// [[register]] SEXP mcmcbas(SEXP Y, SEXP X, SEXP Rweights, SEXP Rprobinit, SEXP Rmodeldim, SEXP incint, SEXP Ralpha,SEXP method, SEXP modelprior, SEXP Rupdate, SEXP Rbestmodel, SEXP plocal, SEXP BURNIN_Iterations, SEXP MCMC_Iterations, SEXP LAMBDA, SEXP DELTA, SEXP Rparents) { SEXP RXwork = PROTECT(duplicate(X)), RYwork = PROTECT(duplicate(Y)); int nProtected = 2, nUnique=0, newmodel=0; int nModels=LENGTH(Rmodeldim); // Rprintf("Allocating Space for %d Models\n", nModels) ; SEXP ANS = PROTECT(allocVector(VECSXP, 15)); ++nProtected; SEXP ANS_names = PROTECT(allocVector(STRSXP, 15)); ++nProtected; SEXP Rprobs = PROTECT(duplicate(Rprobinit)); ++nProtected; SEXP MCMCprobs= PROTECT(duplicate(Rprobinit)); ++nProtected; SEXP R2 = PROTECT(allocVector(REALSXP, nModels)); ++nProtected; SEXP shrinkage = PROTECT(allocVector(REALSXP, nModels)); ++nProtected; SEXP modelspace = PROTECT(allocVector(VECSXP, nModels)); ++nProtected; SEXP modeldim = PROTECT(duplicate(Rmodeldim)); ++nProtected; SEXP counts = PROTECT(duplicate(Rmodeldim)); ++nProtected; SEXP beta = PROTECT(allocVector(VECSXP, nModels)); ++nProtected; SEXP se = PROTECT(allocVector(VECSXP, nModels)); ++nProtected; SEXP mse = PROTECT(allocVector(REALSXP, nModels)); ++nProtected; SEXP modelprobs = PROTECT(allocVector(REALSXP, nModels)); ++nProtected; SEXP priorprobs = PROTECT(allocVector(REALSXP, nModels)); ++nProtected; SEXP logmarg = PROTECT(allocVector(REALSXP, nModels)); ++nProtected; SEXP sampleprobs = PROTECT(allocVector(REALSXP, nModels)); ++nProtected; SEXP NumUnique = PROTECT(allocVector(INTSXP, 1)); ++nProtected; SEXP Rse_m = NULL, Rcoef_m = NULL, Rmodel_m; double *Xwork, *Ywork, *wts, *coefficients,*probs, shrinkage_m, *MCMC_probs, SSY, yty, mse_m, *se_m, MH=0.0, prior_m=1.0, *real_model, R2_m, RSquareFull, alpha, prone, denom, logmargy, postold, postnew; int nobs, p, k, i, j, m, n, l, pmodel, pmodel_old, *xdims, *model_m, *bestmodel, *varin, *varout; int mcurrent, update, n_sure; double mod, rem, problocal, *pigamma, eps, *hyper_parameters; double *XtX, *XtY, *XtXwork, *XtYwork, *SSgam, *Cov, *priorCov, *marg_probs; double lambda, delta, one=1.0; int inc=1; int *model, *modelold, bit, *modelwork, old_loc, new_loc; // char uplo[] = "U", trans[]="T"; struct Var *vars; /* Info about the model variables. */ NODEPTR tree, branch; /* get dimsensions of all variables */ nobs = LENGTH(Y); xdims = INTEGER(getAttrib(X,R_DimSymbol)); p = xdims[1]; k = LENGTH(modelprobs); update = INTEGER(Rupdate)[0]; lambda=REAL(LAMBDA)[0]; delta = REAL(DELTA)[0]; // Rprintf("delta %f lambda %f", delta, lambda); eps = DBL_EPSILON; problocal = REAL(plocal)[0]; // Rprintf("Update %i and prob.switch %f\n", update, problocal); /* Extract prior on models */ hyper_parameters = REAL(getListElement(modelprior,"hyper.parameters")); /* Rprintf("n %d p %d \n", nobs, p); */ Ywork = REAL(RYwork); Xwork = REAL(RXwork); wts = REAL(Rweights); /* Allocate other variables. */ PrecomputeData(Xwork, Ywork, wts, &XtXwork, &XtYwork, &XtX, &XtY, &yty, &SSY, p, nobs); alpha = REAL(Ralpha)[0]; vars = (struct Var *) R_alloc(p, sizeof(struct Var)); probs = REAL(Rprobs); n = sortvars(vars, probs, p); for (i =n; i <p; i++) REAL(MCMCprobs)[vars[i].index] = probs[vars[i].index]; for (i =0; i <n; i++) REAL(MCMCprobs)[vars[i].index] = 0.0; MCMC_probs = REAL(MCMCprobs); pigamma = vecalloc(p); real_model = vecalloc(n); marg_probs = vecalloc(n); modelold = ivecalloc(p); model = ivecalloc(p); modelwork= ivecalloc(p); varin= ivecalloc(p); varout= ivecalloc(p); /* create gamma gamma' matrix */ SSgam = (double *) R_alloc(n * n, sizeof(double)); Cov = (double *) R_alloc(n * n, sizeof(double)); priorCov = (double *) R_alloc(n * n, sizeof(double)); for (j=0; j < n; j++) { for (i = 0; i < n; i++) { SSgam[j*n + i] = 0.0; Cov[j*n + i] = 0.0; priorCov[j*n + i] = 0.0; if (j == i) priorCov[j*n + i] = lambda; } marg_probs[i] = 0.0; } RSquareFull = CalculateRSquareFull(XtY, XtX, XtXwork, XtYwork, Rcoef_m, Rse_m, p, nobs, yty, SSY); /* fill in the sure things */ for (i = n, n_sure = 0; i < p; i++) { model[vars[i].index] = (int) vars[i].prob; if (model[vars[i].index] == 1) ++n_sure; } GetRNGstate(); tree = make_node(-1.0); /* Rprintf("For m=0, Initialize Tree with initial Model\n"); */ m = 0; bestmodel = INTEGER(Rbestmodel); INTEGER(modeldim)[m] = n_sure; /* Rprintf("Create Tree\n"); */ branch = tree; for (i = 0; i< n; i++) { bit = bestmodel[vars[i].index]; if (bit == 1) { if (i < n-1 && branch->one == NULL) branch->one = make_node(-1.0); if (i == n-1 && branch->one == NULL) branch->one = make_node(0.0); branch = branch->one; } else { if (i < n-1 && branch->zero == NULL) branch->zero = make_node(-1.0); if (i == n-1 && branch->zero == NULL) branch->zero = make_node(0.0); branch = branch->zero; } model[vars[i].index] = bit; INTEGER(modeldim)[m] += bit; branch->where = 0; } /* Rprintf("Now get model specific calculations \n"); */ pmodel = INTEGER(modeldim)[m]; PROTECT(Rmodel_m = allocVector(INTSXP,pmodel)); model_m = INTEGER(Rmodel_m); for (j = 0, l=0; j < p; j++) { if (model[j] == 1) { model_m[l] = j; l +=1;} } SET_ELEMENT(modelspace, m, Rmodel_m); Rcoef_m = NEW_NUMERIC(pmodel); PROTECT(Rcoef_m); Rse_m = NEW_NUMERIC(pmodel); PROTECT(Rse_m); coefficients = REAL(Rcoef_m); se_m = REAL(Rse_m); for (j=0, l=0; j < pmodel; j++) { XtYwork[j] = XtY[model_m[j]]; for ( i = 0; i < pmodel; i++) { XtXwork[j*pmodel + i] = XtX[model_m[j]*p + model_m[i]]; } } R2_m = 0.0; mse_m = yty; memcpy(coefficients, XtYwork, sizeof(double)*pmodel); cholreg(XtYwork, XtXwork, coefficients, se_m, &mse_m, pmodel, nobs); if (pmodel > 1) R2_m = 1.0 - (mse_m * (double) ( nobs - pmodel))/SSY; SET_ELEMENT(beta, m, Rcoef_m); SET_ELEMENT(se, m, Rse_m); REAL(R2)[m] = R2_m; REAL(mse)[m] = mse_m; gexpectations(p, pmodel, nobs, R2_m, alpha, INTEGER(method)[0], RSquareFull, SSY, &logmargy, &shrinkage_m); REAL(sampleprobs)[m] = 1.0; REAL(logmarg)[m] = logmargy; REAL(shrinkage)[m] = shrinkage_m; prior_m = compute_prior_probs(model,pmodel,p, modelprior); REAL(priorprobs)[m] = prior_m; UNPROTECT(3); old_loc = 0; pmodel_old = pmodel; nUnique=1; INTEGER(counts)[0] = 0; postold = REAL(logmarg)[m] + log(REAL(priorprobs)[m]); memcpy(modelold, model, sizeof(int)*p); /* Rprintf("model %d max logmarg %lf\n", m, REAL(logmarg)[m]); */ /* Rprintf("Now Sample the Rest of the Models \n"); */ m = 0; while (nUnique < k && m < INTEGER(BURNIN_Iterations)[0]) { memcpy(model, modelold, sizeof(int)*p); pmodel = n_sure; MH = 1.0; if (pmodel_old == n_sure || pmodel_old == n_sure + n){ MH = random_walk(model, vars, n); MH = 1.0 - problocal; } else { if (unif_rand() < problocal) { // random MH = random_switch(model, vars, n, pmodel_old, varin, varout ); } else { // Randomw walk proposal flip bit// MH = random_walk(model, vars, n); } } branch = tree; newmodel= 0; for (i = 0; i< n; i++) { bit = model[vars[i].index]; if (bit == 1) { if (branch->one != NULL) branch = branch->one; else newmodel = 1; } else { if (branch->zero != NULL) branch = branch->zero; else newmodel = 1.0; } pmodel += bit; } if (pmodel == n_sure || pmodel == n + n_sure) MH = 1.0/(1.0 - problocal); if (newmodel == 1) { new_loc = nUnique; PROTECT(Rmodel_m = allocVector(INTSXP,pmodel)); model_m = INTEGER(Rmodel_m); for (j = 0, l=0; j < p; j++) { if (model[j] == 1) { model_m[l] = j; l +=1;} } Rcoef_m = NEW_NUMERIC(pmodel); PROTECT(Rcoef_m); Rse_m = NEW_NUMERIC(pmodel); PROTECT(Rse_m); coefficients = REAL(Rcoef_m); se_m = REAL(Rse_m); for (j=0, l=0; j < pmodel; j++) { XtYwork[j] = XtY[model_m[j]]; for ( i = 0; i < pmodel; i++) { XtXwork[j*pmodel + i] = XtX[model_m[j]*p + model_m[i]]; } } R2_m = 0.0; mse_m = yty; memcpy(coefficients, XtYwork, sizeof(double)*pmodel); cholreg(XtYwork, XtXwork, coefficients, se_m, &mse_m, pmodel, nobs); if (pmodel > 1) R2_m = 1.0 - (mse_m * (double) ( nobs - pmodel))/SSY; prior_m = compute_prior_probs(model,pmodel,p, modelprior); gexpectations(p, pmodel, nobs, R2_m, alpha, INTEGER(method)[0], RSquareFull, SSY, &logmargy, &shrinkage_m); postnew = logmargy + log(prior_m); } else { new_loc = branch->where; postnew = REAL(logmarg)[new_loc] + log(REAL(priorprobs)[new_loc]); } MH *= exp(postnew - postold); // Rprintf("MH new %lf old %lf\n", postnew, postold); if (unif_rand() < MH) { if (newmodel == 1) { new_loc = nUnique; insert_model_tree(tree, vars, n, model, nUnique); INTEGER(modeldim)[nUnique] = pmodel; SET_ELEMENT(modelspace, nUnique, Rmodel_m); SET_ELEMENT(beta, nUnique, Rcoef_m); SET_ELEMENT(se, nUnique, Rse_m); REAL(R2)[nUnique] = R2_m; REAL(mse)[nUnique] = mse_m; REAL(sampleprobs)[nUnique] = 1.0; REAL(logmarg)[nUnique] = logmargy; REAL(shrinkage)[nUnique] = shrinkage_m; REAL(priorprobs)[nUnique] = prior_m; UNPROTECT(3); ++nUnique; } old_loc = new_loc; postold = postnew; pmodel_old = pmodel; memcpy(modelold, model, sizeof(int)*p); } else { if (newmodel == 1) UNPROTECT(3); } INTEGER(counts)[old_loc] += 1; for (i = 0; i < n; i++) { /* store in opposite order so nth variable is first */ real_model[n-1-i] = (double) modelold[vars[i].index]; REAL(MCMCprobs)[vars[i].index] += (double) modelold[vars[i].index]; } // Update SSgam = gamma gamma^T + SSgam F77_NAME(dsyr)("U", &n, &one, &real_model[0], &inc, &SSgam[0], &n); m++; } for (i = 0; i < n; i++) { REAL(MCMCprobs)[vars[i].index] /= (double) m; } // Rprintf("\n%d \n", nUnique); // Compute marginal probabilities mcurrent = nUnique; compute_modelprobs(modelprobs, logmarg, priorprobs,mcurrent); compute_margprobs(modelspace, modeldim, modelprobs, probs, mcurrent, p); // Now sample W/O Replacement // Rprintf("NumUnique Models Accepted %d \n", nUnique); INTEGER(NumUnique)[0] = nUnique; if (nUnique < k) { update_probs(probs, vars, mcurrent, k, p); update_tree(modelspace, tree, modeldim, vars, k,p,n,mcurrent, modelwork); for (m = nUnique; m < k; m++) { for (i = n; i < p; i++) { INTEGER(modeldim)[m] += model[vars[i].index]; } branch = tree; for (i = 0; i< n; i++) { pigamma[i] = 1.0; bit = withprob(branch->prob); /* branch->done += 1; */ if (bit == 1) { for (j=0; j<=i; j++) pigamma[j] *= branch->prob; if (i < n-1 && branch->one == NULL) branch->one = make_node(vars[i+1].prob); if (i == n-1 && branch->one == NULL) branch->one = make_node(0.0); branch = branch->one; } else { for (j=0; j<=i; j++) pigamma[j] *= (1.0 - branch->prob); if (i < n-1 && branch->zero == NULL) branch->zero = make_node(vars[i+1].prob); if (i == n-1 && branch->zero == NULL) branch->zero = make_node(0.0); branch = branch->zero; } model[vars[i].index] = bit; INTEGER(modeldim)[m] += bit; } REAL(sampleprobs)[m] = pigamma[0]; pmodel = INTEGER(modeldim)[m]; /* Now subtract off the visited probability mass. */ branch=tree; for (i = 0; i < n; i++) { bit = model[vars[i].index]; prone = branch->prob; if (bit == 1) prone -= pigamma[i]; denom = 1.0 - pigamma[i]; if (denom <= 0.0) { if (denom < 0.0) { warning("neg denominator %le %le %le !!!\n", pigamma, denom, prone); if (branch->prob < 0.0 && branch->prob < 1.0) warning("non extreme %le\n", branch->prob);} denom = 0.0;} else { if (prone <= 0) prone = 0.0; if (prone > denom) { if (prone <= eps) prone = 0.0; else prone = 1.0; /* Rprintf("prone > 1 %le %le %le %le !!!\n", pigamma, denom, prone, eps);*/ } else prone = prone/denom; } if (prone > 1.0 || prone < 0.0) Rprintf("%d %d Probability > 1!!! %le %le %le %le \n", m, i, prone, branch->prob, denom, pigamma); /* if (bit == 1) pigamma /= (branch->prob); else pigamma /= (1.0 - branch->prob); if (pigamma > 1.0) pigamma = 1.0; */ branch->prob = prone; if (bit == 1) branch = branch->one; else branch = branch->zero; /* Rprintf("%d %d \n", branch->done, n - i); */ /* if (log((double) branch->done) < (n - i)*log(2.0)) { if (bit == 1) branch = branch->one; else branch = branch->zero; } else { branch->one = NULL; branch->zero = NULL; break; } */ } /* Now get model specific calculations */ PROTECT(Rmodel_m = allocVector(INTSXP, pmodel)); model_m = INTEGER(Rmodel_m); for (j = 0, l=0; j < p; j++) { if (model[j] == 1) { model_m[l] = j; l +=1;} } SET_ELEMENT(modelspace, m, Rmodel_m); for (j=0, l=0; j < pmodel; j++) { XtYwork[j] = XtY[model_m[j]]; for ( i = 0; i < pmodel; i++) { XtXwork[j*pmodel + i] = XtX[model_m[j]*p + model_m[i]]; } } PROTECT(Rcoef_m = allocVector(REALSXP,pmodel)); PROTECT(Rse_m = allocVector(REALSXP,pmodel)); coefficients = REAL(Rcoef_m); se_m = REAL(Rse_m); mse_m = yty; memcpy(coefficients, XtYwork, sizeof(double)*pmodel); cholreg(XtYwork, XtXwork, coefficients, se_m, &mse_m, pmodel, nobs); /* olsreg(Ywork, Xwork, coefficients, se_m, &mse_m, &pmodel, &nobs, pivot,qraux,work,residuals,effects,v,betaols); */ if (pmodel > 1) R2_m = 1.0 - (mse_m * (double) ( nobs - pmodel))/SSY; SET_ELEMENT(beta, m, Rcoef_m); SET_ELEMENT(se, m, Rse_m); REAL(R2)[m] = R2_m; REAL(mse)[m] = mse_m; gexpectations(p, pmodel, nobs, R2_m, alpha, INTEGER(method)[0], RSquareFull, SSY, &logmargy, &shrinkage_m); REAL(logmarg)[m] = logmargy; REAL(shrinkage)[m] = shrinkage_m; REAL(priorprobs)[m] = compute_prior_probs(model,pmodel,p, modelprior); if (m > 1) { rem = modf((double) m/(double) update, &mod); if (rem == 0.0) { mcurrent = m; compute_modelprobs(modelprobs, logmarg, priorprobs,mcurrent); compute_margprobs(modelspace, modeldim, modelprobs, probs, mcurrent, p); if (update_probs(probs, vars, mcurrent, k, p) == 1) { // Rprintf("Updating Model Tree %d \n", m); update_tree(modelspace, tree, modeldim, vars, k,p,n,mcurrent, modelwork); } }} UNPROTECT(3); } } compute_modelprobs(modelprobs, logmarg, priorprobs,k); compute_margprobs(modelspace, modeldim, modelprobs, probs, k, p); SET_VECTOR_ELT(ANS, 0, Rprobs); SET_STRING_ELT(ANS_names, 0, mkChar("probne0")); SET_VECTOR_ELT(ANS, 1, modelspace); SET_STRING_ELT(ANS_names, 1, mkChar("which")); SET_VECTOR_ELT(ANS, 2, logmarg); SET_STRING_ELT(ANS_names, 2, mkChar("logmarg")); SET_VECTOR_ELT(ANS, 3, modelprobs); SET_STRING_ELT(ANS_names, 3, mkChar("postprobs")); SET_VECTOR_ELT(ANS, 4, priorprobs); SET_STRING_ELT(ANS_names, 4, mkChar("priorprobs")); SET_VECTOR_ELT(ANS, 5,sampleprobs); SET_STRING_ELT(ANS_names, 5, mkChar("sampleprobs")); SET_VECTOR_ELT(ANS, 6, mse); SET_STRING_ELT(ANS_names, 6, mkChar("mse")); SET_VECTOR_ELT(ANS, 7, beta); SET_STRING_ELT(ANS_names, 7, mkChar("mle")); SET_VECTOR_ELT(ANS, 8, se); SET_STRING_ELT(ANS_names, 8, mkChar("mle.se")); SET_VECTOR_ELT(ANS, 9, shrinkage); SET_STRING_ELT(ANS_names, 9, mkChar("shrinkage")); SET_VECTOR_ELT(ANS, 10, modeldim); SET_STRING_ELT(ANS_names, 10, mkChar("size")); SET_VECTOR_ELT(ANS, 11, R2); SET_STRING_ELT(ANS_names, 11, mkChar("R2")); SET_VECTOR_ELT(ANS, 12, counts); SET_STRING_ELT(ANS_names, 12, mkChar("freq")); SET_VECTOR_ELT(ANS, 13, MCMCprobs); SET_STRING_ELT(ANS_names, 13, mkChar("probs.MCMC")); SET_VECTOR_ELT(ANS, 14, NumUnique); SET_STRING_ELT(ANS_names, 14, mkChar("n.Unique")); setAttrib(ANS, R_NamesSymbol, ANS_names); UNPROTECT(nProtected); // Rprintf("Return\n"); PutRNGstate(); return(ANS); }
SEXP sampleworep_new(SEXP Y, SEXP X, SEXP Rweights, SEXP Rprobinit, SEXP Rmodeldim, SEXP incint, SEXP Ralpha,SEXP method, SEXP modelprior, SEXP Rupdate, SEXP Rbestmodel, SEXP Rbestmarg, SEXP plocal) { int nProtected = 0; SEXP RXwork = PROTECT(duplicate(X)); nProtected++; SEXP RYwork = PROTECT(duplicate(Y)); nProtected++; int nModels=LENGTH(Rmodeldim); // Rprintf("Allocating Space for %d Models\n", nModels) ; SEXP ANS = PROTECT(allocVector(VECSXP, 12)); ++nProtected; SEXP ANS_names = PROTECT(allocVector(STRSXP, 12)); ++nProtected; SEXP Rprobs = PROTECT(duplicate(Rprobinit)); ++nProtected; SEXP R2 = PROTECT(allocVector(REALSXP, nModels)); ++nProtected; SEXP shrinkage = PROTECT(allocVector(REALSXP, nModels)); ++nProtected; SEXP modelspace = PROTECT(allocVector(VECSXP, nModels)); ++nProtected; SEXP modeldim = PROTECT(duplicate(Rmodeldim)); ++nProtected; SEXP beta = PROTECT(allocVector(VECSXP, nModels)); ++nProtected; SEXP se = PROTECT(allocVector(VECSXP, nModels)); ++nProtected; SEXP mse = PROTECT(allocVector(REALSXP, nModels)); ++nProtected; SEXP modelprobs = PROTECT(allocVector(REALSXP, nModels)); ++nProtected; SEXP priorprobs = PROTECT(allocVector(REALSXP, nModels)); ++nProtected; SEXP logmarg = PROTECT(allocVector(REALSXP, nModels)); ++nProtected; SEXP sampleprobs = PROTECT(allocVector(REALSXP, nModels)); ++nProtected; double *Xwork, *Ywork, *wts, *probs, shrinkage_m, mse_m, R2_m, RSquareFull, logmargy; int i; //get dimsensions of all variables int nobs = LENGTH(Y); int p = INTEGER(getAttrib(X,R_DimSymbol))[1]; int k = LENGTH(modelprobs); double alpha = REAL(Ralpha)[0]; int update = INTEGER(Rupdate)[0]; double eps = DBL_EPSILON; double problocal = REAL(plocal)[0]; Ywork = REAL(RYwork); Xwork = REAL(RXwork); wts = REAL(Rweights); double *XtXwork, *XtYwork,*XtX, *XtY, yty,SSY; PrecomputeData(Xwork, Ywork, wts, &XtXwork, &XtYwork, &XtX, &XtY, &yty, &SSY, p, nobs); struct Var *vars = (struct Var *) R_alloc(p, sizeof(struct Var)); // Info about the model variables. probs = REAL(Rprobs); int n = sortvars(vars, probs, p); SEXP Rse_m = NULL, Rcoef_m = NULL; RSquareFull = CalculateRSquareFull(XtY, XtX, XtXwork, XtYwork, Rcoef_m, Rse_m, p, nobs, yty, SSY); int *model = ivecalloc(p); /* fill in the sure things */ for (i = n; i < p; i++) { model[vars[i].index] = (int) vars[i].prob; } GetRNGstate(); NODEPTR tree, branch; tree = make_node(vars[0].prob); // Rprintf("For m=0, Initialize Tree with initial Model\n"); int m = 0; int *bestmodel = INTEGER(Rbestmodel); for (i = n; i < p; i++) { model[vars[i].index] = bestmodel[vars[i].index]; INTEGER(modeldim)[m] += bestmodel[vars[i].index]; } double *pigamma = vecalloc(p); branch = tree; CreateTree_with_pigamma(branch, vars, bestmodel, model, n, m, modeldim,pigamma); branch=tree; Substract_visited_probability_mass(branch, vars, model, n, m, pigamma,eps); int pmodel = INTEGER(modeldim)[m]; SEXP Rmodel_m; PROTECT(Rmodel_m = allocVector(INTSXP,pmodel)); PROTECT(Rcoef_m = NEW_NUMERIC(pmodel)); PROTECT(Rse_m = NEW_NUMERIC(pmodel)); int *model_m = GetModel_m(Rmodel_m, model, p); R2_m = FitModel(Rcoef_m, Rse_m, XtY, XtX, model_m, XtYwork, XtXwork, yty, SSY, pmodel, p, nobs, m, &mse_m); gexpectations(p, pmodel, nobs, R2_m, alpha, INTEGER(method)[0], RSquareFull, SSY, &logmargy, &shrinkage_m); double prior_m = compute_prior_probs(model,pmodel,p, modelprior); REAL(Rbestmarg)[0] = REAL(logmarg)[m]; SetModel2(logmargy, shrinkage_m, prior_m, sampleprobs, logmarg, shrinkage, priorprobs, m); SetModel(Rcoef_m, Rse_m, Rmodel_m, mse_m, R2_m, beta, se, modelspace, mse, R2, m); //Rprintf("model %d max logmarg %lf\n", m, REAL(logmarg)[m]); int *modelwork= ivecalloc(p); for (m = 1; m < k; m++) { for (i = n; i < p; i++) { INTEGER(modeldim)[m] += model[vars[i].index]; } branch = tree; GetNextModel_swop(branch, vars, model, n, m, pigamma, problocal, modeldim, bestmodel); /* Now subtract off the visited probability mass. */ branch=tree; Substract_visited_probability_mass(branch, vars, model, n, m, pigamma,eps); /* Now get model specific calculations */ pmodel = INTEGER(modeldim)[m]; PROTECT(Rmodel_m = allocVector(INTSXP,pmodel)); PROTECT(Rcoef_m = NEW_NUMERIC(pmodel)); PROTECT(Rse_m = NEW_NUMERIC(pmodel)); model_m = GetModel_m(Rmodel_m, model, p); R2_m = FitModel(Rcoef_m, Rse_m, XtY, XtX, model_m, XtYwork, XtXwork, yty, SSY, pmodel, p, nobs, m, &mse_m); gexpectations(p, pmodel, nobs, R2_m, alpha, INTEGER(method)[0], RSquareFull, SSY, &logmargy, &shrinkage_m); prior_m = compute_prior_probs(model,pmodel,p, modelprior); SetModel2(logmargy, shrinkage_m, prior_m, sampleprobs, logmarg, shrinkage, priorprobs, m); SetModel(Rcoef_m, Rse_m, Rmodel_m, mse_m, R2_m, beta, se, modelspace, mse, R2,m); REAL(sampleprobs)[m] = pigamma[0]; //update best model if (REAL(logmarg)[m] > REAL(Rbestmarg)[0]) { for (i=0; i < p; i++) { bestmodel[i] = model[i]; } REAL(Rbestmarg)[0] = REAL(logmarg)[m]; } //update marginal inclusion probs if (m > 1) { double mod; double rem = modf((double) m/(double) update, &mod); if (rem == 0.0) { int mcurrent = m; compute_modelprobs(modelprobs, logmarg, priorprobs,mcurrent); compute_margprobs(modelspace, modeldim, modelprobs, probs, mcurrent, p); if (update_probs(probs, vars, mcurrent, k, p) == 1) { // Rprintf("Updating Model Tree %d \n", m); update_tree(modelspace, tree, modeldim, vars, k,p,n,mcurrent, modelwork); } } } } compute_modelprobs(modelprobs, logmarg, priorprobs,k); compute_margprobs(modelspace, modeldim, modelprobs, probs, k, p); SET_VECTOR_ELT(ANS, 0, Rprobs); SET_STRING_ELT(ANS_names, 0, mkChar("probne0")); SET_VECTOR_ELT(ANS, 1, modelspace); SET_STRING_ELT(ANS_names, 1, mkChar("which")); SET_VECTOR_ELT(ANS, 2, logmarg); SET_STRING_ELT(ANS_names, 2, mkChar("logmarg")); SET_VECTOR_ELT(ANS, 3, modelprobs); SET_STRING_ELT(ANS_names, 3, mkChar("postprobs")); SET_VECTOR_ELT(ANS, 4, priorprobs); SET_STRING_ELT(ANS_names, 4, mkChar("priorprobs")); SET_VECTOR_ELT(ANS, 5,sampleprobs); SET_STRING_ELT(ANS_names, 5, mkChar("sampleprobs")); SET_VECTOR_ELT(ANS, 6, mse); SET_STRING_ELT(ANS_names, 6, mkChar("mse")); SET_VECTOR_ELT(ANS, 7, beta); SET_STRING_ELT(ANS_names, 7, mkChar("mle")); SET_VECTOR_ELT(ANS, 8, se); SET_STRING_ELT(ANS_names, 8, mkChar("mle.se")); SET_VECTOR_ELT(ANS, 9, shrinkage); SET_STRING_ELT(ANS_names, 9, mkChar("shrinkage")); SET_VECTOR_ELT(ANS, 10, modeldim); SET_STRING_ELT(ANS_names, 10, mkChar("size")); SET_VECTOR_ELT(ANS, 11, R2); SET_STRING_ELT(ANS_names, 11, mkChar("R2")); setAttrib(ANS, R_NamesSymbol, ANS_names); UNPROTECT(nProtected); PutRNGstate(); return(ANS); }