// --------------------- Opcodes 0x4a00+ --------------------- // Emit a Tst opcode, 01001010 xxeeeeee int OpTst(int op) { int sea=0; int size=0,use=0; sea=op&0x003f; size=(op>>6)&3; if (size>=3) return 1; // See if we can do this opcode: if (EaCanWrite(sea)==0||EaAn(sea)) return 1; use=OpBase(op,size); if (op!=use) { OpUse(op,use); return 0; } // Use existing handler OpStart(op,sea); Cycles=4; EaCalc ( 0,0x003f,sea,size,1); EaRead ( 0, 0,sea,size,0x003f,1); ot(" adds r0,r0,#0 ;@ Defines NZ, clears CV\n"); ot(" mrs r10,cpsr ;@ r10=flags\n"); ot("\n"); OpEnd(sea); return 0; }
// --------------------- Opcodes 0x4880+ --------------------- // Emit an Ext opcode, 01001000 1x000nnn int OpExt(int op) { int ea=0; int size=0,use=0; int shift=0; ea=op&0x0007; size=(op>>6)&1; shift=32-(8<<size); use=OpBase(op,size); if (op!=use) { OpUse(op,use); return 0; } // Use existing handler OpStart(op); Cycles=4; EaCalc (11,0x0007,ea,size+1,earwt_msb_dont_care); EaRead (11, 0,ea,size+1,0x0007,earwt_msb_dont_care); ot(" movs r0,r0,asl #%d\n",shift); OpGetFlagsNZ(0); ot(" mov r1,r0,asr #%d\n",shift); ot("\n"); EaWrite(11, 1,ea,size+1,0x0007,earwt_msb_dont_care); OpEnd(); return 0; }
// --------------------- Opcodes 0x4a00+ --------------------- // Emit a Tst opcode, 01001010 xxeeeeee int OpTst(int op) { int sea=0; int size=0,use=0; sea=op&0x003f; size=(op>>6)&3; if (size>=3) return 1; // See if we can do this opcode: if (EaCanWrite(sea)==0||EaAn(sea)) return 1; use=OpBase(op,size); if (op!=use) { OpUse(op,use); return 0; } // Use existing handler OpStart(op,sea); Cycles=4; EaCalc (0,0x003f,sea,size,earwt_shifted_up); EaRead (0, 0,sea,size,0x003f,earwt_shifted_up,1); OpGetFlagsNZ(0); ot("\n"); OpEnd(sea); return 0; }
// --------------------- Opcodes 0x4880+ --------------------- // Emit an Ext opcode, 01001000 1x000nnn int OpExt(int op) { int ea=0; int size=0,use=0; int shift=0; ea=op&0x0007; size=(op>>6)&1; shift=32-(8<<size); use=OpBase(op,size); if (op!=use) { OpUse(op,use); return 0; } // Use existing handler OpStart(op); Cycles=4; EaCalc (11,0x0007,ea,size+1,0,0); EaRead (11, 0,ea,size+1,0x0007,0,0); ot(" mov r0,r0,asl #%d\n",shift); ot(" adds r0,r0,#0 ;@ Defines NZ, clears CV\n"); ot(" mrs r10,cpsr ;@ r10=flags\n"); ot(" mov r1,r0,asr #%d\n",shift); ot("\n"); EaWrite(11, 1,ea,size+1,0x0007,0,0); OpEnd(); return 0; }
// Asr/Lsr/Roxr/Ror etc EA - 11100ttd 11eeeeee int OpAsrEa(int op) { int use=0,type=0,dir=0,ea=0,size=1; type=(op>>9)&3; dir =(op>>8)&1; ea = op&0x3f; if (ea<0x10) return 1; // See if we can do this opcode: if (EaCanRead(ea,0)==0) return 1; if (EaCanWrite(ea)==0) return 1; use=OpBase(op,size); if (op!=use) { OpUse(op,use); return 0; } // Use existing handler OpStart(op,ea); Cycles=6; // EmitAsr() will add 2 EaCalc (11,0x003f,ea,size,earwt_shifted_up); EaRead (11, 0,ea,size,0x003f,earwt_shifted_up); EmitAsr(op,type,dir,1,size,0); EaWrite(11, 0,ea,size,0x003f,earwt_shifted_up); OpEnd(ea); return 0; }
// --------------------- Opcodes 0x90c0+ --------------------- // Suba/Cmpa/Adda 1tt1nnnx 11eeeeee (tt=type, x=size, eeeeee=Source EA) int OpAritha(int op) { int use=0; int type=0,size=0,sea=0,dea=0; char *asr=""; // Suba/Cmpa/Adda/(invalid): type=(op>>13)&3; if (type>=3) return 1; size=(op>>8)&1; size++; dea=(op>>9)&7; dea|=8; // Dest=An sea=op&0x003f; // Source // See if we can do this opcode: if (EaCanRead(sea,size)==0) return 1; use=OpBase(op,size); use&=~0x0e00; // Use same opcode for An if (op!=use) { OpUse(op,use); return 0; } // Use existing handler OpStart(op,sea); Cycles=(size==2)?6:8; if(size==2&&(sea<0x10||sea==0x3c)) Cycles+=2; if(type==1) Cycles=6; // EA calculation order defines how situations like suba.w (A0)+, A0 get handled. // different emus act differently in this situation, I couldn't fugure which is right behaviour. //if (type == 1) { EaCalcReadNoSE(-1,0,sea,size,0x003f); EaCalcReadNoSE(type!=1?10:-1,11,dea,2,0x0e00); } #if 0 else {
// 01001000 00eeeeee - nbcd <ea> int OpNbcd(int op) { int use=0; int ea=0; ea=op&0x3f; if(EaCanWrite(ea)==0||EaAn(ea)) return 1; use=OpBase(op,0); if(op!=use) { OpUse(op,use); return 0; } // Use existing handler OpStart(op,ea); Cycles=6; if(ea >= 8) Cycles+=2; EaCalcReadNoSE(10,0,ea,0,0x003f); // this is rewrite of Musashi's code ot(" ldr r2,[r7,#0x4c]\n"); ot(" bic r9,r9,#0xb0000000 ;@ clear all flags, except Z\n"); ot(" mov r0,r0,asl #24\n"); ot(" and r2,r2,#0x20000000\n"); ot(" add r2,r0,r2,lsr #5 ;@ add X\n"); ot(" rsb r11,r2,#0x9a000000 ;@ do arithmetic\n"); ot(" cmp r11,#0x9a000000\n"); ot(" beq finish%.4x\n",op); ot("\n"); ot(" mvn r3,r11,lsr #31 ;@ Undefined V behavior\n",op); ot(" and r2,r11,#0x0f000000\n"); ot(" cmp r2,#0x0a000000\n"); ot(" andeq r11,r11,#0xf0000000\n"); ot(" addeq r11,r11,#0x10000000\n"); ot(" and r3,r3,r11,lsr #31 ;@ Undefined V behavior part II\n",op); ot(" movs r1,r11,asr #24\n"); ot(" bicne r9,r9,#0x40000000 ;@ Z\n"); ot(" orr r9,r9,r3,lsl #28 ;@ save V\n",op); ot(" orr r9,r9,#0x20000000 ;@ C\n"); ot("\n"); EaWrite(10, 1, ea,0,0x3f,0,0); ot("finish%.4x%s\n",op,ms?"":":"); ot(" tst r11,r11\n"); ot(" orrmi r9,r9,#0x80000000 ;@ N\n"); ot(" str r9,[r7,#0x4c] ;@ Save X\n"); ot("\n"); OpEnd(ea); return 0; }
int OpTas(int op, int gen_special) { int ea=0; int use=0; ea=op&0x003f; // See if we can do this opcode: if (EaCanWrite(ea)==0 || EaAn(ea)) return 1; use=OpBase(op,0); if (op!=use) { OpUse(op,use); return 0; } // Use existing handler if (!gen_special) OpStart(op,ea); else ot("Op%.4x_%s\n", op, ms?"":":"); Cycles=4; if(ea>=8) Cycles+=10; EaCalc (11,0x003f,ea,0,1); EaRead (11, 1,ea,0,0x003f,1); ot(" adds r1,r1,#0 ;@ Defines NZ, clears CV\n"); OpGetFlags(0,0); ot("\n"); #if CYCLONE_FOR_GENESIS // the original Sega hardware ignores write-back phase (to memory only) if (ea < 0x10 || gen_special) { #endif ot(" orr r1,r1,#0x80000000 ;@ set bit7\n"); EaWrite(11, 1,ea,0,0x003f,1); #if CYCLONE_FOR_GENESIS } #endif OpEnd(ea); #if (CYCLONE_FOR_GENESIS == 2) if (!gen_special && ea >= 0x10) { OpTas(op, 1); } #endif return 0; }
// --------------------- Opcodes 0x50c0+ --------------------- // Emit a Set cc opcode, 0101cccc 11eeeeee int OpSet(int op) { int cc=0,ea=0; int size=0,use=0,changed_cycles=0; const char *cond; cc=(op>>8)&15; ea=op&0x003f; if ((ea&0x38)==0x08) return 1; // dbra, not scc // See if we can do this opcode: if (EaCanWrite(ea)==0) return 1; use=OpBase(op,size); if (op!=use) { OpUse(op,use); return 0; } // Use existing handler changed_cycles=ea<8 && cc>=2; OpStart(op,ea,0,changed_cycles); Cycles=8; if (ea<8) Cycles=4; switch (cc) { case 0x00: // T ot(" mvn r1,#0\n"); if (ea<8) Cycles+=2; break; case 0x01: // F ot(" mov r1,#0\n"); break; default: ot(" mov r1,#0\n"); cond=TestCond(cc); ot(" mvn%s r1,#0\n",cond); if (ea<8) ot(" sub%s r5,r5,#2 ;@ Extra cycles\n",cond); break; } ot("\n"); eawrite_check_addrerr=1; EaCalc (0,0x003f, ea,size,earwt_msb_dont_care); EaWrite(0, 1, ea,size,0x003f,earwt_msb_dont_care); opend_op_changes_cycles=changed_cycles; OpEnd(ea,0); return 0; }
// Emit a Asr/Lsr/Roxr/Ror opcode - 1110cccd xxuttnnn // (ccc=count, d=direction(r,l) xx=size extension, u=use reg for count, tt=type, nnn=register Dn) int OpAsr(int op) { int ea=0,use=0; int count=0,dir=0; int size=0,usereg=0,type=0; count =(op>>9)&7; dir =(op>>8)&1; size =(op>>6)&3; if (size>=3) return 1; // use OpAsrEa() usereg=(op>>5)&1; type =(op>>3)&3; if (usereg==0) count=((count-1)&7)+1; // because ccc=000 means 8 // Use the same opcode for target registers: use=op&~0x0007; // As long as count is not 8, use the same opcode for all shift counts: if (usereg==0 && count!=8 && !(count==1&&type==2)) { use|=0x0e00; count=-1; } if (usereg) { use&=~0x0e00; count=-1; } // Use same opcode for all Dn if (op!=use) { OpUse(op,use); return 0; } // Use existing handler OpStart(op,ea,0,count<0); Cycles=size<2?6:8; EaCalc(11,0x0007, ea,size,earwt_shifted_up); EaRead(11, 0, ea,size,0x0007,earwt_shifted_up); EmitAsr(op,type,dir,count, size,usereg); EaWrite(11, 0, ea,size,0x0007,earwt_shifted_up); opend_op_changes_cycles = (count<0); OpEnd(ea,0); return 0; }
// --------------------- Opcodes 0x4840+ --------------------- // Swap, 01001000 01000nnn swap Dn int OpSwap(int op) { int ea=0,use=0; ea=op&7; use=op&~0x0007; // Use same opcode for all An if (op!=use) { OpUse(op,use); return 0; } // Use existing handler OpStart(op); Cycles=4; EaCalc (11,0x0007,ea,2,earwt_shifted_up); EaRead (11, 0,ea,2,0x0007,earwt_shifted_up); ot(" movs r1,r0,ror #16\n"); OpGetFlagsNZ(1); EaWrite(11, 1,8,2,0x0007,earwt_shifted_up); OpEnd(); return 0; }
// --------------------- Opcodes 0x4840+ --------------------- // Swap, 01001000 01000nnn swap Dn int OpSwap(int op) { int ea=0,use=0; ea=op&7; use=op&~0x0007; // Use same opcode for all An if (op!=use) { OpUse(op,use); return 0; } // Use existing handler OpStart(op); Cycles=4; EaCalc (11,0x0007,ea,2,1); EaRead (11, 0,ea,2,0x0007,1); ot(" mov r1,r0,ror #16\n"); ot(" adds r1,r1,#0 ;@ Defines NZ, clears CV\n"); OpGetFlags(0,0); EaWrite(11, 1,8,2,0x0007,1); OpEnd(); return 0; }
// --------------------- Opcodes 0x50c0+ --------------------- // Emit a Set cc opcode, 0101cccc 11eeeeee int OpSet(int op) { int cc=0,ea=0; int size=0,use=0,changed_cycles=0; static const char * const cond[16]= { "al","", "hi","ls","cc","cs","ne","eq", "vc","vs","pl","mi","ge","lt","gt","le" }; cc=(op>>8)&15; ea=op&0x003f; if ((ea&0x38)==0x08) return 1; // dbra, not scc // See if we can do this opcode: if (EaCanWrite(ea)==0) return 1; use=OpBase(op,size); if (op!=use) { OpUse(op,use); return 0; } // Use existing handler changed_cycles=ea<8 && cc>=2; OpStart(op,ea,0,changed_cycles); Cycles=8; if (ea<8) Cycles=4; if (cc) ot(" mov r1,#0\n"); switch (cc) { case 0: // T ot(" mvn r1,#0\n"); if (ea<8) Cycles+=2; break; case 1: // F break; case 2: // hi ot(" tst r10,#0x60000000 ;@ hi: !C && !Z\n"); ot(" mvneq r1,r1\n"); if (ea<8) ot(" subeq r5,r5,#2 ;@ Extra cycles\n"); break; case 3: // ls ot(" tst r10,#0x60000000 ;@ ls: C || Z\n"); ot(" mvnne r1,r1\n"); if (ea<8) ot(" subne r5,r5,#2 ;@ Extra cycles\n"); break; default: ot(";@ Is the condition true?\n"); ot(" msr cpsr_flg,r10 ;@ ARM flags = 68000 flags\n"); ot(" mvn%s r1,r1\n",cond[cc]); if (ea<8) ot(" sub%s r5,r5,#2 ;@ Extra cycles\n",cond[cc]); break; } ot("\n"); eawrite_check_addrerr=1; EaCalc (0,0x003f, ea,size,0,0); EaWrite(0, 1, ea,size,0x003f,0,0); opend_op_changes_cycles=changed_cycles; OpEnd(ea,0); return 0; }
// --------------------- Opcodes 0x8000+ --------------------- // 1t0tnnnd xxeeeeee (tt=type:or/sub/and/add xx=size, eeeeee=EA) int OpArithReg(int op) { int use=0; int type=0,size=0,dir=0,rea=0,ea=0; char *asl=""; char *strop=0; type=(op>>12)&5; rea =(op>> 9)&7; dir =(op>> 8)&1; // er,re size=(op>> 6)&3; if (size>=3) return 1; ea = op&0x3f; if (dir && ea<0x10) return 1; // addx/subx opcode // See if we can do this opcode: if (dir==0 && EaCanRead (ea,size)==0) return 1; if (dir && EaCanWrite(ea)==0) return 1; if ((size==0||!(type&1))&&EaAn(ea)) return 1; use=OpBase(op,size); use&=~0x0e00; // Use same opcode for Dn if (op!=use) { OpUse(op,use); return 0; } // Use existing handler OpStart(op,ea); Cycles=4; EaCalcReadNoSE(dir?10:-1,0,ea,size,0x003f); EaCalcReadNoSE(dir?-1:10,1,rea,size,0x0e00); ot(";@ Do arithmetic:\n"); if (type==0) strop = "orr"; if (type==1) strop = (char *) (dir ? "subs" : "rsbs"); if (type==4) strop = "and"; if (type==5) strop = "adds"; if (size==0) asl=",asl #24"; if (size==1) asl=",asl #16"; if (size<2) ot(" mov r0,r0%s\n",asl); ot(" %s r1,r0,r1%s\n",strop,asl); if ((type&1)==0) ot(" adds r1,r1,#0 ;@ Defines NZ, clears CV\n"); OpGetFlags(type==1,type&1); // 1==subtract ot("\n"); ot(";@ Save result:\n"); if (size<2) ot(" mov r1,r1,asr #%d\n",size?16:24); if (dir) EaWrite(10, 1, ea,size,0x003f,0,0); else EaWrite(10, 1,rea,size,0x0e00,0,0); if(rea==ea) { if(ea<8) Cycles=(size>=2)?8:4; else Cycles+=(size>=2)?26:14; } else if(dir) { Cycles+=4; if(size>=2) Cycles+=4; } else { if(size>=2) { Cycles+=2; if(ea<0x10||ea==0x3c) Cycles+=2; } } OpEnd(ea); return 0; }
// --------------------- Opcodes 0x80c0+ --------------------- int OpMul(int op) { // Div/Mul: 1m00nnns 11eeeeee (m=Mul, nnn=Register Dn, s=signed, eeeeee=EA) int type=0,rea=0,sign=0,ea=0; int use=0; type=(op>>14)&1; // div/mul rea =(op>> 9)&7; sign=(op>> 8)&1; ea = op&0x3f; // See if we can do this opcode: if (EaCanRead(ea,1)==0||EaAn(ea)) return 1; use=OpBase(op,1); use&=~0x0e00; // Use same for all registers if (op!=use) { OpUse(op,use); return 0; } // Use existing handler OpStart(op,ea); if(type) Cycles=54; else Cycles=sign?158:140; EaCalcReadNoSE(-1,0,ea,1,0x003f); EaCalc(10,0x0e00,rea, 2); EaRead(10, 2,rea, 2,0x0e00); ot(" movs r1,r0,asl #16\n"); if (type==0) // div { // the manual says C is always cleared, but neither Musashi nor FAME do that //ot(" bic r9,r9,#0x20000000 ;@ always clear C\n"); ot(" beq divzero%.4x ;@ division by zero\n",op); ot("\n"); if (sign) { ot(" mov r11,#0 ;@ r11 = 1 or 2 if the result is negative\n"); ot(" tst r2,r2\n"); ot(" orrmi r11,r11,#2\n"); ot(" rsbmi r2,r2,#0 ;@ Make r2 positive\n"); ot("\n"); ot(" movs r0,r1,asr #16\n"); ot(" orrmi r11,r11,#1\n"); ot(" rsbmi r0,r0,#0 ;@ Make r0 positive\n"); ot("\n"); ot(";@ detect the nasty 0x80000000 / -1 situation\n"); ot(" mov r3,r2,asr #31\n"); ot(" eors r3,r3,r1,asr #16\n"); ot(" beq wrendofop%.4x\n",op); } else { ot(" mov r0,r1,lsr #16 ;@ use only 16 bits of divisor\n"); } ot("\n"); ot(";@ Divide r2 by r0\n"); ot(" mov r3,#0\n"); ot(" mov r1,r0\n"); ot("\n"); ot(";@ Shift up divisor till it's just less than numerator\n"); ot("Shift%.4x%s\n",op,ms?"":":"); ot(" cmp r1,r2,lsr #1\n"); ot(" movls r1,r1,lsl #1\n"); ot(" bcc Shift%.4x\n",op); ot("\n"); ot("Divide%.4x%s\n",op,ms?"":":"); ot(" cmp r2,r1\n"); ot(" adc r3,r3,r3 ;@ Double r3 and add 1 if carry set\n"); ot(" subcs r2,r2,r1\n"); ot(" teq r1,r0\n"); ot(" movne r1,r1,lsr #1\n"); ot(" bne Divide%.4x\n",op); ot("\n"); ot(";@r3==quotient,r2==remainder\n"); if (sign) { // sign correction ot(" and r1,r11,#1\n"); ot(" teq r1,r11,lsr #1\n"); ot(" rsbne r3,r3,#0 ;@ negate if quotient is negative\n"); ot(" tst r11,#2\n"); ot(" rsbne r2,r2,#0 ;@ negate the remainder if divident was negative\n"); ot("\n"); // signed overflow check ot(" mov r1,r3,asl #16\n"); ot(" cmp r3,r1,asr #16 ;@ signed overflow?\n"); ot(" orrne r9,r9,#0x10000000 ;@ set overflow flag\n"); ot(" bne endofop%.4x ;@ overflow!\n",op); ot("\n"); ot("wrendofop%.4x%s\n",op,ms?"":":"); } else { // overflow check ot(" movs r1,r3,lsr #16 ;@ check for overflow condition\n"); ot(" orrne r9,r9,#0x10000000 ;@ set overflow flag\n"); ot(" bne endofop%.4x ;@ overflow!\n",op); ot("\n"); } ot(" mov r1,r3,lsl #16 ;@ Clip to 16-bits\n"); ot(" adds r1,r1,#0 ;@ Defines NZ, clears CV\n"); OpGetFlags(0,0); ot(" mov r1,r1,lsr #16\n"); ot(" orr r1,r1,r2,lsl #16 ;@ Insert remainder\n"); } if (type==1) { ot(";@ Get 16-bit signs right:\n"); ot(" mov r0,r1,%s #16\n",sign?"asr":"lsr"); ot(" mov r2,r2,lsl #16\n"); ot(" mov r2,r2,%s #16\n",sign?"asr":"lsr"); ot("\n"); ot(" mul r1,r2,r0\n"); ot(" adds r1,r1,#0 ;@ Defines NZ, clears CV\n"); OpGetFlags(0,0); } ot("\n"); EaWrite(10, 1,rea, 2,0x0e00,1); if (type==0) ot("endofop%.4x%s\n",op,ms?"":":"); OpEnd(ea); if (type==0) // div { ot("divzero%.4x%s\n",op,ms?"":":"); ot(" mov r0,#5 ;@ Divide by zero\n"); ot(" bl Exception\n"); Cycles+=38; OpEnd(ea); ot("\n"); } return 0; }
// --------------------- Opcodes 0x4000+ --------------------- int OpNeg(int op) { // 01000tt0 xxeeeeee (tt=negx/clr/neg/not, xx=size, eeeeee=EA) int type=0,size=0,ea=0,use=0; type=(op>>9)&3; ea =op&0x003f; size=(op>>6)&3; if (size>=3) return 1; // See if we can do this opcode: if (EaCanRead (ea,size)==0||EaAn(ea)) return 1; if (EaCanWrite(ea )==0) return 1; use=OpBase(op,size); if (op!=use) { OpUse(op,use); return 0; } // Use existing handler OpStart(op,ea); Cycles=size<2?4:6; if(ea >= 0x10) Cycles*=2; EaCalc (11,0x003f,ea,size,earwt_msb_dont_care); if (type!=1) EaRead (11,0,ea,size,0x003f,earwt_msb_dont_care); // Don't need to read for 'clr' (or do we, for a dummy read?) if (type==1) ot("\n"); if (type==0) { ot(";@ Negx:\n"); GetXBit(1); if(size!=2) ot(" mov r0,r0,asl #%i\n",size?16:24); ot(" rscs r1,r0,#0 ;@ do arithmetic\n"); ot(" orr r3,r10,#0xb0000000 ;@ for old Z\n"); OpGetFlags(1,1,0); if(size!=2) { ot(" movs r1,r1,asr #%i\n",size?16:24); ot(" orreq r10,r10,#0x40000000 ;@ possily missed Z\n"); } ot(" andeq r10,r10,r3 ;@ fix Z\n"); ot("\n"); } if (type==1) { ot(";@ Clear:\n"); ot(" mov r1,#0\n"); ot(" mov r10,#0x40000000 ;@ NZCV=0100\n"); ot("\n"); } if (type==2) { ot(";@ Neg:\n"); if(size!=2) ot(" mov r0,r0,asl #%i\n",size?16:24); ot(" rsbs r1,r0,#0\n"); OpGetFlags(1,1); if(size!=2) ot(" mov r1,r1,asr #%i\n",size?16:24); ot("\n"); } if (type==3) { ot(";@ Not:\n"); if(size!=2) { ot(" mov r0,r0,asl #%i\n",size?16:24); ot(" mvns r1,r0,asr #%i\n",size?16:24); } else ot(" mvns r1,r0\n"); OpGetFlagsNZ(1); ot("\n"); } if (type==1) eawrite_check_addrerr=1; EaWrite(11, 1,ea,size,0x003f,earwt_msb_dont_care); OpEnd(ea); return 0; }
// --------------------- Opcodes 0x0800+ --------------------- // Emit a Btst/Bchg/Bclr/Bset (Immediate) opcode 00001000 ttaaaaaa nn int OpBtstImm(int op) { int type=0,sea=0,tea=0; int use=0; int size=0; type=(op>>6)&3; // Get source and target EA sea= 0x003c; tea=op&0x003f; if (tea<0x10) size=2; // For registers, 32-bits // See if we can do this opcode: if (EaCanRead(tea,0)==0||EaAn(tea)||tea==0x3c) return 1; if (type>0) { if (EaCanWrite(tea)==0) return 1; } use=OpBase(op,size); if (op!=use) { OpUse(op,use); return 0; } // Use existing handler OpStart(op,sea,tea); ot("\n"); EaCalcRead(-1,0,sea,0,0,earwt_msb_dont_care); ot(" mov r11,#1\n"); ot(" bic r10,r10,#0x40000000 ;@ Blank Z flag\n"); if (tea>=0x10) ot(" and r0,r0,#7 ;@ mem - do mod 8\n"); // size always 0 else ot(" and r0,r0,#0x1F ;@ reg - do mod 32\n"); // size always 2 ot(" mov r11,r11,lsl r0 ;@ Make bit mask\n"); ot("\n"); if(type==1||type==3) { Cycles=12; } else { Cycles=type?12:8; if(size>=2) Cycles+=2; } EaCalcRead((type>0)?8:-1,0,tea,size,0x003f,earwt_msb_dont_care); ot(" tst r0,r11 ;@ Do arithmetic\n"); ot(" orreq r10,r10,#0x40000000 ;@ Get Z flag\n"); ot("\n"); if (type>0) { if (type==1) ot(" eor r1,r0,r11 ;@ Toggle bit\n"); if (type==2) ot(" bic r1,r0,r11 ;@ Clear bit\n"); if (type==3) ot(" orr r1,r0,r11 ;@ Set bit\n"); ot("\n"); EaWrite(8, 1,tea,size,0x003f,earwt_msb_dont_care); #if CYCLONE_FOR_GENESIS && !MEMHANDLERS_CHANGE_CYCLES // this is a bit hacky (device handlers might modify cycles) if (tea==0x38||tea==0x39) ot(" ldr r5,[r7,#0x5c] ;@ Load Cycles\n"); #endif } OpEnd(sea,tea); return 0; }
/*! \brief Simple test case for configuration This function implements a very simple test case for the configuration \return EXIT_SUCCESS on success, else EXIT_ERROR */ int ARCH_MAINDECL main(void) { int errorcode = EXIT_FAILURE; EnableCrtDebug(); do { char * buffer; opencbm_configuration_handle handle = NULL; OpStart("opencbm_configuration_create()"); handle = opencbm_configuration_create("TestFile.inf"); if (handle == NULL) { break; } OpStart("opencbm_configuration_set_data(\"SectTest\", \"EntryTest\", \"VALUE\")"); if (opencbm_configuration_set_data(handle, "SectTest", "EntryTest", "VALUE")) { break; } OpStart("opencbm_configuration_set_data(\"SectTest\", \"NewTest\", \"AnotherVALUE\")"); if (opencbm_configuration_set_data(handle, "SectTest", "NewTest", "AnotherVALUE")) { break; } OpStart("opencbm_configuration_get_data(handle, \"SectTest\", \"NewTest\")"); if (opencbm_configuration_get_data(handle, "SectTest", "NewTest", &buffer) != 0) { break; } OpEnd(); fprintf(stderr, " returned: %s\n", buffer); OpStart("opencbm_configuration_set_data(\"NewSect\", \"AEntryTest\", \"aVALUE\")"); if (opencbm_configuration_set_data(handle, "NewSect", "AEntryTest", "aVALUE")) { break; } OpStart("opencbm_configuration_set_data(\"NewSect\", \"BNewTest\", \"bAnotherVALUE\")"); if (opencbm_configuration_set_data(handle, "NewSect", "BNewTest", "bAnotherVALUE")) { break; } OpStart("opencbm_configuration_set_data(\"SectTest\", \"NewTest\", \"RewrittenVALUE\")"); if (opencbm_configuration_set_data(handle, "SectTest", "NewTest", "RewrittenVALUE")) { break; } OpStart("opencbm_configuration_get_data(handle, \"SectTest\", \"NewTest\")"); if (opencbm_configuration_get_data(handle, "SectTest", "NewTest", &buffer) != 0) { break; } OpEnd(); fprintf(stderr, " returned: %s\n", buffer); OpStart("opencbm_configuration_enum_sections(handle, ..., NULL)"); opencbm_configuration_enum_sections(handle, enum_sections_callback, NULL); OpEnd(); OpStart("opencbm_configuration_enum_sections(handle, ..., 0x12345678)"); opencbm_configuration_enum_sections(handle, enum_sections_callback, 0x12345678); OpEnd(); #if 0 int opencbm_configuration_enum_sections(opencbm_configuration_handle Handle, opencbm_configuration_enum_sections_callback_t Callback, void * Data) #endif OpStart("opencbm_configuration_close()"); if (opencbm_configuration_close(handle) != 0) { break; } errorcode = EXIT_SUCCESS; } while(0); if (errorcode == EXIT_SUCCESS) { OpEnd(); } else { OpFail(); } return errorcode; }
// --------------------- Opcodes 0x8100+ --------------------- // 1t00ddd1 0000asss - sbcd/abcd Ds,Dd or -(As),-(Ad) int OpAbcd(int op) { int use=0; int type=0,sea=0,mem=0,dea=0; type=(op>>14)&1; // sbcd/abcd dea =(op>> 9)&7; mem =(op>> 3)&1; sea = op &7; if (mem) { sea|=0x20; dea|=0x20; } use=op&~0x0e07; // Use same opcode for all registers.. if (sea==0x27) use|=0x0007; // ___x.b -(a7) if (dea==0x27) use|=0x0e00; // ___x.b -(a7) if (op!=use) { OpUse(op,use); return 0; } // Use existing handler OpStart(op,sea,dea); Cycles=6; if (mem) { ot(";@ Get src/dest EA vals\n"); EaCalc (0,0x000f, sea,0,1); EaRead (0, 10, sea,0,0x000f,1); EaCalcReadNoSE(11,0,dea,0,0x0e00); } else { ot(";@ Get src/dest reg vals\n"); EaCalcReadNoSE(-1,10,sea,0,0x0007); EaCalcReadNoSE(11,0,dea,0,0x0e00); ot(" mov r10,r10,asl #24\n"); } ot(" mov r1,r0,asl #24\n\n"); ot(" bic r9,r9,#0xb1000000 ;@ clear all flags except old Z\n"); if (type) { ot(" ldr r0,[r7,#0x4c] ;@ Get X bit\n"); ot(" mov r3,#0x00f00000\n"); ot(" and r2,r3,r1,lsr #4\n"); ot(" tst r0,#0x20000000\n"); ot(" and r0,r3,r10,lsr #4\n"); ot(" add r0,r0,r2\n"); ot(" addne r0,r0,#0x00100000\n"); // ot(" tst r0,#0x00800000\n"); // ot(" orreq r9,r9,#0x01000000 ;@ Undefined V behavior\n"); ot(" cmp r0,#0x00900000\n"); ot(" addhi r0,r0,#0x00600000 ;@ Decimal adjust units\n"); ot(" mov r2,r1,lsr #28\n"); ot(" add r0,r0,r2,lsl #24\n"); ot(" mov r2,r10,lsr #28\n"); ot(" add r0,r0,r2,lsl #24\n"); ot(" cmp r0,#0x09900000\n"); ot(" orrhi r9,r9,#0x20000000 ;@ C\n"); ot(" subhi r0,r0,#0x0a000000\n"); // ot(" and r3,r9,r0,lsr #3 ;@ Undefined V behavior part II\n"); // ot(" orr r9,r9,r3,lsl #4 ;@ V\n"); ot(" movs r0,r0,lsl #4\n"); ot(" orrmi r9,r9,#0x90000000 ;@ Undefined N+V behavior\n"); // this is what Musashi really does ot(" bicne r9,r9,#0x40000000 ;@ Z flag\n"); } else { ot(" ldr r0,[r7,#0x4c] ;@ Get X bit\n"); ot(" mov r3,#0x00f00000\n"); ot(" and r2,r3,r10,lsr #4\n"); ot(" tst r0,#0x20000000\n"); ot(" and r0,r3,r1,lsr #4\n"); ot(" sub r0,r0,r2\n"); ot(" subne r0,r0,#0x00100000\n"); // ot(" tst r0,#0x00800000\n"); // ot(" orreq r9,r9,#0x01000000 ;@ Undefined V behavior\n"); ot(" cmp r0,#0x00900000\n"); ot(" subhi r0,r0,#0x00600000 ;@ Decimal adjust units\n"); ot(" mov r2,r1,lsr #28\n"); ot(" add r0,r0,r2,lsl #24\n"); ot(" mov r2,r10,lsr #28\n"); ot(" sub r0,r0,r2,lsl #24\n"); ot(" cmp r0,#0x09900000\n"); ot(" orrhi r9,r9,#0xa0000000 ;@ N and C\n"); ot(" addhi r0,r0,#0x0a000000\n"); // ot(" and r3,r9,r0,lsr #3 ;@ Undefined V behavior part II\n"); // ot(" orr r9,r9,r3,lsl #4 ;@ V\n"); ot(" movs r0,r0,lsl #4\n"); // ot(" orrmi r9,r9,#0x80000000 ;@ Undefined N behavior\n"); ot(" bicne r9,r9,#0x40000000 ;@ Z flag\n"); } ot(" str r9,[r7,#0x4c] ;@ Save X bit\n"); ot("\n"); EaWrite(11, 0, dea,0,0x0e00,1); OpEnd(sea,dea); return 0; }
// --------------------- Opcodes 0x0000+ --------------------- // Emit an Ori/And/Sub/Add/Eor/Cmp Immediate opcode, 0000ttt0 ssaaaaaa int OpArith(int op) { int type=0,size=0; int sea=0,tea=0; int use=0; char *shiftstr=""; // Get source and target EA type=(op>>9)&7; if (type==4 || type>=7) return 1; size=(op>>6)&3; if (size>=3) return 1; sea= 0x003c; tea=op&0x003f; // See if we can do this opcode: if (EaCanRead(tea,size)==0) return 1; if (EaCanWrite(tea)==0 || EaAn(tea)) return 1; use=OpBase(op,size); if (op!=use) { OpUse(op,use); return 0; } // Use existing handler OpStart(op, sea, tea); Cycles=4; // imm must be read first EaCalcReadNoSE(-1,10,sea,size,0); EaCalcReadNoSE((type!=6)?11:-1,0,tea,size,0x003f); if (size<2) shiftstr=(char *)(size?",asl #16":",asl #24"); if (size<2) ot(" mov r10,r10,asl #%i\n",size?16:24); ot(";@ Do arithmetic:\n"); if (type==0) ot(" orr r1,r10,r0%s\n",shiftstr); if (type==1) ot(" and r1,r10,r0%s\n",shiftstr); if (type==2||type==6) ot(" rsbs r1,r10,r0%s ;@ Defines NZCV\n",shiftstr); if (type==3) ot(" adds r1,r10,r0%s ;@ Defines NZCV\n",shiftstr); if (type==5) ot(" eor r1,r10,r0%s\n",shiftstr); if (type<2 || type==5) ot(" adds r1,r1,#0 ;@ Defines NZ, clears CV\n"); // 0,1,5 if (type< 2) OpGetFlags(0,0); // Ori/And if (type==2) OpGetFlags(1,1); // Sub: Subtract/X-bit if (type==3) OpGetFlags(0,1); // Add: X-bit if (type==5) OpGetFlags(0,0); // Eor if (type==6) OpGetFlags(1,0); // Cmp: Subtract ot("\n"); if (type!=6) { EaWrite(11, 1, tea,size,0x003f,1); } // Correct cycles: if (type==6) { if (size>=2 && tea<0x10) Cycles+=2; } else { if (size>=2) Cycles+=4; if (tea>=8) Cycles+=4; if (type==1 && size>=2 && tea<8) Cycles-=2; } OpEnd(sea,tea); return 0; }
// --------------------- Opcodes 0x0100+ --------------------- // Emit a Btst (Register) opcode 0000nnn1 ttaaaaaa int OpBtstReg(int op) { int use=0; int type=0,sea=0,tea=0; int size=0; type=(op>>6)&3; // Btst/Bchg/Bclr/Bset // Get source and target EA sea=(op>>9)&7; tea=op&0x003f; if (tea<0x10) size=2; // For registers, 32-bits if ((tea&0x38)==0x08) return 1; // movep // See if we can do this opcode: if (EaCanRead(tea,0)==0) return 1; if (type>0) { if (EaCanWrite(tea)==0) return 1; } use=OpBase(op,size); use&=~0x0e00; // Use same handler for all registers if (op!=use) { OpUse(op,use); return 0; } // Use existing handler OpStart(op,tea); if(type==1||type==3) { Cycles=8; } else { Cycles=type?8:4; if(size>=2) Cycles+=2; } EaCalcRead(-1,11,sea,0,0x0e00,earwt_msb_dont_care); EaCalcRead((type>0)?8:-1,0,tea,size,0x003f,earwt_msb_dont_care); if (tea>=0x10) ot(" and r11,r11,#7 ;@ mem - do mod 8\n"); // size always 0 else ot(" and r11,r11,#31 ;@ reg - do mod 32\n"); // size always 2 ot("\n"); ot(" mov r1,#1\n"); ot(" tst r0,r1,lsl r11 ;@ Do arithmetic\n"); ot(" bicne r10,r10,#0x40000000\n"); ot(" orreq r10,r10,#0x40000000 ;@ Get Z flag\n"); ot("\n"); if (type>0) { if (type==1) ot(" eor r1,r0,r1,lsl r11 ;@ Toggle bit\n"); if (type==2) ot(" bic r1,r0,r1,lsl r11 ;@ Clear bit\n"); if (type==3) ot(" orr r1,r0,r1,lsl r11 ;@ Set bit\n"); ot("\n"); EaWrite(8,1,tea,size,0x003f,earwt_msb_dont_care); } OpEnd(tea); return 0; }
// --------------------- Opcodes 0x5000+ --------------------- int OpAddq(int op) { // 0101nnnt xxeeeeee (nnn=#8,1-7 t=addq/subq xx=size, eeeeee=EA) int num=0,type=0,size=0,ea=0; int use=0; char count[16]=""; int shift=0; num =(op>>9)&7; if (num==0) num=8; type=(op>>8)&1; size=(op>>6)&3; if (size>=3) return 1; ea = op&0x3f; // See if we can do this opcode: if (EaCanRead (ea,size)==0) return 1; if (EaCanWrite(ea) ==0) return 1; if (size == 0 && EaAn(ea) ) return 1; use=OpBase(op,size,1); if (num!=8) use|=0x0e00; // If num is not 8, use same handler if (op!=use) { OpUse(op,use); return 0; } // Use existing handler OpStart(op,ea); Cycles=ea<8?4:8; if(type==0&&size==1) Cycles=ea<0x10?4:8; if(size>=2) Cycles=ea<0x10?8:12; if (size>0 && (ea&0x38)==0x08) size=2; // addq.w #n,An is also 32-bit EaCalcReadNoSE(10,0,ea,size,0x003f); shift=32-(8<<size); if (num!=8) { int lsr=9-shift; ot(" and r2,r8,#0x0e00 ;@ Get quick value\n"); if (lsr>=0) sprintf(count,"r2,lsr #%d", lsr); else sprintf(count,"r2,lsl #%d", -lsr); ot("\n"); } else { sprintf(count,"#0x%.4x",8<<shift); } if (size<2) ot(" mov r0,r0,asl #%d\n\n",size?16:24); if (type==0) ot(" adds r1,r0,%s\n",count); if (type==1) ot(" subs r1,r0,%s\n",count); if ((ea&0x38)!=0x08) OpGetFlags(type,1); ot("\n"); EaWrite(10, 1, ea,size,0x003f,1); OpEnd(ea); return 0; }