예제 #1
0
파일: ept.c 프로젝트: jyizheng/dune
static int ept_set_epte(struct vmx_vcpu *vcpu, int make_write,
			unsigned long gpa, unsigned long hva)
{
	int ret;
	epte_t *epte, flags;
	struct page *page;

	ret = get_user_pages_fast(hva, 1, make_write, &page);
	if (ret != 1) {
		printk(KERN_ERR "ept: failed to get user page %lx\n", hva);
		return ret;
	}

	spin_lock(&vcpu->ept_lock);

	ret = ept_lookup_gpa(vcpu, (void *) gpa,
			     PageHuge(page) ? 1 : 0, 1, &epte);
	if (ret) {
		spin_unlock(&vcpu->ept_lock);
		printk(KERN_ERR "ept: failed to lookup EPT entry\n");
		return ret;
	}

	if (epte_present(*epte)) {
		if (!epte_big(*epte) && PageHuge(page))
			ept_clear_l1_epte(epte);
		else
			ept_clear_epte(epte);
	}

	flags = __EPTE_READ | __EPTE_EXEC |
		__EPTE_TYPE(EPTE_TYPE_WB) | __EPTE_IPAT;
	if (make_write)
		flags |= __EPTE_WRITE;
	if (vcpu->ept_ad_enabled) {
		/* premark A/D to avoid extra memory references */
		flags |= __EPTE_A;
		if (make_write)
			flags |= __EPTE_D;
	}

	if (PageHuge(page)) {
		flags |= __EPTE_SZ;
		*epte = epte_addr(page_to_phys(page) & ~((1 << 21) - 1)) |
			flags;
	} else
		*epte = epte_addr(page_to_phys(page)) | flags;

	spin_unlock(&vcpu->ept_lock);

	return 0;
}
static int hwpoison_inject(void *data, u64 val)
{
	unsigned long pfn = val;
	struct page *p;
	struct page *hpage;
	int err;

	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;

	if (!pfn_valid(pfn))
		return -ENXIO;

	p = pfn_to_page(pfn);
	hpage = compound_head(p);
	/*
	 * This implies unable to support free buddy pages.
	 */
	if (!get_page_unless_zero(hpage))
		return 0;

	if (!hwpoison_filter_enable)
		goto inject;

	if (!PageLRU(p) && !PageHuge(p))
		shake_page(p, 0);
	/*
	 * This implies unable to support non-LRU pages.
	 */
	if (!PageLRU(p) && !PageHuge(p))
		return 0;

	/*
	 * do a racy check with elevated page count, to make sure PG_hwpoison
	 * will only be set for the targeted owner (or on a free page).
	 * We temporarily take page lock for try_get_mem_cgroup_from_page().
	 * memory_failure() will redo the check reliably inside page lock.
	 */
	lock_page(hpage);
	err = hwpoison_filter(hpage);
	unlock_page(hpage);
	if (err)
		return 0;

inject:
	printk(KERN_INFO "Injecting memory failure at pfn %lx\n", pfn);
	return memory_failure(pfn, 18, MF_COUNT_INCREASED);
}
예제 #3
0
파일: swap.c 프로젝트: OliverGesch/linux
/*
 * This function is exported but must not be called by anything other
 * than get_page(). It implements the slow path of get_page().
 */
bool __get_page_tail(struct page *page)
{
	/*
	 * This takes care of get_page() if run on a tail page
	 * returned by one of the get_user_pages/follow_page variants.
	 * get_user_pages/follow_page itself doesn't need the compound
	 * lock because it runs __get_page_tail_foll() under the
	 * proper PT lock that already serializes against
	 * split_huge_page().
	 */
	bool got = false;
	struct page *page_head;

	/*
	 * If this is a hugetlbfs page it cannot be split under us.  Simply
	 * increment refcount for the head page.
	 */
	if (PageHuge(page)) {
		page_head = compound_head(page);
		atomic_inc(&page_head->_count);
		got = true;
	} else {
		unsigned long flags;

		page_head = compound_trans_head(page);
		if (likely(page != page_head &&
					get_page_unless_zero(page_head))) {

			/* Ref to put_compound_page() comment. */
			if (PageSlab(page_head)) {
				if (likely(PageTail(page))) {
					__get_page_tail_foll(page, false);
					return true;
				} else {
					put_page(page_head);
					return false;
				}
			}

			/*
			 * page_head wasn't a dangling pointer but it
			 * may not be a head page anymore by the time
			 * we obtain the lock. That is ok as long as it
			 * can't be freed from under us.
			 */
			flags = compound_lock_irqsave(page_head);
			/* here __split_huge_page_refcount won't run anymore */
			if (likely(PageTail(page))) {
				__get_page_tail_foll(page, false);
				got = true;
			}
			compound_unlock_irqrestore(page_head, flags);
			if (unlikely(!got))
				put_page(page_head);
		}
	}
	return got;
}
예제 #4
0
static void __put_compound_page(struct page *page)
{
	compound_page_dtor *dtor;

	if (!PageHuge(page))
		__page_cache_release(page);
	dtor = get_compound_page_dtor(page);
	(*dtor)(page);
}
예제 #5
0
파일: swap.c 프로젝트: Lyude/linux
static void __put_compound_page(struct page *page)
{
	compound_page_dtor *dtor;

	/*
	 * __page_cache_release() is supposed to be called for thp, not for
	 * hugetlb. This is because hugetlb page does never have PageLRU set
	 * (it's never listed to any LRU lists) and no memcg routines should
	 * be called for hugetlb (it has a separate hugetlb_cgroup.)
	 */
	if (!PageHuge(page))
		__page_cache_release(page);
	dtor = get_compound_page_dtor(page);
	(*dtor)(page);
}
struct page *alloc_migrate_target(struct page *page, unsigned long nid,
				  int **resultp)
{
	/*
	 * hugeTLB: allocate a destination page from a nearest neighbor node,
	 * accordance with memory policy of the user process if possible. For
	 * now as a simple work-around, we use the next node for destination.
	 * Normal page: use prefer mempolicy for destination if called by
	 * hotplug, use default mempolicy for destination if called by cma.
	 */
	if (PageHuge(page))
		return alloc_huge_page_node(page_hstate(compound_head(page)),
					    next_node_in(page_to_nid(page),
							 node_online_map));
	else
		return alloc_pages_node(nid, GFP_HIGHUSER_MOVABLE, 0);
}
예제 #7
0
파일: migrate.c 프로젝트: alisheikh/ktsan
/*
 * Put previously isolated pages back onto the appropriate lists
 * from where they were once taken off for compaction/migration.
 *
 * This function shall be used whenever the isolated pageset has been
 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
 * and isolate_huge_page().
 */
void putback_movable_pages(struct list_head *l)
{
	struct page *page;
	struct page *page2;

	list_for_each_entry_safe(page, page2, l, lru) {
		if (unlikely(PageHuge(page))) {
			putback_active_hugepage(page);
			continue;
		}
		list_del(&page->lru);
		dec_zone_page_state(page, NR_ISOLATED_ANON +
				page_is_file_cache(page));
		if (unlikely(isolated_balloon_page(page)))
			balloon_page_putback(page);
		else
			putback_lru_page(page);
	}
}
예제 #8
0
파일: filemap.c 프로젝트: kello711/linux
/*
 * Delete a page from the page cache and free it. Caller has to make
 * sure the page is locked and that nobody else uses it - or that usage
 * is safe.  The caller must hold the mapping's tree_lock and
 * mem_cgroup_begin_page_stat().
 */
void __delete_from_page_cache(struct page *page, void *shadow,
			      struct mem_cgroup *memcg)
{
	struct address_space *mapping = page->mapping;

	trace_mm_filemap_delete_from_page_cache(page);
	/*
	 * if we're uptodate, flush out into the cleancache, otherwise
	 * invalidate any existing cleancache entries.  We can't leave
	 * stale data around in the cleancache once our page is gone
	 */
	if (PageUptodate(page) && PageMappedToDisk(page))
		cleancache_put_page(page);
	else
		cleancache_invalidate_page(mapping, page);

	page_cache_tree_delete(mapping, page, shadow);

	page->mapping = NULL;
	/* Leave page->index set: truncation lookup relies upon it */

	/* hugetlb pages do not participate in page cache accounting. */
	if (!PageHuge(page))
		__dec_zone_page_state(page, NR_FILE_PAGES);
	if (PageSwapBacked(page))
		__dec_zone_page_state(page, NR_SHMEM);
	BUG_ON(page_mapped(page));

	/*
	 * At this point page must be either written or cleaned by truncate.
	 * Dirty page here signals a bug and loss of unwritten data.
	 *
	 * This fixes dirty accounting after removing the page entirely but
	 * leaves PageDirty set: it has no effect for truncated page and
	 * anyway will be cleared before returning page into buddy allocator.
	 */
	if (WARN_ON_ONCE(PageDirty(page)))
		account_page_cleaned(page, mapping, memcg,
				     inode_to_wb(mapping->host));
}
예제 #9
0
파일: page.c 프로젝트: a2hojsjsjs/linux
u64 stable_page_flags(struct page *page)
{
	u64 k;
	u64 u;

	/*
	 * pseudo flag: KPF_NOPAGE
	 * it differentiates a memory hole from a page with no flags
	 */
	if (!page)
		return 1 << KPF_NOPAGE;

	k = page->flags;
	u = 0;

	/*
	 * pseudo flags for the well known (anonymous) memory mapped pages
	 *
	 * Note that page->_mapcount is overloaded in SLOB/SLUB/SLQB, so the
	 * simple test in page_mapcount() is not enough.
	 */
	if (!PageSlab(page) && page_mapcount(page))
		u |= 1 << KPF_MMAP;
	if (PageAnon(page))
		u |= 1 << KPF_ANON;
	if (PageKsm(page))
		u |= 1 << KPF_KSM;

	/*
	 * compound pages: export both head/tail info
	 * they together define a compound page's start/end pos and order
	 */
	if (PageHead(page))
		u |= 1 << KPF_COMPOUND_HEAD;
	if (PageTail(page))
		u |= 1 << KPF_COMPOUND_TAIL;
	if (PageHuge(page))
		u |= 1 << KPF_HUGE;
	/*
	 * PageTransCompound can be true for non-huge compound pages (slab
	 * pages or pages allocated by drivers with __GFP_COMP) because it
	 * just checks PG_head/PG_tail, so we need to check PageLRU/PageAnon
	 * to make sure a given page is a thp, not a non-huge compound page.
	 */
	else if (PageTransCompound(page)) {
		struct page *head = compound_head(page);

		if (PageLRU(head) || PageAnon(head))
			u |= 1 << KPF_THP;
		else if (is_huge_zero_page(head)) {
			u |= 1 << KPF_ZERO_PAGE;
			u |= 1 << KPF_THP;
		}
	} else if (is_zero_pfn(page_to_pfn(page)))
		u |= 1 << KPF_ZERO_PAGE;


	/*
	 * Caveats on high order pages: page->_count will only be set
	 * -1 on the head page; SLUB/SLQB do the same for PG_slab;
	 * SLOB won't set PG_slab at all on compound pages.
	 */
	if (PageBuddy(page))
		u |= 1 << KPF_BUDDY;

	if (PageBalloon(page))
		u |= 1 << KPF_BALLOON;

	if (page_is_idle(page))
		u |= 1 << KPF_IDLE;

	u |= kpf_copy_bit(k, KPF_LOCKED,	PG_locked);

	u |= kpf_copy_bit(k, KPF_SLAB,		PG_slab);

	u |= kpf_copy_bit(k, KPF_ERROR,		PG_error);
	u |= kpf_copy_bit(k, KPF_DIRTY,		PG_dirty);
	u |= kpf_copy_bit(k, KPF_UPTODATE,	PG_uptodate);
	u |= kpf_copy_bit(k, KPF_WRITEBACK,	PG_writeback);

	u |= kpf_copy_bit(k, KPF_LRU,		PG_lru);
	u |= kpf_copy_bit(k, KPF_REFERENCED,	PG_referenced);
	u |= kpf_copy_bit(k, KPF_ACTIVE,	PG_active);
	u |= kpf_copy_bit(k, KPF_RECLAIM,	PG_reclaim);

	u |= kpf_copy_bit(k, KPF_SWAPCACHE,	PG_swapcache);
	u |= kpf_copy_bit(k, KPF_SWAPBACKED,	PG_swapbacked);

	u |= kpf_copy_bit(k, KPF_UNEVICTABLE,	PG_unevictable);
	u |= kpf_copy_bit(k, KPF_MLOCKED,	PG_mlocked);

#ifdef CONFIG_MEMORY_FAILURE
	u |= kpf_copy_bit(k, KPF_HWPOISON,	PG_hwpoison);
#endif

#ifdef CONFIG_ARCH_USES_PG_UNCACHED
	u |= kpf_copy_bit(k, KPF_UNCACHED,	PG_uncached);
#endif

	u |= kpf_copy_bit(k, KPF_RESERVED,	PG_reserved);
	u |= kpf_copy_bit(k, KPF_MAPPEDTODISK,	PG_mappedtodisk);
	u |= kpf_copy_bit(k, KPF_PRIVATE,	PG_private);
	u |= kpf_copy_bit(k, KPF_PRIVATE_2,	PG_private_2);
	u |= kpf_copy_bit(k, KPF_OWNER_PRIVATE,	PG_owner_priv_1);
	u |= kpf_copy_bit(k, KPF_ARCH,		PG_arch_1);

	return u;
};
예제 #10
0
u64 stable_page_flags(struct page *page)
{
	u64 k;
	u64 u;

	/*
	 * pseudo flag: KPF_NOPAGE
	 * it differentiates a memory hole from a page with no flags
	 */
	if (!page)
		return 1 << KPF_NOPAGE;

	k = page->flags;
	u = 0;

	/*
	 * pseudo flags for the well known (anonymous) memory mapped pages
	 *
	 * Note that page->_mapcount is overloaded in SLOB/SLUB/SLQB, so the
	 * simple test in page_mapped() is not enough.
	 */
	if (!PageSlab(page) && page_mapped(page))
		u |= 1 << KPF_MMAP;
	if (PageAnon(page))
		u |= 1 << KPF_ANON;
	if (PageKsm(page))
		u |= 1 << KPF_KSM;

	/*
	 * compound pages: export both head/tail info
	 * they together define a compound page's start/end pos and order
	 */
	if (PageHead(page))
		u |= 1 << KPF_COMPOUND_HEAD;
	if (PageTail(page))
		u |= 1 << KPF_COMPOUND_TAIL;
	if (PageHuge(page))
		u |= 1 << KPF_HUGE;

	u |= kpf_copy_bit(k, KPF_LOCKED,	PG_locked);

	/*
	 * Caveats on high order pages:
	 * PG_buddy will only be set on the head page; SLUB/SLQB do the same
	 * for PG_slab; SLOB won't set PG_slab at all on compound pages.
	 */
	u |= kpf_copy_bit(k, KPF_SLAB,		PG_slab);
	u |= kpf_copy_bit(k, KPF_BUDDY,		PG_buddy);

	u |= kpf_copy_bit(k, KPF_ERROR,		PG_error);
	u |= kpf_copy_bit(k, KPF_DIRTY,		PG_dirty);
	u |= kpf_copy_bit(k, KPF_UPTODATE,	PG_uptodate);
	u |= kpf_copy_bit(k, KPF_WRITEBACK,	PG_writeback);

	u |= kpf_copy_bit(k, KPF_LRU,		PG_lru);
	u |= kpf_copy_bit(k, KPF_REFERENCED,	PG_referenced);
	u |= kpf_copy_bit(k, KPF_ACTIVE,	PG_active);
	u |= kpf_copy_bit(k, KPF_RECLAIM,	PG_reclaim);

	u |= kpf_copy_bit(k, KPF_SWAPCACHE,	PG_swapcache);
	u |= kpf_copy_bit(k, KPF_SWAPBACKED,	PG_swapbacked);

	u |= kpf_copy_bit(k, KPF_UNEVICTABLE,	PG_unevictable);
	u |= kpf_copy_bit(k, KPF_MLOCKED,	PG_mlocked);

#ifdef CONFIG_MEMORY_FAILURE
	u |= kpf_copy_bit(k, KPF_HWPOISON,	PG_hwpoison);
#endif

#ifdef CONFIG_IA64_UNCACHED_ALLOCATOR
	u |= kpf_copy_bit(k, KPF_UNCACHED,	PG_uncached);
#endif

	u |= kpf_copy_bit(k, KPF_RESERVED,	PG_reserved);
	u |= kpf_copy_bit(k, KPF_MAPPEDTODISK,	PG_mappedtodisk);
	u |= kpf_copy_bit(k, KPF_PRIVATE,	PG_private);
	u |= kpf_copy_bit(k, KPF_PRIVATE_2,	PG_private_2);
	u |= kpf_copy_bit(k, KPF_OWNER_PRIVATE,	PG_owner_priv_1);
	u |= kpf_copy_bit(k, KPF_ARCH,		PG_arch_1);

	return u;
};
예제 #11
0
파일: swap.c 프로젝트: OliverGesch/linux
static void put_compound_page(struct page *page)
{
	/*
	 * hugetlbfs pages cannot be split from under us.  If this is a
	 * hugetlbfs page, check refcount on head page and release the page if
	 * the refcount becomes zero.
	 */
	if (PageHuge(page)) {
		page = compound_head(page);
		if (put_page_testzero(page))
			__put_compound_page(page);

		return;
	}

	if (unlikely(PageTail(page))) {
		/* __split_huge_page_refcount can run under us */
		struct page *page_head = compound_trans_head(page);

		if (likely(page != page_head &&
			   get_page_unless_zero(page_head))) {
			unsigned long flags;

			/*
			 * THP can not break up slab pages so avoid taking
			 * compound_lock().  Slab performs non-atomic bit ops
			 * on page->flags for better performance.  In particular
			 * slab_unlock() in slub used to be a hot path.  It is
			 * still hot on arches that do not support
			 * this_cpu_cmpxchg_double().
			 */
			if (PageSlab(page_head)) {
				if (PageTail(page)) {
					if (put_page_testzero(page_head))
						VM_BUG_ON(1);

					atomic_dec(&page->_mapcount);
					goto skip_lock_tail;
				} else
					goto skip_lock;
			}
			/*
			 * page_head wasn't a dangling pointer but it
			 * may not be a head page anymore by the time
			 * we obtain the lock. That is ok as long as it
			 * can't be freed from under us.
			 */
			flags = compound_lock_irqsave(page_head);
			if (unlikely(!PageTail(page))) {
				/* __split_huge_page_refcount run before us */
				compound_unlock_irqrestore(page_head, flags);
skip_lock:
				if (put_page_testzero(page_head))
					__put_single_page(page_head);
out_put_single:
				if (put_page_testzero(page))
					__put_single_page(page);
				return;
			}
			VM_BUG_ON(page_head != page->first_page);
			/*
			 * We can release the refcount taken by
			 * get_page_unless_zero() now that
			 * __split_huge_page_refcount() is blocked on
			 * the compound_lock.
			 */
			if (put_page_testzero(page_head))
				VM_BUG_ON(1);
			/* __split_huge_page_refcount will wait now */
			VM_BUG_ON(page_mapcount(page) <= 0);
			atomic_dec(&page->_mapcount);
			VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
			VM_BUG_ON(atomic_read(&page->_count) != 0);
			compound_unlock_irqrestore(page_head, flags);

skip_lock_tail:
			if (put_page_testzero(page_head)) {
				if (PageHead(page_head))
					__put_compound_page(page_head);
				else
					__put_single_page(page_head);
			}
		} else {
			/* page_head is a dangling pointer */
			VM_BUG_ON(PageTail(page));
			goto out_put_single;
		}
	} else if (put_page_testzero(page)) {
		if (PageHead(page))
			__put_compound_page(page);
		else
			__put_single_page(page);
	}
}
예제 #12
0
/*
 * This function is exported but must not be called by anything other
 * than get_page(). It implements the slow path of get_page().
 */
bool __get_page_tail(struct page *page)
{
	/*
	 * This takes care of get_page() if run on a tail page
	 * returned by one of the get_user_pages/follow_page variants.
	 * get_user_pages/follow_page itself doesn't need the compound
	 * lock because it runs __get_page_tail_foll() under the
	 * proper PT lock that already serializes against
	 * split_huge_page().
	 */
	unsigned long flags;
	bool got = false;
	struct page *page_head;

	/*
	 * If this is a hugetlbfs page it cannot be split under us.  Simply
	 * increment refcount for the head page.
	 */
	if (PageHuge(page)) {
		page_head = compound_head(page);
		atomic_inc(&page_head->_count);
		got = true;
		goto out;
	}

	page_head = compound_head(page);
	if (likely(page != page_head && get_page_unless_zero(page_head))) {

		/* Ref to put_compound_page() comment. */
		if (PageSlab(page_head)) {
			if (likely(PageTail(page))) {
				/*
				 * This is a hugetlbfs page or a slab
				 * page. __split_huge_page_refcount
				 * cannot race here.
				 */
				VM_BUG_ON(!PageHead(page_head));
				__get_page_tail_foll(page, false);
				return true;
			} else {
				/*
				 * __split_huge_page_refcount run
				 * before us, "page" was a THP
				 * tail. The split page_head has been
				 * freed and reallocated as slab or
				 * hugetlbfs page of smaller order
				 * (only possible if reallocated as
				 * slab on x86).
				 */
				put_page(page_head);
				return false;
			}
		}

		/*
		 * page_head wasn't a dangling pointer but it
		 * may not be a head page anymore by the time
		 * we obtain the lock. That is ok as long as it
		 * can't be freed from under us.
		 */
		flags = compound_lock_irqsave(page_head);
		/* here __split_huge_page_refcount won't run anymore */
		if (likely(PageTail(page))) {
			__get_page_tail_foll(page, false);
			got = true;
		}
		compound_unlock_irqrestore(page_head, flags);
		if (unlikely(!got))
			put_page(page_head);
	}
out:
	return got;
}
예제 #13
0
/**
 * page_vma_mapped_walk - check if @pvmw->page is mapped in @pvmw->vma at
 * @pvmw->address
 * @pvmw: pointer to struct page_vma_mapped_walk. page, vma, address and flags
 * must be set. pmd, pte and ptl must be NULL.
 *
 * Returns true if the page is mapped in the vma. @pvmw->pmd and @pvmw->pte point
 * to relevant page table entries. @pvmw->ptl is locked. @pvmw->address is
 * adjusted if needed (for PTE-mapped THPs).
 *
 * If @pvmw->pmd is set but @pvmw->pte is not, you have found PMD-mapped page
 * (usually THP). For PTE-mapped THP, you should run page_vma_mapped_walk() in
 * a loop to find all PTEs that map the THP.
 *
 * For HugeTLB pages, @pvmw->pte is set to the relevant page table entry
 * regardless of which page table level the page is mapped at. @pvmw->pmd is
 * NULL.
 *
 * Retruns false if there are no more page table entries for the page in
 * the vma. @pvmw->ptl is unlocked and @pvmw->pte is unmapped.
 *
 * If you need to stop the walk before page_vma_mapped_walk() returned false,
 * use page_vma_mapped_walk_done(). It will do the housekeeping.
 */
bool page_vma_mapped_walk(struct page_vma_mapped_walk *pvmw)
{
	struct mm_struct *mm = pvmw->vma->vm_mm;
	struct page *page = pvmw->page;
	pgd_t *pgd;
	p4d_t *p4d;
	pud_t *pud;
	pmd_t pmde;

	/* The only possible pmd mapping has been handled on last iteration */
	if (pvmw->pmd && !pvmw->pte)
		return not_found(pvmw);

	if (pvmw->pte)
		goto next_pte;

	if (unlikely(PageHuge(pvmw->page))) {
		/* when pud is not present, pte will be NULL */
		pvmw->pte = huge_pte_offset(mm, pvmw->address,
					    PAGE_SIZE << compound_order(page));
		if (!pvmw->pte)
			return false;

		pvmw->ptl = huge_pte_lockptr(page_hstate(page), mm, pvmw->pte);
		spin_lock(pvmw->ptl);
		if (!check_pte(pvmw))
			return not_found(pvmw);
		return true;
	}
restart:
	pgd = pgd_offset(mm, pvmw->address);
	if (!pgd_present(*pgd))
		return false;
	p4d = p4d_offset(pgd, pvmw->address);
	if (!p4d_present(*p4d))
		return false;
	pud = pud_offset(p4d, pvmw->address);
	if (!pud_present(*pud))
		return false;
	pvmw->pmd = pmd_offset(pud, pvmw->address);
	/*
	 * Make sure the pmd value isn't cached in a register by the
	 * compiler and used as a stale value after we've observed a
	 * subsequent update.
	 */
	pmde = READ_ONCE(*pvmw->pmd);
	if (pmd_trans_huge(pmde) || is_pmd_migration_entry(pmde)) {
		pvmw->ptl = pmd_lock(mm, pvmw->pmd);
		if (likely(pmd_trans_huge(*pvmw->pmd))) {
			if (pvmw->flags & PVMW_MIGRATION)
				return not_found(pvmw);
			if (pmd_page(*pvmw->pmd) != page)
				return not_found(pvmw);
			return true;
		} else if (!pmd_present(*pvmw->pmd)) {
			if (thp_migration_supported()) {
				if (!(pvmw->flags & PVMW_MIGRATION))
					return not_found(pvmw);
				if (is_migration_entry(pmd_to_swp_entry(*pvmw->pmd))) {
					swp_entry_t entry = pmd_to_swp_entry(*pvmw->pmd);

					if (migration_entry_to_page(entry) != page)
						return not_found(pvmw);
					return true;
				}
			}
			return not_found(pvmw);
		} else {
			/* THP pmd was split under us: handle on pte level */
			spin_unlock(pvmw->ptl);
			pvmw->ptl = NULL;
		}
	} else if (!pmd_present(pmde)) {
		return false;
	}
	if (!map_pte(pvmw))
		goto next_pte;
	while (1) {
		if (check_pte(pvmw))
			return true;
next_pte:
		/* Seek to next pte only makes sense for THP */
		if (!PageTransHuge(pvmw->page) || PageHuge(pvmw->page))
			return not_found(pvmw);
		do {
			pvmw->address += PAGE_SIZE;
			if (pvmw->address >= pvmw->vma->vm_end ||
			    pvmw->address >=
					__vma_address(pvmw->page, pvmw->vma) +
					hpage_nr_pages(pvmw->page) * PAGE_SIZE)
				return not_found(pvmw);
			/* Did we cross page table boundary? */
			if (pvmw->address % PMD_SIZE == 0) {
				pte_unmap(pvmw->pte);
				if (pvmw->ptl) {
					spin_unlock(pvmw->ptl);
					pvmw->ptl = NULL;
				}
				goto restart;
			} else {
				pvmw->pte++;
			}
		} while (pte_none(*pvmw->pte));

		if (!pvmw->ptl) {
			pvmw->ptl = pte_lockptr(mm, pvmw->pmd);
			spin_lock(pvmw->ptl);
		}
	}
}