufClass == Pointers.ClassArray) { ArrayOTE* oteArray = reinterpret_cast<ArrayOTE*>(oteBuf); if (MWORD(index) >= oteArray->pointersSize()) return primitiveFailure(3); Array* buf = oteArray->m_location; stackTop() = buf->m_elements[index]; } else return primitiveFailure(1); // Collection cannot be handled by primitive, rely on Smalltalk code // When incrementing the index we must allow for it overflowing a SmallInteger, even though // this is extremely unlikely in practice readStream->m_index = Integer::NewSigned32WithRef(index+1); return primitiveSuccess(); // Succeed }
// Non-standard, but has very beneficial effect on performance BOOL __fastcall Interpreter::primitiveNextPutAll() { Oop* sp = m_registers.m_stackPointer; WriteStreamOTE* streamPointer = reinterpret_cast<WriteStreamOTE*>(*(sp-1)); // Access receiver under argument WriteStream* writeStream = streamPointer->m_location; // Ensure valid stream - checks from Blue Book if (!ObjectMemoryIsIntegerObject(writeStream->m_index) || !ObjectMemoryIsIntegerObject(writeStream->m_writeLimit)) return primitiveFailure(0); // Fails invariant check SMALLINTEGER index = ObjectMemoryIntegerValueOf(writeStream->m_index); SMALLINTEGER limit = ObjectMemoryIntegerValueOf(writeStream->m_writeLimit); if (index < 0) return primitiveFailure(2); Oop value = *(sp); OTE* oteBuf = writeStream->m_array; BehaviorOTE* bufClass = oteBuf->m_oteClass; MWORD newIndex; if (bufClass == Pointers.ClassString) { BehaviorOTE* oteClass = ObjectMemory::fetchClassOf(value); if (oteClass != Pointers.ClassString && oteClass != Pointers.ClassSymbol) return primitiveFailure(4); // Attempt to put non-string StringOTE* oteString = reinterpret_cast<StringOTE*>(value); String* str = oteString->m_location; MWORD valueSize = oteString->bytesSize(); newIndex = MWORD(index)+valueSize; if (newIndex >= static_cast<MWORD>(limit)) // Beyond write limit return primitiveFailure(2); if (static_cast<int>(newIndex) >= oteBuf->bytesSizeForUpdate()) return primitiveFailure(3); // Attempt to write off end of buffer String* buf = static_cast<String*>(oteBuf->m_location); memcpy(buf->m_characters+index, str->m_characters, valueSize); } else if (bufClass == Pointers.ClassByteArray) { if (ObjectMemory::fetchClassOf(value) != bufClass) return primitiveFailure(4); // Attempt to put non-ByteArray ByteArrayOTE* oteBytes = reinterpret_cast<ByteArrayOTE*>(value); ByteArray* bytes = oteBytes->m_location; MWORD valueSize = oteBytes->bytesSize(); newIndex = MWORD(index)+valueSize; if (newIndex >= (MWORD)limit) // Beyond write limit return primitiveFailure(2); if (static_cast<int>(newIndex) >= oteBuf->bytesSizeForUpdate()) return primitiveFailure(3); // Attempt to write off end of buffer ByteArray* buf = static_cast<ByteArray*>(oteBuf->m_location); memcpy(buf->m_elements+index, bytes->m_elements, valueSize); } else if (bufClass == Pointers.ClassArray) { if (ObjectMemory::fetchClassOf(value) != Pointers.ClassArray) return primitiveFailure(4); // Attempt to put non-Array ArrayOTE* oteArray = reinterpret_cast<ArrayOTE*>(value); Array* array = oteArray->m_location; MWORD valueSize = oteArray->pointersSize(); newIndex = MWORD(index) + valueSize; if (newIndex >= (MWORD)limit) // Beyond write limit return primitiveFailure(2); if (static_cast<int>(newIndex) >= oteBuf->pointersSizeForUpdate()) return primitiveFailure(3); // Attempt to write off end of buffer Array* buf = static_cast<Array*>(oteBuf->m_location); for (MWORD i = 0; i < valueSize; i++) { ObjectMemory::storePointerWithValue(buf->m_elements[index + i], array->m_elements[i]); } } else return primitiveFailure(1); writeStream->m_index = Integer::NewUnsigned32WithRef(newIndex); // Increment the stream index // As we no longer pop stack here, the receiver is still under the argument *(sp-1) = value; return sizeof(Oop); // Pop 4 bytes }
// This primitive handles WriteStream>>NextPut:, but only for Arrays, Strings & ByteArrays // Uses but does not modify stack pointer, instead returns the number of bytes to // pop from the Smalltalk stack. BOOL __fastcall Interpreter::primitiveNextPut() { Oop* sp = m_registers.m_stackPointer; WriteStreamOTE* streamPointer = reinterpret_cast<WriteStreamOTE*>(*(sp-1)); // Access receiver under argument //ASSERT(!ObjectMemoryIsIntegerObject(streamPointer) && ObjectMemory::isKindOf(streamPointer, Pointers.ClassPositionableStream)); WriteStream* writeStream = streamPointer->m_location; // Ensure valid stream - checks from Blue Book if (!ObjectMemoryIsIntegerObject(writeStream->m_index) || !ObjectMemoryIsIntegerObject(writeStream->m_writeLimit)) return primitiveFailure(0); // Fails invariant check SMALLINTEGER index = ObjectMemoryIntegerValueOf(writeStream->m_index); SMALLINTEGER limit = ObjectMemoryIntegerValueOf(writeStream->m_writeLimit); // Within the bounds of the limit if (index < 0 || index >= limit) return primitiveFailure(2); Oop value = *(sp); OTE* oteBuf = writeStream->m_array; BehaviorOTE* bufClass = oteBuf->m_oteClass; if (bufClass == Pointers.ClassString) { if (ObjectMemory::fetchClassOf(value) != Pointers.ClassCharacter) return primitiveFailure(4); // Attempt to put non-character StringOTE* oteString = reinterpret_cast<StringOTE*>(oteBuf); if (index >= oteString->bytesSizeForUpdate()) return primitiveFailure(3); // Attempt to put non-character or off end of String String* buf = oteString->m_location; CharOTE* oteChar = reinterpret_cast<CharOTE*>(value); buf->m_characters[index] = static_cast<char>(oteChar->getIndex() - ObjectMemory::FirstCharacterIdx); } else if (bufClass == Pointers.ClassArray) { ArrayOTE* oteArray = reinterpret_cast<ArrayOTE*>(oteBuf); // In bounds of Array? if (index >= oteArray->pointersSizeForUpdate()) return primitiveFailure(3); Array* buf = oteArray->m_location; // We must ref. count value here as we're storing into a heap object slot ObjectMemory::storePointerWithValue(buf->m_elements[index], value); } else if (bufClass == Pointers.ClassByteArray) { if (!ObjectMemoryIsIntegerObject(value)) return primitiveFailure(4); // Attempt to put non-SmallInteger SMALLINTEGER intValue = ObjectMemoryIntegerValueOf(value); if (intValue < 0 || intValue > 255) return primitiveFailure(4); // Can only store 0..255 ByteArrayOTE* oteByteArray = reinterpret_cast<ByteArrayOTE*>(oteBuf); if (index >= oteByteArray->bytesSizeForUpdate()) return primitiveFailure(3); // Attempt to put non-character or off end of String oteByteArray->m_location->m_elements[index] = static_cast<BYTE>(intValue); } else return primitiveFailure(1); writeStream->m_index = Integer::NewSigned32WithRef(index + 1); // Increment the stream index // As we no longer pop stack here, the receiver is still under the argument *(sp-1) = value; return sizeof(Oop); // Pop 4 bytes }
VOID CALLBACK Interpreter::SamplerProc(PVOID , BOOLEAN TimerOrWaitFired) { if (!TimerOrWaitFired) return; if (_InterlockedDecrement(&m_nInputPollCounter) == 0) { NotifyAsyncPending(); #if 0//def _DEBUG DWORD dwTicksNow = timeGetTime(); Semaphore* sem = Pointers.InputSemaphore->m_location; TRACE("Fired after %d, last reset at %d, signals %d\n\r", dwTicksNow-dwTicksReset, dwTicksReset, ObjectMemoryIntegerValueOf(sem->m_excessSignals)); #endif } }
// Uses object identity to locate the next occurrence of the argument in the receiver from // the specified index to the specified index Oop* __fastcall Interpreter::primitiveNextIndexOfFromTo() { Oop integerPointer = stackTop(); if (!ObjectMemoryIsIntegerObject(integerPointer)) return primitiveFailure(0); // to not an integer const SMALLINTEGER to = ObjectMemoryIntegerValueOf(integerPointer); integerPointer = stackValue(1); if (!ObjectMemoryIsIntegerObject(integerPointer)) return primitiveFailure(1); // from not an integer SMALLINTEGER from = ObjectMemoryIntegerValueOf(integerPointer); Oop valuePointer = stackValue(2); OTE* receiverPointer = reinterpret_cast<OTE*>(stackValue(3)); // #ifdef _DEBUG if (ObjectMemoryIsIntegerObject(receiverPointer)) return primitiveFailure(2); // Not valid for SmallIntegers // #endif Oop answer = ZeroPointer; if (to >= from) { if (!receiverPointer->isPointers()) { // Search a byte object BytesOTE* oteBytes = reinterpret_cast<BytesOTE*>(receiverPointer); if (ObjectMemoryIsIntegerObject(valuePointer))// Arg MUST be an Integer to be a member { const MWORD byteValue = ObjectMemoryIntegerValueOf(valuePointer); if (byteValue < 256) // Only worth looking for 0..255 { const SMALLINTEGER length = oteBytes->bytesSize(); // We can only be in here if to>=from, so if to>=1, then => from >= 1 // furthermore if to <= length then => from <= length if (from < 1 || to > length) return primitiveFailure(2); // Search is in bounds, lets do it VariantByteObject* bytes = oteBytes->m_location; from--; while (from < to) if (bytes->m_fields[from++] == byteValue) { answer = ObjectMemoryIntegerObjectOf(from); break; } } } } else { // Search a pointer object - but only the indexable vars PointersOTE* oteReceiver = reinterpret_cast<PointersOTE*>(receiverPointer); VariantObject* receiver = oteReceiver->m_location; Behavior* behavior = receiverPointer->m_oteClass->m_location; const MWORD length = oteReceiver->pointersSize(); const MWORD fixedFields = behavior->m_instanceSpec.m_fixedFields; // Similar reasoning with to/from as for byte objects, but here we need to // take account of the fixed fields. if (from < 1 || (to + fixedFields > length)) return primitiveFailure(2); // Out of bounds Oop* indexedFields = receiver->m_fields + fixedFields; from--; while (from < to) if (indexedFields[from++] == valuePointer) { answer = ObjectMemoryIntegerObjectOf(from); break; } } } else answer = ZeroPointer; // Range is non-inclusive, cannot be there stackValue(3) = answer; return primitiveSuccess(3); }
// This is a double dispatched primitive which knows that the argument is a byte object (though // we still check this to avoid GPFs), and the receiver is guaranteed to be a byte object. e.g. // // aByteObject replaceBytesOf: anOtherByteObject from: start to: stop startingAt: startAt // BOOL __fastcall Interpreter::primitiveReplaceBytes() { Oop integerPointer = stackTop(); if (!ObjectMemoryIsIntegerObject(integerPointer)) return primitiveFailure(0); // startAt is not an integer SMALLINTEGER startAt = ObjectMemoryIntegerValueOf(integerPointer); integerPointer = stackValue(1); if (!ObjectMemoryIsIntegerObject(integerPointer)) return primitiveFailure(1); // stop is not an integer SMALLINTEGER stop = ObjectMemoryIntegerValueOf(integerPointer); integerPointer = stackValue(2); if (!ObjectMemoryIsIntegerObject(integerPointer)) return primitiveFailure(2); // start is not an integer SMALLINTEGER start = ObjectMemoryIntegerValueOf(integerPointer); OTE* argPointer = reinterpret_cast<OTE*>(stackValue(3)); if (ObjectMemoryIsIntegerObject(argPointer) || !argPointer->isBytes()) return primitiveFailure(3); // Argument MUST be a byte object // Empty move if stop before start, is considered valid regardless (strange but true) // this is the convention adopted by most implementations. if (stop >= start) { if (startAt < 1 || start < 1) return primitiveFailure(4); // Out-of-bounds // We still permit the argument to be an address to cut down on the number of primitives // and double dispatch methods we must implement (2 rather than 4) BYTE* pTo; Behavior* behavior = argPointer->m_oteClass->m_location; if (behavior->isIndirect()) { AddressOTE* oteBytes = reinterpret_cast<AddressOTE*>(argPointer); // We don't know how big the object is the argument points at, so cannot check length // against stop point pTo = static_cast<BYTE*>(oteBytes->m_location->m_pointer); } else { // We can test that we're not going to write off the end of the argument int length = argPointer->bytesSize(); // We can only be in here if stop>=start, so => stop-start >= 0 // therefore if startAt >= 1 then => stopAt >= 1, for similar // reasons (since stopAt >= startAt) we don't need to test // that startAt <= length if (stop > length) return primitiveFailure(4); // Bounds error VariantByteObject* argBytes = reinterpret_cast<BytesOTE*>(argPointer)->m_location; pTo = argBytes->m_fields; } BytesOTE* receiverPointer = reinterpret_cast<BytesOTE*>(stackValue(4)); // Now validate that the interval specified for copying from the receiver // is within the bounds of the receiver (we've already tested startAt) { int length = receiverPointer->bytesSize(); // We can only be in here if stop>=start, so if start>=1, then => stop >= 1 // furthermore if stop <= length then => start <= length int stopAt = startAt+stop-start; if (stopAt > length) return primitiveFailure(4); } // Only works for byte objects ASSERT(receiverPointer->isBytes()); VariantByteObject* receiverBytes = receiverPointer->m_location; #ifdef _DEBUG { Behavior* behavior = receiverPointer->m_oteClass->m_location; ASSERT(!behavior->isIndirect()); } #endif BYTE* pFrom = receiverBytes->m_fields; memmove(pTo+start-1, pFrom+startAt-1, stop-start+1); } // Answers the argument by moving it down over the receiver stackValue(4) = reinterpret_cast<Oop>(argPointer); pop(4); return TRUE; }
// This is a double dispatched primitive which knows that the argument is a byte object (though // we still check this to avoid GPFs), and the receiver is guaranteed to be an address object. e.g. // // anExternalAddress replaceBytesOf: anOtherByteObject from: start to: stop startingAt: startAt // BOOL __fastcall Interpreter::primitiveIndirectReplaceBytes() { Oop integerPointer = stackTop(); if (!ObjectMemoryIsIntegerObject(integerPointer)) return primitiveFailure(0); // startAt is not an integer SMALLINTEGER startAt = ObjectMemoryIntegerValueOf(integerPointer); integerPointer = stackValue(1); if (!ObjectMemoryIsIntegerObject(integerPointer)) return primitiveFailure(1); // stop is not an integer SMALLINTEGER stop = ObjectMemoryIntegerValueOf(integerPointer); integerPointer = stackValue(2); if (!ObjectMemoryIsIntegerObject(integerPointer)) return primitiveFailure(2); // start is not an integer SMALLINTEGER start = ObjectMemoryIntegerValueOf(integerPointer); OTE* argPointer = reinterpret_cast<OTE*>(stackValue(3)); if (ObjectMemoryIsIntegerObject(argPointer) || !argPointer->isBytes()) return primitiveFailure(3); // Argument MUST be a byte object // Empty move if stop before start, is considered valid regardless (strange but true) if (stop >= start) { if (start < 1 || startAt < 1) return primitiveFailure(4); // out-of-bounds AddressOTE* receiverPointer = reinterpret_cast<AddressOTE*>(stackValue(4)); // Only works for byte objects ASSERT(receiverPointer->isBytes()); ExternalAddress* receiverBytes = receiverPointer->m_location; #ifdef _DEBUG { Behavior* behavior = receiverPointer->m_oteClass->m_location; ASSERT(behavior->isIndirect()); } #endif // Because the receiver is an address, we do not know the size of the object // it points at, and so cannot perform any bounds checks - BEWARE BYTE* pFrom = static_cast<BYTE*>(receiverBytes->m_pointer); // We still permit the argument to be an address to cut down on the double dispatching // required. BYTE* pTo; Behavior* behavior = argPointer->m_oteClass->m_location; if (behavior->isIndirect()) { AddressOTE* oteBytes = reinterpret_cast<AddressOTE*>(argPointer); // Cannot check length pTo = static_cast<BYTE*>(oteBytes->m_location->m_pointer); } else { // Can check that not writing off the end of the argument int length = argPointer->bytesSize(); // We can only be in here if stop>=start, so => stop-start >= 0 // therefore if startAt >= 1 then => stopAt >= 1, for similar // reasons (since stopAt >= startAt) we don't need to test // that startAt <= length if (stop > length) return primitiveFailure(4); // Bounds error VariantByteObject* argBytes = reinterpret_cast<BytesOTE*>(argPointer)->m_location; pTo = argBytes->m_fields; } memmove(pTo+start-1, pFrom+startAt-1, stop-start+1); } // Answers the argument by moving it down over the receiver stackValue(4) = reinterpret_cast<Oop>(argPointer); pop(4); return TRUE; }
BOOL __fastcall Interpreter::primitiveSnapshot(CompiledMethod&, unsigned argCount) { Oop arg = stackValue(argCount - 1); char* szFileName; if (arg == Oop(Pointers.Nil)) szFileName = 0; else if (ObjectMemory::fetchClassOf(arg) == Pointers.ClassString) { StringOTE* oteString = reinterpret_cast<StringOTE*>(arg); String* fileName = oteString->m_location; szFileName = fileName->m_characters; } else return primitiveFailure(0); bool bBackup; if (argCount >= 2) bBackup = reinterpret_cast<OTE*>(stackValue(argCount - 2)) == Pointers.True; else bBackup = false; SMALLINTEGER nCompressionLevel; if (argCount >= 3) { Oop oopCompressionLevel = stackValue(argCount - 3); nCompressionLevel = ObjectMemoryIsIntegerObject(oopCompressionLevel) ? ObjectMemoryIntegerValueOf(oopCompressionLevel) : 0; } else nCompressionLevel = 0; SMALLUNSIGNED nMaxObjects = 0; if (argCount >= 4) { Oop oopMaxObjects = stackValue(argCount - 4); if (ObjectMemoryIsIntegerObject(oopMaxObjects)) { nMaxObjects = ObjectMemoryIntegerValueOf(oopMaxObjects); } } // N.B. It is not necessary to clear down the memory pools as the free list is rebuild on every image // load and the pool members, though not on the free list at present, are marked as free entries // in the object table // ZCT is reconciled, so objects may be deleted flushAtCaches(); // Store the active frame of the active process before saving so available on image reload // We're not actually suspending the process now, but it appears like that to the snapshotted // image on restarting m_registers.PrepareToSuspendProcess(); #ifdef OAD DWORD timeStart = timeGetTime(); #endif int saveResult = ObjectMemory::SaveImageFile(szFileName, bBackup, nCompressionLevel, nMaxObjects); #ifdef OAD DWORD timeEnd = timeGetTime(); TRACESTREAM << "Time to save image: " << (timeEnd - timeStart) << " mS" << endl; #endif if (!saveResult) { // Success popStack(); return primitiveSuccess(); } else { // Failure return primitiveFailure(saveResult); } }
// Signal a specified semaphore after the specified milliseconds duration (the argument). // NOTE: NOT ABSOLUTE VALUE! // If the specified time has already passed, then the TimingSemaphore is signalled immediately. Oop* __fastcall Interpreter::primitiveSignalAtTick(CompiledMethod&, unsigned argumentCount) { Oop tickPointer = stackTop(); SMALLINTEGER nDelay; if (ObjectMemoryIsIntegerObject(tickPointer)) nDelay = ObjectMemoryIntegerValueOf(tickPointer); else { OTE* oteArg = reinterpret_cast<OTE*>(tickPointer); return primitiveFailureWith(PrimitiveFailureNonInteger, oteArg); // ticks must be SmallInteger } // To avoid any race conditions against the global timerID value (it is quite // common for the timer to fire, for example, before the timeSetEvent() call // has actually returned in the duration is very short because the timer thread // is operating at a very high priority), we use an interlocked operation UINT outstandingID = InterlockedExchange(reinterpret_cast<SHAREDLONG*>(&timerID), 0); // If outstanding timer now fires, it will do nothing. We'll end up killing something which is already // dead of course, but that should be OK if (outstandingID) { #ifdef OAD TRACESTREAM << "Killing existing timer with id " << outstandingID << endl; #endif UINT kill = ::timeKillEvent(outstandingID); if (kill != TIMERR_NOERROR) trace("Failed to kill timer %u (%d,%d)!\n\r", outstandingID, kill, GetLastError()); } if (nDelay > 0) { // Temporarily handle old image code that passes timer semaphore as an argument if (argumentCount > 1 && (POTE)Pointers.TimingSemaphore == Pointers.Nil) { ObjectMemory::ProtectConstSpace(PAGE_READWRITE); _Pointers.TimingSemaphore = (SemaphoreOTE*)stackValue(1); ObjectMemory::ProtectConstSpace(PAGE_READONLY); } // Clamp the requested delay to the maximum if it is too large. This simplifies the Delay code in the image a little. if (nDelay > SMALLINTEGER(wTimerMax)) { nDelay = wTimerMax; } // Set the timerID to a non-zero value just in case the timer fires before timeSetEvent() returns. // This allows the TimerProc to recognise the timer as valid (it doesn't really care about the // timerID anyway, just that we're interested in it). // N.B. We shouldn't need an interlocked operation here because, assuming no bugs in the Win32 MM // timers, we've killed any outstanding timer, and the timer thread should be dormant timerID = UINT(-1); // -1 is not used as a timer ID. UINT newTimerID = ::timeSetEvent(nDelay, 0, TimeProc, 0, TIME_ONESHOT); if (newTimerID && newTimerID != UINT(-1)) { // Unless timer has already fired, record the timer id so can cancel if necessary _InterlockedCompareExchange(reinterpret_cast<SHAREDLONG*>(&timerID), newTimerID, -1); pop(argumentCount); // No ref. counting required } else { // System refused to set timer for some reason DWORD error = GetLastError(); trace("Oh no, failed to set a timer for %d mS (%d)!\n\r", nDelay, error); return primitiveFailureWithInt(PrimitiveFailureSystemError, error); } } else if (nDelay == 0) { #ifdef _DEBUG TRACESTREAM << "Requested delay " << dec << nDelay << " passed, signalling immediately" << endl; #endif // The request time has already passed, or does not fall within the // available timer resolution (i.e. it will happen too soon), so signal // it immediately // We must adjust stack before signalling, as may change Process (and therefore stack!) pop(argumentCount); // N.B. Signalling may detect a process switch, but does not actually perform it signalSemaphore(Pointers.TimingSemaphore); } // else requested delay was negative - we allow this to clear down the existing timer #ifdef _DEBUG if (newProcessWaiting()) { ASSERT(m_oteNewProcess->m_oteClass == Pointers.ClassProcess); ProcessOTE* activeProcess = scheduler()->m_activeProcess; TRACESTREAM << "signalAtTick: Caused process switch to " << m_oteNewProcess << endl << "\t\tfrom " << activeProcess << endl << "\tasync signals " << m_qAsyncSignals.isEmpty() << ')' << endl; } #endif // Delay could already have fired CheckProcessSwitch(); return primitiveSuccess(0); }