예제 #1
0
PsychError SCREENglPoint(void)  
{
	
	PsychColorType			color;
	double					*xPosition, *yPosition, dotSize;
	PsychWindowRecordType	*windowRecord;
	int						whiteValue;
	psych_bool					isArgThere;
    
	//all sub functions should have these two lines
	PsychPushHelp(useString, synopsisString,seeAlsoString);
	if(PsychIsGiveHelp()){PsychGiveHelp();return(PsychError_none);};
	
	//check for superfluous arguments
	PsychErrorExit(PsychCapNumInputArgs(5));   //The maximum number of inputs
	PsychErrorExit(PsychCapNumOutputArgs(0));  //The maximum number of outputs

	//get the window record from the window record argument and get info from the window record
	PsychAllocInWindowRecordArg(kPsychUseDefaultArgPosition, TRUE, &windowRecord);
        
	//Get the color argument or use the default, then coerce to the form determened by the window depth.  
	isArgThere=PsychCopyInColorArg(kPsychUseDefaultArgPosition, FALSE, &color);
		if(!isArgThere){
			whiteValue=PsychGetWhiteValueFromWindow(windowRecord);
			PsychLoadColorStruct(&color, kPsychIndexColor, whiteValue ); //index mode will coerce to any other.
		}

 	PsychCoerceColorMode( &color);
        
	//get the x and y position values. 
	PsychAllocInDoubleArg(3, TRUE,  &xPosition);
	PsychAllocInDoubleArg(4, TRUE,  &yPosition);
	dotSize=1;	//set the default
	PsychCopyInDoubleArg(5, FALSE, &dotSize);

	// Enable this windowRecords framebuffer as current drawingtarget:
	PsychSetDrawingTarget(windowRecord);

	// Set default draw shader:
	PsychSetShader(windowRecord, -1);

	PsychUpdateAlphaBlendingFactorLazily(windowRecord);
	PsychSetGLColor(&color, windowRecord);
	glEnable(GL_POINT_SMOOTH);
	glPointSize((float)dotSize);
	glBegin(GL_POINTS);
		glVertex2d( (GLdouble)*xPosition, *yPosition);
	glEnd();
	glDisable(GL_POINT_SMOOTH);
	glPointSize(1);

	// Mark end of drawing op. This is needed for single buffered drawing:
	PsychFlushGL(windowRecord);

 	//All psychfunctions require this.
	return(PsychError_none);
}
/* PsychGLClear()
 *
 * Helper around glClearColor() and glClear() - takes special issues
 * caused by HDR framebuffer support into account.
 */
void PsychGLClear(PsychWindowRecordType *windowRecord)
{
	int oldShader, nowShader;
	
	// Unclamped/High-precision color mode enabled via GLSL shaders?
	if ((windowRecord->defaultDrawShader != 0) && (windowRecord->defaultDrawShader == windowRecord->unclampedDrawShader)) {
		// Yes. Can't use standard clear, but need to clear via drawing a full-window rect with
		// clear color:

		// Query currently bound shader:
		oldShader = PsychGetCurrentShader(windowRecord);

		// Assign hdr draw shader:
		nowShader = PsychSetShader(windowRecord, -1);

		// Assign HDR clear color for window:
		HDRglColor4dv(windowRecord->clearColor);

		// Draw a fullscreen rect in the clear color, make sure
		// no alpha blending is active:
		if (glIsEnabled(GL_BLEND)) {
			glDisable(GL_BLEND);
			PsychGLRect(windowRecord->rect);
			glEnable(GL_BLEND);
		}
		else {
			PsychGLRect(windowRecord->rect);
		}
		
		// Revert to old shader binding:
		if (nowShader != oldShader) PsychSetShader(windowRecord, oldShader);
	}
	else {
		// Standard clear path: Can use OpenGL's fast color buffer clear:
		glClearColor((GLclampf) windowRecord->clearColor[0], (GLclampf) windowRecord->clearColor[1], (GLclampf) windowRecord->clearColor[2], (GLclampf) windowRecord->clearColor[3]);
		glClear(GL_COLOR_BUFFER_BIT);
	}

	return;
}
PsychError SCREENFillPoly(void)  
{	
	PsychColorType				color;
	PsychWindowRecordType		*windowRecord;
	double						whiteValue;
	int							i, mSize, nSize, pSize;
	psych_bool					isArgThere;
	double						*pointList;
	double						isConvex;
	int							j,k;
	int							flag;
	double						z;
	
	combinerCacheSlot = 0;
	combinerCacheSize = 0;
	combinerCache = NULL;
	
	//all sub functions should have these two lines
	PsychPushHelp(useString, synopsisString,seeAlsoString);
	if(PsychIsGiveHelp()){PsychGiveHelp();return(PsychError_none);};
	
	//check for superfluous arguments
	PsychErrorExit(PsychCapNumInputArgs(4));   //The maximum number of inputs
	PsychErrorExit(PsychCapNumOutputArgs(0));  //The maximum number of outputs
	
	//get the window record from the window record argument and get info from the window record
	PsychAllocInWindowRecordArg(1, kPsychArgRequired, &windowRecord);
	
	//Get the color argument or use the default, then coerce to the form determened by the window depth.  
	isArgThere=PsychCopyInColorArg(2, FALSE, &color);
	if(!isArgThere){
		whiteValue=PsychGetWhiteValueFromWindow(windowRecord);
		PsychLoadColorStruct(&color, kPsychIndexColor, whiteValue ); //index mode will coerce to any other.
	}
 	PsychCoerceColorMode( &color);
	
	//get the list of pairs and validate.  
	PsychAllocInDoubleMatArg(3, kPsychArgRequired, &mSize, &nSize, &pSize, &pointList);
	if(nSize!=2) PsychErrorExitMsg(PsychError_user, "Width of pointList must be 2");
	if(mSize<3)  PsychErrorExitMsg(PsychError_user, "Polygons must consist of at least 3 points; M dimension of pointList was < 3!");
	if(pSize>1)  PsychErrorExitMsg(PsychError_user, "pointList must be a 2D matrix, not a 3D matrix!");
	
	isConvex = -1;
	PsychCopyInDoubleArg(4, kPsychArgOptional, &isConvex);
	
    // On non-OpenGL1/2 we always force isConvex to zero, so the GLU tesselator is
    // always used. This because the tesselator only emits GL_TRIANGLES and GL_TRIANGLE_STRIP
    // and GL_TRIANGLE_FANS primitives which are supported on all current OpenGL API's, whereas
    // or "classic" fast-path needs GL_POLYGONS, which are only supported on classic OpenGL1/2:
    if (!PsychIsGLClassic(windowRecord)) isConvex = 0;

	// Enable this windowRecords framebuffer as current drawingtarget:
	PsychSetDrawingTarget(windowRecord);
	
	// Set default drawshader:
	PsychSetShader(windowRecord, -1);
	
	PsychUpdateAlphaBlendingFactorLazily(windowRecord);		 
	PsychSetGLColor(&color, windowRecord);
	
	///////// Test for convexity ////////
	// This algorithm checks, if the polygon is definitely convex, or not.
	// We take the slow-path, if polygon is non-convex or if we can't prove
	// that it is convex.
	//
	// Algorithm adapted from: http://astronomy.swin.edu.au/~pbourke/geometry/clockwise/
	// Which was written by Paul Bourke, 1998.
	//
	// -> This webpage explains the mathematical principle behind the test and provides
	// a C-Source file which has been adapted for use here.
	//	
	if (isConvex == -1) {
		flag = 0;
		for (i=0; i < mSize; i++) {
			j = (i + 1) % mSize;
			k = (i + 2) % mSize;
			z  = (pointList[j] - pointList[i]) * (pointList[k+mSize] - pointList[j+mSize]);
			z -= (pointList[j+mSize] - pointList[i+mSize]) * (pointList[k] - pointList[j]);
			
			if (z < 0) {
				flag |= 1;
			}
			else if (z > 0) {
				flag |= 2;
			}
			
			if (flag == 3) {
				// This is definitely a CONCAVE polygon --> not Convex --> Take slow but safe path.
				break;
			}
		}
		
		if (flag!=0 && flag!=3) {
			// This is a convex polygon --> Take fast path.
			isConvex = 1;
		}
		else {
			// This is a complex polygon --> can't determine if it is convex or not --> Take slow but safe path.
			isConvex = 0;
		}
	}
			
	////// Switch between fast path and slow path, depending on convexity of polygon:
	if (isConvex > 0) {
		// Convex, non-self-intersecting polygon - Take the fast-path:
		glBegin(GL_POLYGON);
		for(i=0;i<mSize;i++) glVertex2d((GLdouble)pointList[i], (GLdouble)pointList[i+mSize]);
		glEnd();
	}
	else {
		// Possibly concave and/or self-intersecting polygon - At least we couldn't prove it is convex.
		// Take the slow, but safe, path using GLU-Tesselators to break it up into a couple of convex, simple
		// polygons:
		
		// Create and initialize a new GLU-Tesselator object, if needed:
		if (NULL == tess) {
			// Create tesselator:
			tess = gluNewTess();
			if (NULL == tess) PsychErrorExitMsg(PsychError_outofMemory, "Out of memory condition in Screen('FillPoly')! Not enough space.");

			// Assign our callback-functions:
			gluTessCallback(tess, GLU_TESS_BEGIN, GLUTESSCBCASTER PsychtcbBegin);
			gluTessCallback(tess, GLU_TESS_VERTEX, GLUTESSCBCASTER PsychtcbVertex);
			gluTessCallback(tess, GLU_TESS_END, GLUTESSCBCASTER PsychtcbEnd);
			gluTessCallback(tess, GLU_TESS_COMBINE, GLUTESSCBCASTER PsychtcbCombine);

			// Define all tesselated polygons to lie in the x-y plane:
			gluTessNormal(tess, 0, 0, 1);
		}

		// We need to hold the values in a temporary array:
		if (tempvsize < mSize) {
			tempvsize = ((mSize / 1000) + 1) * 1000;
			tempv = (double*) realloc((void*) tempv, sizeof(double) * 3 * tempvsize);
			if (NULL == tempv) PsychErrorExitMsg(PsychError_outofMemory, "Out of memory condition in Screen('FillPoly')! Not enough space.");
		}

		// Now submit our Polygon for tesselation:
		gluTessBeginPolygon(tess, NULL);
		gluTessBeginContour(tess);

		for(i=0; i < mSize; i++) {
			tempv[i*3]=(GLdouble) pointList[i];
			tempv[i*3+1]=(GLdouble) pointList[i+mSize];
			tempv[i*3+2]=0;
			gluTessVertex(tess, (GLdouble*) &(tempv[i*3]), (void*) &(tempv[i*3]));
		}
		
		// Process, finalize and render it by calling our callback-functions:
		gluTessEndContour(tess);
		gluTessEndPolygon (tess);
		
		// Done with drawing the filled polygon. (Slow-Path)
	}
	
	// Mark end of drawing op. This is needed for single buffered drawing:
	PsychFlushGL(windowRecord);
	
	// printf("CombinerCalls %i out of %i allocated.\n", combinerCacheSlot, combinerCacheSize);

	return(PsychError_none);
}
예제 #4
0
PsychError SCREENGetImage(void) 
{
	PsychRectType   windowRect,sampleRect;
	int 			nrchannels, ix, iy, sampleRectWidth, sampleRectHeight, invertedY, redReturnIndex, greenReturnIndex, blueReturnIndex, alphaReturnIndex, planeSize;
	int				viewid;
	ubyte 			*returnArrayBase, *redPlane, *greenPlane, *bluePlane, *alphaPlane;
	float 			*dredPlane, *dgreenPlane, *dbluePlane, *dalphaPlane;
	double 			*returnArrayBaseDouble;
	PsychWindowRecordType	*windowRecord;
	GLboolean		isDoubleBuffer, isStereo;
	char*           buffername = NULL;
	boolean			floatprecision = FALSE;
	GLenum			whichBuffer = 0; 
	
	//all sub functions should have these two lines
	PsychPushHelp(useString, synopsisString, seeAlsoString);
	if(PsychIsGiveHelp()){PsychGiveHelp();return(PsychError_none);};
	
	//cap the numbers of inputs and outputs
	PsychErrorExit(PsychCapNumInputArgs(5));   //The maximum number of inputs
	PsychErrorExit(PsychCapNumOutputArgs(1));  //The maximum number of outputs
	
	// Get windowRecord for this window:
	PsychAllocInWindowRecordArg(kPsychUseDefaultArgPosition, TRUE, &windowRecord);
	
	// Set window as drawingtarget: Even important if this binding is changed later on!
	// We need to make sure all needed transitions are done - esp. in non-imaging mode,
	// so backbuffer is in a useable state:
	PsychSetDrawingTarget(windowRecord);
	
	// Disable shaders:
	PsychSetShader(windowRecord, 0);

	// Soft-Reset drawingtarget. This is important to make sure no FBO's are bound,
	// otherwise the following glGets for GL_DOUBLEBUFFER and GL_STEREO will retrieve
	// wrong results, leading to totally wrong read buffer assignments down the road!!
	PsychSetDrawingTarget(0x1);

	glGetBooleanv(GL_DOUBLEBUFFER, &isDoubleBuffer);
	glGetBooleanv(GL_STEREO, &isStereo);
	
	// Retrieve optional read rectangle:
	PsychGetRectFromWindowRecord(windowRect, windowRecord);
	if(!PsychCopyInRectArg(2, FALSE, sampleRect)) memcpy(sampleRect, windowRect, sizeof(PsychRectType));
	if (IsPsychRectEmpty(sampleRect)) return(PsychError_none);
	
	// Assign read buffer:
	if(PsychIsOnscreenWindow(windowRecord)) {
		// Onscreen window: We read from the front- or front-left buffer by default.
		// This works on single-buffered and double buffered contexts in a consistent fashion:
		
		// Copy in optional override buffer name:
		PsychAllocInCharArg(3, FALSE, &buffername);
		
		// Override buffer name provided?
		if (buffername) {
			// Which one is it?
			
			// "frontBuffer" is always a valid choice:
			if (PsychMatch(buffername, "frontBuffer")) whichBuffer = GL_FRONT;
			// Allow selection of left- or right front stereo buffer in stereo mode:
			if (PsychMatch(buffername, "frontLeftBuffer") && isStereo) whichBuffer = GL_FRONT_LEFT;
			if (PsychMatch(buffername, "frontRightBuffer") && isStereo) whichBuffer = GL_FRONT_RIGHT;
			// Allow selection of backbuffer in double-buffered mode:
			if (PsychMatch(buffername, "backBuffer") && isDoubleBuffer) whichBuffer = GL_BACK;
			// Allow selection of left- or right back stereo buffer in stereo mode:
			if (PsychMatch(buffername, "backLeftBuffer") && isStereo && isDoubleBuffer) whichBuffer = GL_BACK_LEFT;
			if (PsychMatch(buffername, "backRightBuffer") && isStereo && isDoubleBuffer) whichBuffer = GL_BACK_RIGHT;
			// Allow AUX buffer access for debug purposes:
			if (PsychMatch(buffername, "aux0Buffer")) whichBuffer = GL_AUX0;
			if (PsychMatch(buffername, "aux1Buffer")) whichBuffer = GL_AUX1;
			if (PsychMatch(buffername, "aux2Buffer")) whichBuffer = GL_AUX2;
			if (PsychMatch(buffername, "aux3Buffer")) whichBuffer = GL_AUX3;			
		}
		else {
			// Default is frontbuffer:
			whichBuffer=GL_FRONT;
		}
	}
	else {
		// Offscreen window or texture: They only have one buffer, which is the
		// backbuffer in double-buffered mode and the frontbuffer in single buffered mode:
		whichBuffer=(isDoubleBuffer) ? GL_BACK : GL_FRONT;
	}
	
	// Enable this windowRecords framebuffer as current drawingtarget. This should
	// also allow us to "GetImage" from Offscreen windows:
	if ((windowRecord->imagingMode & kPsychNeedFastBackingStore) || (windowRecord->imagingMode & kPsychNeedFastOffscreenWindows)) {
		// Special case: Imaging pipeline active - We need to activate system framebuffer
		// so we really read the content of the framebuffer and not of some FBO:
		if (PsychIsOnscreenWindow(windowRecord)) {
			// It's an onscreen window:
			if (buffername && (PsychMatch(buffername, "drawBuffer")) && (windowRecord->imagingMode & kPsychNeedFastBackingStore)) {
				// Activate drawBufferFBO:
				PsychSetDrawingTarget(windowRecord);
				whichBuffer = GL_COLOR_ATTACHMENT0_EXT;
				
				// Is the drawBufferFBO multisampled?
				viewid = (((windowRecord->stereomode > 0) && (windowRecord->stereodrawbuffer == 1)) ? 1 : 0);
				if (windowRecord->fboTable[windowRecord->drawBufferFBO[viewid]]->multisample > 0) {
					// It is! We can't read from a multisampled FBO. Need to perform a multisample resolve operation and read
					// from the resolved unisample buffer instead. This is only safe if the unisample buffer is either a dedicated
					// FBO, or - in case its the final system backbuffer etc. - if preflip operations haven't been performed yet.
					// If non dedicated buffer (aka finalizedFBO) and preflip ops have already happened, then the backbuffer contains
					// final content for an upcoming Screen('Flip') and we can't use (and therefore taint) that buffer.
					if ((windowRecord->inputBufferFBO[viewid] == windowRecord->finalizedFBO[viewid]) && (windowRecord->backBufferBackupDone)) {
						// Target for resolve is finalized FBO (probably system backbuffer) and preflip ops have run already. We
						// can't do the resolve op, as this would screw up the backbuffer with the final stimulus:
						printf("PTB-ERROR: Tried to 'GetImage' from a multisampled 'drawBuffer', but can't perform anti-aliasing pass due to\n");
						printf("PTB-ERROR: lack of a dedicated resolve buffer.\n");
						printf("PTB-ERROR: You can get what you wanted by either one of two options:\n");
						printf("PTB-ERROR: Either enable a processing stage in the imaging pipeline, even if you don't need it, e.g., by setting\n");
						printf("PTB-ERROR: the imagingmode argument in the 'OpenWindow' call to kPsychNeedImageProcessing, this will create a\n");
						printf("PTB-ERROR: suitable resolve buffer. Or place the 'GetImage' call before any Screen('DrawingFinished') call, then\n");
						printf("PTB-ERROR: i can (ab-)use the system backbuffer as a temporary resolve buffer.\n\n");
						PsychErrorExitMsg(PsychError_user, "Tried to 'GetImage' from a multi-sampled 'drawBuffer'. Unsupported operation under given conditions.");						
					}
					else {
						// Ok, the inputBufferFBO is a suitable temporary resolve buffer. Perform a multisample resolve blit to it:
						// A simple glBlitFramebufferEXT() call will do the copy & downsample operation:
						glBindFramebufferEXT(GL_READ_FRAMEBUFFER_EXT, windowRecord->fboTable[windowRecord->drawBufferFBO[viewid]]->fboid);
						glBindFramebufferEXT(GL_DRAW_FRAMEBUFFER_EXT, windowRecord->fboTable[windowRecord->inputBufferFBO[viewid]]->fboid);
						glBlitFramebufferEXT(0, 0, windowRecord->fboTable[windowRecord->inputBufferFBO[viewid]]->width, windowRecord->fboTable[windowRecord->inputBufferFBO[viewid]]->height,
											 0, 0, windowRecord->fboTable[windowRecord->inputBufferFBO[viewid]]->width, windowRecord->fboTable[windowRecord->inputBufferFBO[viewid]]->height,
											 GL_COLOR_BUFFER_BIT, GL_NEAREST);

						// Bind inputBuffer as framebuffer:
						glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, windowRecord->fboTable[windowRecord->inputBufferFBO[viewid]]->fboid);
						viewid = -1;
					}
				}
			}
			else {
				// Activate system framebuffer:
				PsychSetDrawingTarget(NULL);
			}
		}
		else {
			// Offscreen window or texture: Select drawing target as usual,
			// but set color attachment as read buffer:
			PsychSetDrawingTarget(windowRecord);
			whichBuffer = GL_COLOR_ATTACHMENT0_EXT;

			// We do not support multisampled readout:
			if (windowRecord->fboTable[windowRecord->drawBufferFBO[0]]->multisample > 0) {
				printf("PTB-ERROR: You tried to Screen('GetImage', ...); from an offscreen window or texture which has multisample anti-aliasing enabled.\n");
				printf("PTB-ERROR: This operation is not supported. You must first use Screen('CopyWindow') to create a non-multisampled copy of the\n");
				printf("PTB-ERROR: texture or offscreen window, then use 'GetImage' on that copy. The copy will be anti-aliased, so you'll get what you\n");
				printf("PTB-ERROR: wanted with a bit more effort. Sorry for the inconvenience, but this is mostly a hardware limitation.\n\n");
				
				PsychErrorExitMsg(PsychError_user, "Tried to 'GetImage' from a multi-sampled texture or offscreen window. Unsupported operation.");
			}
		}
	}
	else {
		// Normal case: No FBO based imaging - Select drawing target as usual:
		PsychSetDrawingTarget(windowRecord);
	}
	
	// Select requested read buffer, after some double-check:
	if (whichBuffer == 0) PsychErrorExitMsg(PsychError_user, "Invalid or unknown 'bufferName' argument provided.");
	glReadBuffer(whichBuffer);
	
	if (PsychPrefStateGet_Verbosity() > 5) printf("PTB-DEBUG: In Screen('GetImage'): GL-Readbuffer whichBuffer = %i\n", whichBuffer);

	// Get optional floatprecision flag: We return data with float-precision if
	// this flag is set. By default we return uint8 data:
	PsychCopyInFlagArg(4, FALSE, &floatprecision);
	
	// Get the optional number of channels flag: By default we return 3 channels,
	// the Red, Green, and blue color channel:
	nrchannels = 3;
	PsychCopyInIntegerArg(5, FALSE, &nrchannels);
	if (nrchannels < 1 || nrchannels > 4) PsychErrorExitMsg(PsychError_user, "Number of requested channels 'nrchannels' must be between 1 and 4!");
	
	sampleRectWidth=PsychGetWidthFromRect(sampleRect);
	sampleRectHeight=PsychGetHeightFromRect(sampleRect);
	
	if (!floatprecision) {
		// Readback of standard 8bpc uint8 pixels:  
		PsychAllocOutUnsignedByteMatArg(1, TRUE, sampleRectHeight, sampleRectWidth, nrchannels, &returnArrayBase);
		redPlane= PsychMallocTemp(nrchannels * sizeof(GL_UNSIGNED_BYTE) * sampleRectWidth * sampleRectHeight);
		planeSize=sampleRectWidth * sampleRectHeight;
		greenPlane= redPlane + planeSize;
		bluePlane= redPlane + 2 * planeSize;
		alphaPlane= redPlane + 3 * planeSize; 
		glPixelStorei(GL_PACK_ALIGNMENT,1);
		invertedY=windowRect[kPsychBottom]-sampleRect[kPsychBottom];
		glReadPixels(sampleRect[kPsychLeft],invertedY, 	sampleRectWidth, sampleRectHeight, GL_RED, GL_UNSIGNED_BYTE, redPlane); 
		if (nrchannels>1) glReadPixels(sampleRect[kPsychLeft],invertedY,	sampleRectWidth, sampleRectHeight, GL_GREEN, GL_UNSIGNED_BYTE, greenPlane);
		if (nrchannels>2) glReadPixels(sampleRect[kPsychLeft],invertedY,	sampleRectWidth, sampleRectHeight, GL_BLUE, GL_UNSIGNED_BYTE, bluePlane);
		if (nrchannels>3) glReadPixels(sampleRect[kPsychLeft],invertedY,	sampleRectWidth, sampleRectHeight, GL_ALPHA, GL_UNSIGNED_BYTE, alphaPlane);
		
		//in one pass transpose and flip what we read with glReadPixels before returning.  
		//-glReadPixels insists on filling up memory in sequence by reading the screen row-wise whearas Matlab reads up memory into columns.
		//-the Psychtoolbox screen as setup by gluOrtho puts 0,0 at the top left of the window but glReadPixels always believes that it's at the bottom left.     
		for(ix=0;ix<sampleRectWidth;ix++){
			for(iy=0;iy<sampleRectHeight;iy++){
				// Compute write-indices for returned data:
				redReturnIndex=PsychIndexElementFrom3DArray(sampleRectHeight, sampleRectWidth, nrchannels, iy, ix, 0);
				greenReturnIndex=PsychIndexElementFrom3DArray(sampleRectHeight, sampleRectWidth,  nrchannels, iy, ix, 1);
				blueReturnIndex=PsychIndexElementFrom3DArray(sampleRectHeight, sampleRectWidth,  nrchannels, iy, ix, 2);
				alphaReturnIndex=PsychIndexElementFrom3DArray(sampleRectHeight, sampleRectWidth,  nrchannels, iy, ix, 3);
				
				// Always return RED/LUMINANCE channel:
				returnArrayBase[redReturnIndex]=redPlane[ix + ((sampleRectHeight-1) - iy ) * sampleRectWidth];  
				// Other channels on demand:
				if (nrchannels>1) returnArrayBase[greenReturnIndex]=greenPlane[ix + ((sampleRectHeight-1) - iy ) * sampleRectWidth];
				if (nrchannels>2) returnArrayBase[blueReturnIndex]=bluePlane[ix + ((sampleRectHeight-1) - iy ) * sampleRectWidth];
				if (nrchannels>3) returnArrayBase[alphaReturnIndex]=alphaPlane[ix + ((sampleRectHeight-1) - iy ) * sampleRectWidth];
			}
		}		
	}
	else {
		// Readback of standard 32bpc float pixels into a double matrix:  
		PsychAllocOutDoubleMatArg(1, TRUE, sampleRectHeight, sampleRectWidth, nrchannels, &returnArrayBaseDouble);
		dredPlane= PsychMallocTemp(nrchannels * sizeof(GL_FLOAT) * sampleRectWidth * sampleRectHeight);
		planeSize=sampleRectWidth * sampleRectHeight * sizeof(GL_FLOAT);
		dgreenPlane= redPlane + planeSize;
		dbluePlane= redPlane + 2 * planeSize;
		dalphaPlane= redPlane + 3 * planeSize; 
		glPixelStorei(GL_PACK_ALIGNMENT, 1);
		invertedY=windowRect[kPsychBottom]-sampleRect[kPsychBottom];
		if (nrchannels==1) glReadPixels(sampleRect[kPsychLeft],invertedY, 	sampleRectWidth, sampleRectHeight, GL_RED, GL_FLOAT, dredPlane); 
		if (nrchannels==2) glReadPixels(sampleRect[kPsychLeft],invertedY,	sampleRectWidth, sampleRectHeight, GL_LUMINANCE_ALPHA, GL_FLOAT, dredPlane);
		if (nrchannels==3) glReadPixels(sampleRect[kPsychLeft],invertedY,	sampleRectWidth, sampleRectHeight, GL_RGB, GL_FLOAT, dredPlane);
		if (nrchannels==4) glReadPixels(sampleRect[kPsychLeft],invertedY,	sampleRectWidth, sampleRectHeight, GL_RGBA, GL_FLOAT, dredPlane);
		
		//in one pass transpose and flip what we read with glReadPixels before returning.  
		//-glReadPixels insists on filling up memory in sequence by reading the screen row-wise whearas Matlab reads up memory into columns.
		//-the Psychtoolbox screen as setup by gluOrtho puts 0,0 at the top left of the window but glReadPixels always believes that it's at the bottom left.     
		for(ix=0;ix<sampleRectWidth;ix++){
			for(iy=0;iy<sampleRectHeight;iy++){
				// Compute write-indices for returned data:
				redReturnIndex=PsychIndexElementFrom3DArray(sampleRectHeight, sampleRectWidth, nrchannels, iy, ix, 0);
				greenReturnIndex=PsychIndexElementFrom3DArray(sampleRectHeight, sampleRectWidth,  nrchannels, iy, ix, 1);
				blueReturnIndex=PsychIndexElementFrom3DArray(sampleRectHeight, sampleRectWidth,  nrchannels, iy, ix, 2);
				alphaReturnIndex=PsychIndexElementFrom3DArray(sampleRectHeight, sampleRectWidth,  nrchannels, iy, ix, 3);
				
				// Always return RED/LUMINANCE channel:
				returnArrayBaseDouble[redReturnIndex]=dredPlane[(ix + ((sampleRectHeight-1) - iy ) * sampleRectWidth) * nrchannels + 0];  
				// Other channels on demand:
				if (nrchannels>1) returnArrayBaseDouble[greenReturnIndex]=dredPlane[(ix + ((sampleRectHeight-1) - iy ) * sampleRectWidth) * nrchannels + 1];
				if (nrchannels>2) returnArrayBaseDouble[blueReturnIndex]=dredPlane[(ix + ((sampleRectHeight-1) - iy ) * sampleRectWidth) * nrchannels + 2];
				if (nrchannels>3) returnArrayBaseDouble[alphaReturnIndex]=dredPlane[(ix + ((sampleRectHeight-1) - iy ) * sampleRectWidth) * nrchannels + 3];
			}
		}		
	}
	
	if (viewid == -1) {
		// Need to reset framebuffer binding to get rid of the inputBufferFBO which is bound due to
		// multisample resolve ops --> Activate system framebuffer:
		PsychSetDrawingTarget(NULL);		
	}

	return(PsychError_none);
}
PsychError SCREENMakeTexture(void) 
{
    int					ix;
    PsychWindowRecordType		*textureRecord;
    PsychWindowRecordType		*windowRecord;
    PsychRectType			rect;
    Boolean				isImageMatrixBytes, isImageMatrixDoubles;
    int					numMatrixPlanes, xSize, ySize, iters; 
    unsigned char			*byteMatrix;
    double				*doubleMatrix;
    GLuint                              *texturePointer;
    GLubyte                             *texturePointer_b;
	GLfloat								*texturePointer_f;
    double *rp, *gp, *bp, *ap;    
    GLubyte *rpb, *gpb, *bpb, *apb;    
    int                                 usepoweroftwo, usefloatformat, assume_texorientation, textureShader;
    double                              optimized_orientation;
    Boolean                             bigendian;

    // Detect endianity (byte-order) of machine:
    ix=255;
    rpb=(GLubyte*) &ix;
    bigendian = ( *rpb == 255 ) ? FALSE : TRUE;
    ix = 0; rpb = NULL;

    if(PsychPrefStateGet_DebugMakeTexture())	//MARK #1
        StoreNowTime();
    
    //all subfunctions should have these two lines.  
    PsychPushHelp(useString, synopsisString, seeAlsoString);
    if(PsychIsGiveHelp()){PsychGiveHelp();return(PsychError_none);};
    
    //Get the window structure for the onscreen window.  It holds the onscreein GL context which we will need in the
    //final step when we copy the texture from system RAM onto the screen.
    PsychErrorExit(PsychCapNumInputArgs(7));   	
    PsychErrorExit(PsychRequireNumInputArgs(2)); 	
    PsychErrorExit(PsychCapNumOutputArgs(1)); 
    
    //get the window record from the window record argument and get info from the window record
    PsychAllocInWindowRecordArg(kPsychUseDefaultArgPosition, TRUE, &windowRecord);
    
    if((windowRecord->windowType!=kPsychDoubleBufferOnscreen) && (windowRecord->windowType!=kPsychSingleBufferOnscreen))
        PsychErrorExitMsg(PsychError_user, "MakeTexture called on something else than a onscreen window");
    
	// Get optional texture orientation flag:
	assume_texorientation = 0;
	PsychCopyInIntegerArg(6, FALSE, &assume_texorientation);
	
	// Get optional texture shader handle:
	textureShader = 0;
	PsychCopyInIntegerArg(7, FALSE, &textureShader);
	
    //get the argument and sanity check it.
    isImageMatrixBytes=PsychAllocInUnsignedByteMatArg(2, kPsychArgAnything, &ySize, &xSize, &numMatrixPlanes, &byteMatrix);
    isImageMatrixDoubles=PsychAllocInDoubleMatArg(2, kPsychArgAnything, &ySize, &xSize, &numMatrixPlanes, &doubleMatrix);
    if(numMatrixPlanes > 4)
        PsychErrorExitMsg(PsychError_inputMatrixIllegalDimensionSize, "Specified image matrix exceeds maximum depth of 4 layers");
    if(ySize<1 || xSize <1)
        PsychErrorExitMsg(PsychError_inputMatrixIllegalDimensionSize, "Specified image matrix must be at least 1 x 1 pixels in size");
    if(! (isImageMatrixBytes || isImageMatrixDoubles))
        PsychErrorExitMsg(PsychError_user, "Illegal argument type");  //not  likely. 

	// Is this a special image matrix which is already pre-transposed to fit our optimal format?
	if (assume_texorientation == 2) {
		// Yes. Swap xSize and ySize to take this into account:
		ix = xSize;
		xSize = ySize;
		ySize = ix;
		ix = 0;
	}

	// Build defining rect for this texture:
    PsychMakeRect(rect, 0, 0, xSize, ySize);

    // Copy in texture preferred draw orientation hint. We default to zero degrees, if
    // not provided.
    // This parameter is not yet used. It is silently ignorerd for now...
    optimized_orientation = 0;
    PsychCopyInDoubleArg(3, FALSE, &optimized_orientation);
    
    // Copy in special creation mode flag: It defaults to zero. If set to 1 then we
    // always create a power-of-two GL_TEXTURE_2D texture. This is useful if one wants
    // to create and use drifting gratings with no effort - texture wrapping is only available
    // for GL_TEXTURE_2D, not for non-pot types. It is also useful if the texture is to be
    // exported to external OpenGL code to simplify tex coords assignments.
    usepoweroftwo=0;
    PsychCopyInIntegerArg(4, FALSE, &usepoweroftwo);

    // Check if size constraints are fullfilled for power-of-two mode:
    if (usepoweroftwo & 1) {
      for(ix = 1; ix < xSize; ix*=2);
      if (ix!=xSize) {
	PsychErrorExitMsg(PsychError_inputMatrixIllegalDimensionSize, "Power-of-two texture requested but width of imageMatrix is not a power of two!");
      }

      for(ix = 1; ix < ySize; ix*=2);
      if (ix!=ySize) {
	PsychErrorExitMsg(PsychError_inputMatrixIllegalDimensionSize, "Power-of-two texture requested but height of imageMatrix is not a power of two!");
      }
    }

	// Check if creation of a floating point texture is requested? We default to non-floating point,
	// standard 8 bpc textures if this parameter is not provided.
	usefloatformat = 0;
    PsychCopyInIntegerArg(5, FALSE, &usefloatformat);
	if (usefloatformat<0 || usefloatformat>2) PsychErrorExitMsg(PsychError_user, "Invalid value for 'floatprecision' parameter provided! Valid values are 0 for 8bpc int, 1 for 16bpc float or 2 for 32bpc float.");
	if (usefloatformat && !isImageMatrixDoubles) {
		// Floating point texture requested. We only support this if our input is a double matrix, not
		// for uint8 matrices - converting them to float precision would be just a waste of ressources
		// without any benefit for precision.
		PsychErrorExitMsg(PsychError_user, "Creation of a floating point precision texture requested, but uint8 matrix provided! Only double matrices are acceptable for this mode.");
	}

    //Create a texture record.  Really just a window record adapted for textures.  
    PsychCreateWindowRecord(&textureRecord);						//this also fills the window index field.
    textureRecord->windowType=kPsychTexture;
    // MK: We need to assign the screen number of the onscreen-window, so PsychCreateTexture()
    // can query the size of the screen/onscreen-window...
    textureRecord->screenNumber=windowRecord->screenNumber;
    textureRecord->depth=32;
    PsychCopyRect(textureRecord->rect, rect);
    
    //Allocate the texture memory and copy the MATLAB matrix into the texture memory.
    // MK: We only allocate the amount really needed for given format, aka numMatrixPlanes - Bytes per pixel.
	if (usefloatformat) {
		// Allocate a double for each color component and pixel:
		textureRecord->textureMemorySizeBytes= sizeof(double) * numMatrixPlanes * xSize * ySize;		
	}
    else {
		// Allocate one byte per color component and pixel:
		textureRecord->textureMemorySizeBytes= numMatrixPlanes * xSize * ySize;
    }
	// MK: Allocate memory page-aligned... -> Helps Apple texture range extensions et al.
    if(PsychPrefStateGet_DebugMakeTexture()) 	//MARK #2
        StoreNowTime();
    textureRecord->textureMemory=malloc(textureRecord->textureMemorySizeBytes);
    if(PsychPrefStateGet_DebugMakeTexture()) 	//MARK #3
        StoreNowTime();	
    texturePointer=textureRecord->textureMemory;
    
    // Does script explicitely request usage of a GL_TEXTURE_2D power-of-two texture?
    if (usepoweroftwo & 1) {
      // Enforce creation as a power-of-two texture:
      textureRecord->texturetarget=GL_TEXTURE_2D;
    }

	// Now the conversion routines that convert Matlab/Octave matrices into memory
	// buffers suitable for OpenGL:
	if (usefloatformat) {
		// Conversion routines for HDR 16 bpc or 32 bpc textures -- Slow path.
		// Our input is always double matrices...
		iters = xSize * ySize;

		// Our input buffer is always of GL_FLOAT precision:
		textureRecord->textureexternaltype = GL_FLOAT;
		texturePointer_f=(GLfloat*) texturePointer;
		
		if(numMatrixPlanes==1) {
			for(ix=0;ix<iters;ix++){
				*(texturePointer_f++)= (GLfloat) *(doubleMatrix++);  
			}
			textureRecord->depth=(usefloatformat==1) ? 16 : 32;

			textureRecord->textureinternalformat = (usefloatformat==1) ? GL_LUMINANCE_FLOAT16_APPLE : GL_LUMINANCE_FLOAT32_APPLE; 
			textureRecord->textureexternalformat = GL_LUMINANCE;
		}

		if(numMatrixPlanes==2) {
			rp=(double*) ((psych_uint64) doubleMatrix);
			ap=(double*) ((psych_uint64) doubleMatrix + (psych_uint64) iters*sizeof(double));

			for(ix=0;ix<iters;ix++){
				*(texturePointer_f++)= (GLfloat) *(rp++);  
				*(texturePointer_f++)= (GLfloat) *(ap++);  
			}
			textureRecord->depth=(usefloatformat==1) ? 32 : 64;
			textureRecord->textureinternalformat = (usefloatformat==1) ? GL_LUMINANCE_ALPHA_FLOAT16_APPLE : GL_LUMINANCE_ALPHA_FLOAT32_APPLE; 
			textureRecord->textureexternalformat = GL_LUMINANCE_ALPHA;
		}
		
		if(numMatrixPlanes==3) {
			rp=(double*) ((psych_uint64) doubleMatrix);
			gp=(double*) ((psych_uint64) doubleMatrix + (psych_uint64) iters*sizeof(double));
			bp=(double*) ((psych_uint64) gp + (psych_uint64) iters*sizeof(double));

			for(ix=0;ix<iters;ix++){
				*(texturePointer_f++)= (GLfloat) *(rp++);  
				*(texturePointer_f++)= (GLfloat) *(gp++);  
				*(texturePointer_f++)= (GLfloat) *(bp++);  
			}
			textureRecord->depth=(usefloatformat==1) ? 48 : 96;
			textureRecord->textureinternalformat = (usefloatformat==1) ? GL_RGB_FLOAT16_APPLE : GL_RGB_FLOAT32_APPLE; 
			textureRecord->textureexternalformat = GL_RGB;
		}
		
		if(numMatrixPlanes==4) {
			rp=(double*) ((psych_uint64) doubleMatrix);
			gp=(double*) ((psych_uint64) doubleMatrix + (psych_uint64) iters*sizeof(double));
			bp=(double*) ((psych_uint64) gp + (psych_uint64) iters*sizeof(double));
			ap=(double*) ((psych_uint64) bp + (psych_uint64) iters*sizeof(double));

			for(ix=0;ix<iters;ix++){
				*(texturePointer_f++)= (GLfloat) *(rp++);  
				*(texturePointer_f++)= (GLfloat) *(gp++);  
				*(texturePointer_f++)= (GLfloat) *(bp++);  
				*(texturePointer_f++)= (GLfloat) *(ap++);  
			}			
			textureRecord->depth=(usefloatformat==1) ? 64 : 128;
			textureRecord->textureinternalformat = (usefloatformat==1) ? GL_RGBA_FLOAT16_APPLE : GL_RGBA_FLOAT32_APPLE; 
			textureRecord->textureexternalformat = GL_RGBA;
		}

		// This is a special workaround for bugs in FLOAT16 texture creation on Mac OS/X 10.4.x and 10.5.x.
		// The OpenGL fails to properly flush very small values (< 1e-9) to zero when creating a FLOAT16
		// type texture. Instead it seems to initialize with trash data, corrupting the texture.
		// Therefore, if FLOAT16 texture creation is requested, we loop over the whole input buffer and
		// set all values with magnitude smaller than 1e-9 to zero. Better safe than sorry...
		if(usefloatformat==1) {
			texturePointer_f=(GLfloat*) texturePointer;
			iters = iters * numMatrixPlanes;
			for(ix=0; ix<iters; ix++, texturePointer_f++) if(fabs((double) *texturePointer_f) < 1e-9) { *texturePointer_f = 0.0; }
		}
		
		// End of HDR conversion code...
	}
    else {
		// Standard LDR texture 8 bpc conversion routines -- Fast path.
	
		// Improved implementation: Takes 13 ms on a 800x800 texture...
		if(isImageMatrixDoubles && numMatrixPlanes==1){
			texturePointer_b=(GLubyte*) texturePointer;
			iters=xSize*ySize;
			for(ix=0;ix<iters;ix++){
				*(texturePointer_b++)= (GLubyte) *(doubleMatrix++);  
			}
			textureRecord->depth=8;
		}
		
		// Improved version: Takes 3 ms on a 800x800 texture...
		// NB: Implementing memcpy manually by a for-loop takes 10 ms! This is a huge difference.
		// -> That's because memcpy on MacOS-X is implemented with hand-coded, highly tuned Assembler code for PowerPC.
		// -> It's always wise to use system-routines if available, instead of coding it by yourself!
		if(isImageMatrixBytes && numMatrixPlanes==1){
			memcpy((void*) texturePointer, (void*) byteMatrix, xSize*ySize);
			textureRecord->depth=8;
		}
		
		// New version: Takes 33 ms on a 800x800 texture...
		if(isImageMatrixDoubles && numMatrixPlanes==2){
			texturePointer_b=(GLubyte*) texturePointer;
			iters=xSize*ySize;
			rp=(double*) ((psych_uint64) doubleMatrix);
			ap=(double*) ((psych_uint64) doubleMatrix + (psych_uint64) iters*sizeof(double));
			for(ix=0;ix<iters;ix++){
				*(texturePointer_b++)= (GLubyte) *(rp++);  
				*(texturePointer_b++)= (GLubyte) *(ap++);  
			}
			textureRecord->depth=16;
		}
		
		// New version: Takes 20 ms on a 800x800 texture...
		if(isImageMatrixBytes && numMatrixPlanes==2){
			texturePointer_b=(GLubyte*) texturePointer;
			iters=xSize*ySize;
			rpb=(GLubyte*) ((psych_uint64) byteMatrix);
			apb=(GLubyte*) ((psych_uint64) byteMatrix + (psych_uint64) iters);
			for(ix=0;ix<iters;ix++){
				*(texturePointer_b++)= *(rpb++);  
				*(texturePointer_b++)= *(apb++);  
			}
			textureRecord->depth=16;
		}
		
		// Improved version: Takes 43 ms on a 800x800 texture...
		if(isImageMatrixDoubles && numMatrixPlanes==3){
			texturePointer_b=(GLubyte*) texturePointer;
			iters=xSize*ySize;
			rp=(double*) ((psych_uint64) doubleMatrix);
			gp=(double*) ((psych_uint64) doubleMatrix + (psych_uint64) iters*sizeof(double));
			bp=(double*) ((psych_uint64) gp + (psych_uint64) iters*sizeof(double));
			for(ix=0;ix<iters;ix++){
				*(texturePointer_b++)= (GLubyte) *(rp++);  
				*(texturePointer_b++)= (GLubyte) *(gp++);  
				*(texturePointer_b++)= (GLubyte) *(bp++);  
			}
			textureRecord->depth=24;
		}
		
		// Improved version: Takes 25 ms on a 800x800 texture...
		if(isImageMatrixBytes && numMatrixPlanes==3){
			texturePointer_b=(GLubyte*) texturePointer;
			iters=xSize*ySize;
			
			rpb=(GLubyte*) ((psych_uint64) byteMatrix);
			gpb=(GLubyte*) ((psych_uint64) byteMatrix + (psych_uint64) iters);
			bpb=(GLubyte*) ((psych_uint64) gpb + (psych_uint64) iters);
			for(ix=0;ix<iters;ix++){
				*(texturePointer_b++)= *(rpb++);  
				*(texturePointer_b++)= *(gpb++);  
				*(texturePointer_b++)= *(bpb++);  
			}
			textureRecord->depth=24;
		}
		
		// Improved version: Takes 55 ms on a 800x800 texture...
		if(isImageMatrixDoubles && numMatrixPlanes==4){
			texturePointer_b=(GLubyte*) texturePointer;
			iters=xSize*ySize;
			
			rp=(double*) ((psych_uint64) doubleMatrix);
			gp=(double*) ((psych_uint64) doubleMatrix + (psych_uint64) iters*sizeof(double));
			bp=(double*) ((psych_uint64) gp + (psych_uint64) iters*sizeof(double));
			ap=(double*) ((psych_uint64) bp + (psych_uint64) iters*sizeof(double));
			if (bigendian) {
				// Code for big-endian machines like PowerPC:
				for(ix=0;ix<iters;ix++){
					*(texturePointer_b++)= (GLubyte) *(ap++);  
					*(texturePointer_b++)= (GLubyte) *(rp++);  
					*(texturePointer_b++)= (GLubyte) *(gp++);  
					*(texturePointer_b++)= (GLubyte) *(bp++);  
				}
			}
			else {
				// Code for little-endian machines like Intel Pentium:
				for(ix=0;ix<iters;ix++){
					*(texturePointer_b++)= (GLubyte) *(bp++);  
					*(texturePointer_b++)= (GLubyte) *(gp++);  
					*(texturePointer_b++)= (GLubyte) *(rp++);  
					*(texturePointer_b++)= (GLubyte) *(ap++);  
				}
			}
			
			textureRecord->depth=32;
		}
		
		// Improved version: Takes 33 ms on a 800x800 texture...
		if(isImageMatrixBytes && numMatrixPlanes==4){
			texturePointer_b=(GLubyte*) texturePointer;
			iters=xSize*ySize;
			
			rpb=(GLubyte*) ((psych_uint64) byteMatrix);
			gpb=(GLubyte*) ((psych_uint64) byteMatrix + (psych_uint64) iters);
			bpb=(GLubyte*) ((psych_uint64) gpb + (psych_uint64) iters);
			apb=(GLubyte*) ((psych_uint64) bpb + (psych_uint64) iters);
			if (bigendian) {
				// Code for big-endian machines like PowerPC:
				for(ix=0;ix<iters;ix++){
					*(texturePointer_b++)= *(apb++);  
					*(texturePointer_b++)= *(rpb++);  
					*(texturePointer_b++)= *(gpb++);  
					*(texturePointer_b++)= *(bpb++);  
				}
			}
			else {
				// Code for little-endian machines like Intel Pentium:
				for(ix=0;ix<iters;ix++){
					*(texturePointer_b++)= *(bpb++);  
					*(texturePointer_b++)= *(gpb++);  
					*(texturePointer_b++)= *(rpb++);  
					*(texturePointer_b++)= *(apb++);  
				}
			}
			
			textureRecord->depth=32;
		}
	} // End of 8 bpc texture conversion code (fast-path for LDR textures)
    
    // The memory buffer now contains our texture data in a format ready to submit to OpenGL.
    
	// Assign parent window and copy its inheritable properties:
	PsychAssignParentWindow(textureRecord, windowRecord);

    // Texture orientation is zero aka transposed aka non-renderswapped.
    textureRecord->textureOrientation = ((assume_texorientation != 2) && (assume_texorientation != 3)) ? 0 : 2;
    
	// This is our best guess about the number of image channels:
	textureRecord->nrchannels = numMatrixPlanes;

    // Let's create and bind a new texture object and fill it with our new texture data.
    PsychCreateTexture(textureRecord);
    
	// Assign GLSL filter-/lookup-shaders if needed:
	PsychAssignHighPrecisionTextureShaders(textureRecord, windowRecord, usefloatformat, (usepoweroftwo & 2) ? 1 : 0);

	// User specified override shader for this texture provided? This is useful for
	// basic image processing and procedural texture shading:
	if (textureShader!=0) {
		// Assign provided shader as filtershader to this texture: We negate it so
		// that the texture blitter routines know this is a custom shader, not our
		// built in filter shader:
		textureRecord->textureFilterShader = -1 * textureShader;
	}
	
    // Texture ready. Mark it valid and return handle to userspace:
    PsychSetWindowRecordValid(textureRecord);
    PsychCopyOutDoubleArg(1, FALSE, textureRecord->windowIndex);
	
	// Swapping the texture to upright orientation requested?
	if (assume_texorientation == 1) {
		// Transform sourceRecord source texture into a normalized, upright texture if it isn't already in
		// that format. We require this standard orientation for simplified shader design.

		PsychSetShader(windowRecord, 0);
		PsychNormalizeTextureOrientation(textureRecord);
	}
	
	// Shall the texture be finally declared "normally oriented"?
	// This is either due to explicit renderswapping if assume_textureorientation == 1,
	// or because it was already pretransposed in Matlab/Octave if assume_textureorientation == 2,
	// or because user space tells us the texture is isotropic if assume_textureorientation == 3.
	if (assume_texorientation > 0) {
		// Yes. Label it as such:
		textureRecord->textureOrientation = 2;
	}
    
    if(PsychPrefStateGet_DebugMakeTexture()) 	//MARK #4
        StoreNowTime();
    
    return(PsychError_none);
}
PsychError SCREENBeginOpenGL(void)
{
    static char useString[] = "Screen('BeginOpenGL', windowPtr [, sharecontext=0]);";
    static char synopsisString[] = "Prepare window 'windowPtr' for OpenGL rendering by external OpenGL code. "
		"This allows to use OpenGL drawing routines other than the ones implemented "
        "in Screen() to draw to a Psychtoolbox onscreen- or offscreen window via execution of "
        "OpenGL commands. Typical clients of this function are mogl (Richard F. Murrays OpenGL for Matlab wrapper), "
        "the new Eyelink-Toolbox and third party Matlab Mex-Files which contain OpenGL rendering routines. "
        "You *have to* call this command once before using any of those external drawing commands for the window. "
        "After drawing, you *must* switch back to PTB's rendering via the Screen('EndOpenGL', windowPtr); command. "
		"Normally, you won't provide the optional flag 'sharecontext', so PTB will automatically isolate the OpenGL "
		"state of your code from its internal state. However, if you provide sharecontext=1, then PTB will allow "
		"your code to use and affect PTBs internal context. Only do this if you really know what you're doing! "
		"If you provide sharecontext=2 then PTB will give you your own private context, but it will synchronize "
		"the state of that context with its internal state - Seldomly needed, but here for your convenience. "
		"The context state isolation is as strict as possible without seriously affecting performance and functionality: "
		"All OpenGL context state is separated, with two exceptions: The framebuffer binding (if any) is always synchronized "
		"with PTB (and reset to zero when calling 'EndOpenGL' or another Screen command) to allow external code to transparently "
		"render into PTBs internal framebuffers - Needed for the imaging pipeline to work. Ressources like textures, display lists, "
		"FBOs, VBOs, PBOs and GLSL shaders are shared between PTB and your code as well for efficiency reasons. Both types of "
		"ressource sharing shouldn't be a problem, because either you are a beginner or advanced OpenGL programmer and won't use "
		"those facilities anyway, or you are an expert user - in which case you'll know how to prevent any conflicts easily.";

    static char seeAlsoString[] = "EndOpenGL SetOpenGLTexture GetOpenGLTexture moglcore";	

    PsychWindowRecordType	*windowRecord;
	GLint fboid, coltexid, ztexid, stexid;
	
    //all sub functions should have these two lines
    PsychPushHelp(useString, synopsisString,seeAlsoString);
    if(PsychIsGiveHelp()){PsychGiveHelp();return(PsychError_none);};
    
    //check for superfluous arguments
    PsychErrorExit(PsychCapNumInputArgs(2));        // The maximum number of inputs
    PsychErrorExit(PsychRequireNumInputArgs(1));    // Number of required inputs.
    PsychErrorExit(PsychCapNumOutputArgs(0));       // The maximum number of outputs
    
    //get the window record from the window record argument and get info from the window record
    PsychAllocInWindowRecordArg(kPsychUseDefaultArgPosition, TRUE, &windowRecord);
    
	// Already in userspace mode?
	if (PsychIsUserspaceRendering()) PsychErrorExitMsg(PsychError_user, "Tried to call Screen('BeginOpenGL'), but userspace rendering is already active! Missing or mismatched Screen('EndOpenGL')? Check your code.");
	
	// (Optional) context sharing flag provided?
	sharecontext = 0;
	PsychCopyInIntegerArg(2, FALSE, &sharecontext);
	if (sharecontext<0 || sharecontext>2) PsychErrorExitMsg(PsychError_user, "Invalid value for 'sharecontext' provided. Not in range 0 to 2.");
	
	// Master override: If context isolation is disabled then we use the PTB internal context...
	if (PsychPrefStateGet_ConserveVRAM() & kPsychDisableContextIsolation) sharecontext = 1;
	
    // Set it as drawing target: This will set up the proper FBO bindings as well:
    PsychSetDrawingTarget(windowRecord);

	// Store it as a reference for later 'EndOpenGL' call:
	preswitchWindowRecord = windowRecord;

	// Userspace wants its own private rendering context, optionally updated to match PTBs internal state?
	if (sharecontext == 0 || sharecontext == 2) {
		// Yes. This is the normal case for 3D rendering. MOGLs and PTBs contexts are separated to
		// increase robustness, only ressources like textures, display lists, PBO's, VBO's, FBO's
		// and GLSL shaders are shared, but not the current renderstate.
		
		// Make sure 3D rendering is globally enabled, otherwise this is considered a userspace bug:
		if (PsychPrefStateGet_3DGfx()==0) PsychErrorExitMsg(PsychError_user, "Tried to call 'BeginOpenGL' for external rendering, but 3D rendering not globally enabled! Call 'InitializeMatlabOpenGL' at the beginning of your script!!");
		
		// Query current FBO binding. We need to manually transfer this to the userspace context, so
		// it can render into our window:
		if (glBindFramebufferEXT) {
			fboid = 0;
	 		glGetIntegerv(GL_FRAMEBUFFER_BINDING_EXT, &fboid);
			if (fboid>0) {
				// Query attachments of FBO:
 				glGetFramebufferAttachmentParameterivEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT, GL_FRAMEBUFFER_ATTACHMENT_OBJECT_NAME_EXT, &coltexid);
 				glGetFramebufferAttachmentParameterivEXT(GL_FRAMEBUFFER_EXT, GL_DEPTH_ATTACHMENT_EXT, GL_FRAMEBUFFER_ATTACHMENT_OBJECT_NAME_EXT, &ztexid);
 				glGetFramebufferAttachmentParameterivEXT(GL_FRAMEBUFFER_EXT, GL_STENCIL_ATTACHMENT_EXT, GL_FRAMEBUFFER_ATTACHMENT_OBJECT_NAME_EXT, &stexid);
			}
		}
		
		// Flush our context before context switch:
		glFlush();
		
		// Unbind possible FBOs, so system FB is active in our context:
		if (glBindFramebufferEXT && (fboid > 0)) {
			glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0);
			glFlush();
		}
		
		// Switch to userspace context for this window, optionally sync state with PTBs context:
		PsychOSSetUserGLContext(windowRecord, (sharecontext==2) ? TRUE : FALSE);
		
		// All following ops apply to the usercontext, not our internal context:
		
		// Manually establish proper FBO binding for userspace. This will get reset automaticaly on back-transition
		// inside PsychSetGLContext on its first invocation. If we are in non-imaging mode then there's nothing to do.
		if (glBindFramebufferEXT && (fboid > 0)) {
			if (!glIsFramebufferEXT(fboid)) {
				// Special case: Need to bind a special FBO and the underlying OpenGL driver is faulty,
				// i.e. it doesn't share FBO names accross our OpenGL contexts as it should according to
				// spec.: We manually create a clone of our internal FBO - Create an FBO in the userspace
				// context with the same FBO handle, then manually reattach the proper attachments...					
				if (PsychPrefStateGet_Verbosity()>1) printf("PTB-WARNING: Faulty graphics driver - FBO sharing doesn't work properly, trying work-around. Update your drivers as soon as possible!\n");
				
				glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fboid);
				glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT, GL_TEXTURE_RECTANGLE_EXT, coltexid, 0);
				glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_DEPTH_ATTACHMENT_EXT, GL_TEXTURE_RECTANGLE_EXT, ztexid, 0);
				glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_STENCIL_ATTACHMENT_EXT, GL_TEXTURE_RECTANGLE_EXT, stexid, 0);
				if (GL_FRAMEBUFFER_COMPLETE_EXT != glCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT)) {
					// Game over :(
					PsychErrorExitMsg(PsychError_internal, "Graphics driver malfunction: Failed to clone PTBs internal FBO for userspace GLContext inside SCREENBeginOpenGL as part of workaround code! Upgrade your gfx-drivers!!");
				}
				// If we reach this point, then the workaround for the worst OS in existence has worked.
			}
			else {
				// Need to bind a special FBO and the system works correctly - no workaround needed. Just bind it in new context:
				glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fboid);
			}
		}

        // Is this the first time that the userspace rendering context of this
        // onscreen window is selected for real userspace rendering?
        if (windowRecord->needsViewportSetup && PsychIsOnscreenWindow(windowRecord)) {
            // Yes. Need to perform one-time setup actions for this context:
            windowRecord->needsViewportSetup = FALSE;
            
            // Need to setup glViewPort, scissor rectangle, projection and modelview
            // matrices to values that match the windows client rectangle. We need to
            // do this here because some imaging pipeline display modes, e.g, stereomodes
            // for top-bottom stereo or dualview stereo may have altered the useable client
            // rendering area after the context was initially created. OpenGL spec states that
            // at least the viewport and scissor rectangles are set to the full client window
            // area at first bind of a context to its drawable, so we emulate this here on first
            // 'BeginOpenGL' to avoid unpleasant surprises for unsuspecting users:
            PsychSetupView(windowRecord, FALSE);        
        }        
		
		// Running without imaging pipeline and a stereo mode is active?
		if ((windowRecord->stereomode) > 0 && !(windowRecord->imagingMode & kPsychNeedFastBackingStore)) {
			// Perform setup work for stereo drawbuffers in fixed function mode:
			PsychSwitchFixedFunctionStereoDrawbuffer(windowRecord);
		}        
	}
	else {
		// Userspace shares context with PTB. Let's disable possibly bound GLSL shaders:
		PsychSetShader(windowRecord, 0);
	}

	// Check for GL errors:
    PsychTestForGLErrors();
    
	// Set the userspace flag:
	PsychSetUserspaceGLFlag(TRUE);

	// Ready for userspace rendering:
	return(PsychError_none);
}
예제 #7
0
PsychError SCREENMakeTexture(void) 
{
    size_t								ix, iters;
    PsychWindowRecordType				*textureRecord;
    PsychWindowRecordType				*windowRecord;
    PsychRectType						rect;
    psych_bool							isImageMatrixBytes, isImageMatrixDoubles;
    int									numMatrixPlanes, xSize, ySize;
    unsigned char						*byteMatrix;
    double								*doubleMatrix;
    GLuint								*texturePointer;
    GLubyte								*texturePointer_b;
	GLfloat								*texturePointer_f;
    double								*rp, *gp, *bp, *ap;
    GLubyte								*rpb, *gpb, *bpb, *apb;
    int									usepoweroftwo, usefloatformat, assume_texorientation, textureShader;
    double								optimized_orientation;
    psych_bool							bigendian;
	psych_bool							planar_storage = FALSE;

    // Detect endianity (byte-order) of machine:
    ix=255;
    rpb=(GLubyte*) &ix;
    bigendian = ( *rpb == 255 ) ? FALSE : TRUE;
    ix = 0; rpb = NULL;

    if(PsychPrefStateGet_DebugMakeTexture())	//MARK #1
        StoreNowTime();
    
    //all subfunctions should have these two lines.  
    PsychPushHelp(useString, synopsisString, seeAlsoString);
    if(PsychIsGiveHelp()){PsychGiveHelp();return(PsychError_none);};
    
    //Get the window structure for the onscreen window.  It holds the onscreein GL context which we will need in the
    //final step when we copy the texture from system RAM onto the screen.
    PsychErrorExit(PsychCapNumInputArgs(7));   	
    PsychErrorExit(PsychRequireNumInputArgs(2)); 	
    PsychErrorExit(PsychCapNumOutputArgs(1)); 
    
    //get the window record from the window record argument and get info from the window record
    PsychAllocInWindowRecordArg(kPsychUseDefaultArgPosition, TRUE, &windowRecord);
    
    if((windowRecord->windowType!=kPsychDoubleBufferOnscreen) && (windowRecord->windowType!=kPsychSingleBufferOnscreen))
        PsychErrorExitMsg(PsychError_user, "MakeTexture called on something else than a onscreen window");
    
	// Get optional texture orientation flag:
	assume_texorientation = 0;
	PsychCopyInIntegerArg(6, FALSE, &assume_texorientation);
	
	// Get optional texture shader handle:
	textureShader = 0;
	PsychCopyInIntegerArg(7, FALSE, &textureShader);
	
    //get the argument and sanity check it.
    isImageMatrixBytes=PsychAllocInUnsignedByteMatArg(2, kPsychArgAnything, &ySize, &xSize, &numMatrixPlanes, &byteMatrix);
    isImageMatrixDoubles=PsychAllocInDoubleMatArg(2, kPsychArgAnything, &ySize, &xSize, &numMatrixPlanes, &doubleMatrix);
    if(numMatrixPlanes > 4)
        PsychErrorExitMsg(PsychError_inputMatrixIllegalDimensionSize, "Specified image matrix exceeds maximum depth of 4 layers");
    if(ySize<1 || xSize <1)
        PsychErrorExitMsg(PsychError_inputMatrixIllegalDimensionSize, "Specified image matrix must be at least 1 x 1 pixels in size");
    if(! (isImageMatrixBytes || isImageMatrixDoubles))
        PsychErrorExitMsg(PsychError_user, "Illegal argument type");  //not  likely. 

	// Is this a special image matrix which is already pre-transposed to fit our optimal format?
	if (assume_texorientation == 2) {
		// Yes. Swap xSize and ySize to take this into account:
		ix = (size_t) xSize;
		xSize = ySize;
		ySize = (int) ix;
		ix = 0;
	}

	// Build defining rect for this texture:
    PsychMakeRect(rect, 0, 0, xSize, ySize);

    // Copy in texture preferred draw orientation hint. We default to zero degrees, if
    // not provided.
    // This parameter is not yet used. It is silently ignorerd for now...
    optimized_orientation = 0;
    PsychCopyInDoubleArg(3, FALSE, &optimized_orientation);
    
    // Copy in special creation mode flag: It defaults to zero. If set to 1 then we
    // always create a power-of-two GL_TEXTURE_2D texture. This is useful if one wants
    // to create and use drifting gratings with no effort - texture wrapping is only available
    // for GL_TEXTURE_2D, not for non-pot types. It is also useful if the texture is to be
    // exported to external OpenGL code to simplify tex coords assignments.
    usepoweroftwo=0;
    PsychCopyInIntegerArg(4, FALSE, &usepoweroftwo);

    // Check if size constraints are fullfilled for power-of-two mode:
    if (usepoweroftwo & 1) {
		for(ix = 1; ix < (size_t) xSize; ix*=2);
		if (ix != (size_t) xSize) {
			PsychErrorExitMsg(PsychError_inputMatrixIllegalDimensionSize, "Power-of-two texture requested but width of imageMatrix is not a power of two!");
		}
		
		for(ix = 1; ix < (size_t) ySize; ix*=2);
		if (ix != (size_t) ySize) {
			PsychErrorExitMsg(PsychError_inputMatrixIllegalDimensionSize, "Power-of-two texture requested but height of imageMatrix is not a power of two!");
		}
    }

	// Check if creation of a floating point texture is requested? We default to non-floating point,
	// standard 8 bpc textures if this parameter is not provided.
	usefloatformat = 0;
    PsychCopyInIntegerArg(5, FALSE, &usefloatformat);
	if (usefloatformat<0 || usefloatformat>2) PsychErrorExitMsg(PsychError_user, "Invalid value for 'floatprecision' parameter provided! Valid values are 0 for 8bpc int, 1 for 16bpc float or 2 for 32bpc float.");
	if (usefloatformat && !isImageMatrixDoubles) {
		// Floating point texture requested. We only support this if our input is a double matrix, not
		// for uint8 matrices - converting them to float precision would be just a waste of ressources
		// without any benefit for precision.
		PsychErrorExitMsg(PsychError_user, "Creation of a floating point precision texture requested, but uint8 matrix provided! Only double matrices are acceptable for this mode.");
	}

    //Create a texture record.  Really just a window record adapted for textures.  
    PsychCreateWindowRecord(&textureRecord);						//this also fills the window index field.
    textureRecord->windowType=kPsychTexture;
    // MK: We need to assign the screen number of the onscreen-window, so PsychCreateTexture()
    // can query the size of the screen/onscreen-window...
    textureRecord->screenNumber=windowRecord->screenNumber;
    textureRecord->depth=32;
    PsychCopyRect(textureRecord->rect, rect);
    
	// Is texture storage in planar format explicitely requested by usercode? Do the gpu and its size
	// constraints on textures support planar storage for this image?
	// Can a proper planar -> interleaved remapping GLSL shader be generated and assigned for this texture?
	if ((usepoweroftwo == 4) && (numMatrixPlanes > 1) && (windowRecord->gfxcaps & kPsychGfxCapFBO) && !(PsychPrefStateGet_ConserveVRAM() & kPsychDontCacheTextures) &&
		(ySize * numMatrixPlanes <= windowRecord->maxTextureSize) && PsychAssignPlanarTextureShaders(textureRecord, windowRecord, numMatrixPlanes)) {
		// Yes: Use the planar texture storage fast-path.
		planar_storage = TRUE;
		if (PsychPrefStateGet_Verbosity() > 6) printf("PTB-DEBUG: Using planar storage for %i layer texture of size %i x %i texels.\n", numMatrixPlanes, xSize, ySize);
	}
	else {
		planar_storage = FALSE;
		if (PsychPrefStateGet_Verbosity() > 7) printf("PTB-DEBUG: Using standard storage for %i layer texture of size %i x %i texels.\n", numMatrixPlanes, xSize, ySize);
	}

    //Allocate the texture memory and copy the MATLAB matrix into the texture memory.
	if (usefloatformat || (planar_storage && !isImageMatrixBytes)) {
		// Allocate a double for each color component and pixel:
		textureRecord->textureMemorySizeBytes = sizeof(double) * (size_t) numMatrixPlanes * (size_t) xSize * (size_t) ySize;		
	}
    else {
		// Allocate one byte per color component and pixel:
		textureRecord->textureMemorySizeBytes = (size_t) numMatrixPlanes * (size_t) xSize * (size_t) ySize;
    }

	// We allocate our own intermediate conversion buffer unless this is
	// creation of a single-layer luminance8 integer texture from a single
	// layer uint8 input matrix and client storage is disabled. In that case, we can use a zero-copy path:
	if ((isImageMatrixBytes && (numMatrixPlanes == 1) && (!usefloatformat) && !(PsychPrefStateGet_ConserveVRAM() & kPsychDontCacheTextures)) ||
		(isImageMatrixBytes && planar_storage)) {
		// Zero copy path:
		texturePointer = NULL;
	}
	else {
		// Allocate memory:
		if(PsychPrefStateGet_DebugMakeTexture()) StoreNowTime();
		textureRecord->textureMemory = malloc(textureRecord->textureMemorySizeBytes);
		if(PsychPrefStateGet_DebugMakeTexture()) StoreNowTime();
		texturePointer = textureRecord->textureMemory;
	}
	
    // Does script explicitely request usage of a GL_TEXTURE_2D power-of-two texture?
    if (usepoweroftwo & 1) {
      // Enforce creation as a power-of-two texture:
      textureRecord->texturetarget=GL_TEXTURE_2D;
    }

	// Now the conversion routines that convert Matlab/Octave matrices into memory
	// buffers suitable for OpenGL:
	if (planar_storage) {
		// Planar texture storage, backed by a LUMINANCE texture container:

		// Zero-Copy possible? Only for uint8 input -> uint8 output:
		if (texturePointer == NULL) {
			texturePointer = (GLuint*) byteMatrix;
			textureRecord->textureMemory = texturePointer;
			// Set size to zero, so PsychCreateTexture() does not free() our
			// input buffer:
			textureRecord->textureMemorySizeBytes = 0;
			
			// This is always a LUMINANCE8 texture, backing our planar uint8 texture:
			textureRecord->depth = 8 * numMatrixPlanes;
			textureRecord->textureexternaltype   = GL_UNSIGNED_BYTE;
			textureRecord->textureexternalformat = GL_LUMINANCE;
			textureRecord->textureinternalformat = GL_LUMINANCE8;
		}
		else {
			// Some cast operation needed from double input format.
			// We always cast from double to float, potentially with
			// normalization and/or checking of value range.
			textureRecord->textureexternalformat = GL_LUMINANCE;

			if (usefloatformat) {
				// Floating point or other high precision format:
				textureRecord->depth = ((usefloatformat == 1) ? 16 : 32) * numMatrixPlanes;
				textureRecord->textureexternaltype = GL_FLOAT;
				textureRecord->textureinternalformat = (usefloatformat == 1) ? GL_LUMINANCE_FLOAT16_APPLE : GL_LUMINANCE_FLOAT32_APPLE;
				
				// Override for missing floating point texture support: Try to use 16 bit fixed point signed normalized textures [-1.0 ; 1.0] resolved at 15 bits:
				if ((usefloatformat == 1) && !(windowRecord->gfxcaps & kPsychGfxCapFPTex16)) textureRecord->textureinternalformat = GL_LUMINANCE16_SNORM;

				// Perform copy with double -> float cast:
				iters = (size_t) xSize * (size_t) ySize * (size_t) numMatrixPlanes;
				texturePointer_f = (GLfloat*) texturePointer;
				for(ix = 0; ix < iters; ix++) {
					*(texturePointer_f++) = (GLfloat) *(doubleMatrix++);
				}
				iters = (size_t) xSize * (size_t) ySize;
			}
			else {
				// 8 Bit format, but from double input matrix -> cast to uint8:
				textureRecord->depth = 8 * numMatrixPlanes;
				textureRecord->textureexternaltype = GL_UNSIGNED_BYTE;
				textureRecord->textureinternalformat = GL_LUMINANCE8;

				iters = (size_t) xSize * (size_t) ySize * (size_t) numMatrixPlanes;
				texturePointer_b = (GLubyte*) texturePointer;
				for(ix = 0; ix < iters; ix++) {
					*(texturePointer_b++) = (GLubyte) *(doubleMatrix++);
				}
				iters = (size_t) xSize * (size_t) ySize;
			}
		}
	}
	else if (usefloatformat) {
		// Conversion routines for HDR 16 bpc or 32 bpc textures -- Slow path.
		// Our input is always double matrices...
		iters = (size_t) xSize * (size_t) ySize;

		// Our input buffer is always of GL_FLOAT precision:
		textureRecord->textureexternaltype = GL_FLOAT;
		texturePointer_f=(GLfloat*) texturePointer;
		
		if(numMatrixPlanes==1) {
			for(ix=0;ix<iters;ix++){
				*(texturePointer_f++)= (GLfloat) *(doubleMatrix++);  
			}
			textureRecord->depth=(usefloatformat==1) ? 16 : 32;

			textureRecord->textureinternalformat = (usefloatformat==1) ? GL_LUMINANCE_FLOAT16_APPLE : GL_LUMINANCE_FLOAT32_APPLE; 
			textureRecord->textureexternalformat = GL_LUMINANCE;

			// Override for missing floating point texture support: Try to use 16 bit fixed point signed normalized textures [-1.0 ; 1.0] resolved at 15 bits:
			if ((usefloatformat==1) && !(windowRecord->gfxcaps & kPsychGfxCapFPTex16)) textureRecord->textureinternalformat = GL_LUMINANCE16_SNORM;
		}

		if(numMatrixPlanes==2) {
			rp=(double*) ((size_t) doubleMatrix);
			ap=(double*) ((size_t) rp + (size_t) iters * sizeof(double));

			for(ix=0;ix<iters;ix++){
				*(texturePointer_f++)= (GLfloat) *(rp++);  
				*(texturePointer_f++)= (GLfloat) *(ap++);  
			}
			textureRecord->depth=(usefloatformat==1) ? 32 : 64;
			textureRecord->textureinternalformat = (usefloatformat==1) ? GL_LUMINANCE_ALPHA_FLOAT16_APPLE : GL_LUMINANCE_ALPHA_FLOAT32_APPLE; 
			textureRecord->textureexternalformat = GL_LUMINANCE_ALPHA;

			// Override for missing floating point texture support: Try to use 16 bit fixed point signed normalized textures [-1.0 ; 1.0] resolved at 15 bits:
			if ((usefloatformat==1) && !(windowRecord->gfxcaps & kPsychGfxCapFPTex16)) textureRecord->textureinternalformat = GL_LUMINANCE16_ALPHA16_SNORM;
		}
		
		if(numMatrixPlanes==3) {
			rp=(double*) ((size_t) doubleMatrix);
			gp=(double*) ((size_t) rp + (size_t) iters * sizeof(double));
			bp=(double*) ((size_t) gp + (size_t) iters * sizeof(double));

			for(ix=0;ix<iters;ix++){
				*(texturePointer_f++)= (GLfloat) *(rp++);  
				*(texturePointer_f++)= (GLfloat) *(gp++);  
				*(texturePointer_f++)= (GLfloat) *(bp++);  
			}
			textureRecord->depth=(usefloatformat==1) ? 48 : 96;
			textureRecord->textureinternalformat = (usefloatformat==1) ? GL_RGB_FLOAT16_APPLE : GL_RGB_FLOAT32_APPLE; 
			textureRecord->textureexternalformat = GL_RGB;

			// Override for missing floating point texture support: Try to use 16 bit fixed point signed normalized textures [-1.0 ; 1.0] resolved at 15 bits:
			if ((usefloatformat==1) && !(windowRecord->gfxcaps & kPsychGfxCapFPTex16)) textureRecord->textureinternalformat = GL_RGB16_SNORM;
		}
		
		if(numMatrixPlanes==4) {
			rp=(double*) ((size_t) doubleMatrix);
			gp=(double*) ((size_t) rp + (size_t) iters * sizeof(double));
			bp=(double*) ((size_t) gp + (size_t) iters * sizeof(double));
			ap=(double*) ((size_t) bp + (size_t) iters * sizeof(double));

			for(ix=0;ix<iters;ix++){
				*(texturePointer_f++)= (GLfloat) *(rp++);  
				*(texturePointer_f++)= (GLfloat) *(gp++);  
				*(texturePointer_f++)= (GLfloat) *(bp++);  
				*(texturePointer_f++)= (GLfloat) *(ap++);  
			}			
			textureRecord->depth=(usefloatformat==1) ? 64 : 128;
			textureRecord->textureinternalformat = (usefloatformat==1) ? GL_RGBA_FLOAT16_APPLE : GL_RGBA_FLOAT32_APPLE; 
			textureRecord->textureexternalformat = GL_RGBA;

			// Override for missing floating point texture support: Try to use 16 bit fixed point signed normalized textures [-1.0 ; 1.0] resolved at 15 bits:
			if ((usefloatformat==1) && !(windowRecord->gfxcaps & kPsychGfxCapFPTex16)) textureRecord->textureinternalformat = GL_RGBA16_SNORM;
		}		
		// End of HDR conversion code...
	}
    else {
		// Standard LDR texture 8 bpc conversion routines -- Fast path.
		iters = (size_t) xSize * (size_t) ySize;

		// Improved implementation: Takes 13 ms on a 800x800 texture...
		if(isImageMatrixDoubles && numMatrixPlanes==1){
			texturePointer_b=(GLubyte*) texturePointer;
			for(ix=0;ix<iters;ix++){
				*(texturePointer_b++)= (GLubyte) *(doubleMatrix++);  
			}
			textureRecord->depth=8;
		}
		
		// Improved version: Takes 3 ms on a 800x800 texture...
		// NB: Implementing memcpy manually by a for-loop takes 10 ms! This is a huge difference.
		// -> That's because memcpy on MacOS-X is implemented with hand-coded, highly tuned Assembler code for PowerPC.
		// -> It's always wise to use system-routines if available, instead of coding it by yourself!
		if(isImageMatrixBytes && numMatrixPlanes==1) {
			if (texturePointer) {
				// Need to do a copy. Use optimized memcpy():
				memcpy((void*) texturePointer, (void*) byteMatrix, iters);
				
				//texturePointer_b=(GLubyte*) texturePointer;
				//for(ix=0;ix<iters;ix++){
				//	*(texturePointer_b++) = *(byteMatrix++);  
				//}
			}
			else {
				// Zero-Copy path. Just pass a pointer to our input matrix:
				texturePointer = (GLuint*) byteMatrix;
				textureRecord->textureMemory = texturePointer;
				// Set size to zero, so PsychCreateTexture() does not free() our
				// input buffer:
				textureRecord->textureMemorySizeBytes = 0;
			}

			textureRecord->depth=8;
		}
		
		// New version: Takes 33 ms on a 800x800 texture...
		if(isImageMatrixDoubles && numMatrixPlanes==2){
			texturePointer_b=(GLubyte*) texturePointer;
			rp=(double*) ((size_t) doubleMatrix);
			ap=(double*) ((size_t) rp + (size_t) iters * sizeof(double));
			for(ix=0;ix<iters;ix++){
				*(texturePointer_b++)= (GLubyte) *(rp++);  
				*(texturePointer_b++)= (GLubyte) *(ap++);  
			}
			textureRecord->depth=16;
		}
		
		// New version: Takes 20 ms on a 800x800 texture...
		if(isImageMatrixBytes && numMatrixPlanes==2){
			texturePointer_b=(GLubyte*) texturePointer;
			rpb=(GLubyte*) ((size_t) byteMatrix);
			apb=(GLubyte*) ((size_t) rpb + (size_t) iters);
			for(ix=0;ix<iters;ix++){
				*(texturePointer_b++)= *(rpb++);  
				*(texturePointer_b++)= *(apb++);  
			}
			textureRecord->depth=16;
		}
		
		// Improved version: Takes 43 ms on a 800x800 texture...
		if(isImageMatrixDoubles && numMatrixPlanes==3){
			texturePointer_b=(GLubyte*) texturePointer;
			rp=(double*) ((size_t) doubleMatrix);
			gp=(double*) ((size_t) rp + (size_t) iters * sizeof(double));
			bp=(double*) ((size_t) gp + (size_t) iters * sizeof(double));
			for(ix=0;ix<iters;ix++){
				*(texturePointer_b++)= (GLubyte) *(rp++);  
				*(texturePointer_b++)= (GLubyte) *(gp++);  
				*(texturePointer_b++)= (GLubyte) *(bp++);  
			}
			textureRecord->depth=24;
		}
		
		// Improved version: Takes 25 ms on a 800x800 texture...
		if(isImageMatrixBytes && numMatrixPlanes==3){
			texturePointer_b=(GLubyte*) texturePointer;			
			rpb=(GLubyte*) ((size_t) byteMatrix);
			gpb=(GLubyte*) ((size_t) rpb + (size_t) iters);
			bpb=(GLubyte*) ((size_t) gpb + (size_t) iters);
			for(ix=0;ix<iters;ix++){
				*(texturePointer_b++)= *(rpb++);  
				*(texturePointer_b++)= *(gpb++);  
				*(texturePointer_b++)= *(bpb++);  
			}
			textureRecord->depth=24;
		}
		
		// Improved version: Takes 55 ms on a 800x800 texture...
		if(isImageMatrixDoubles && numMatrixPlanes==4){
			texturePointer_b=(GLubyte*) texturePointer;			
			rp=(double*) ((size_t) doubleMatrix);
			gp=(double*) ((size_t) rp + (size_t) iters * sizeof(double));
			bp=(double*) ((size_t) gp + (size_t) iters * sizeof(double));
			ap=(double*) ((size_t) bp + (size_t) iters * sizeof(double));
			if (bigendian) {
				// Code for big-endian machines like PowerPC:
				for(ix=0;ix<iters;ix++){
					*(texturePointer_b++)= (GLubyte) *(ap++);  
					*(texturePointer_b++)= (GLubyte) *(rp++);  
					*(texturePointer_b++)= (GLubyte) *(gp++);  
					*(texturePointer_b++)= (GLubyte) *(bp++);  
				}
			}
			else {
				// Code for little-endian machines like Intel Pentium:
				for(ix=0;ix<iters;ix++){
					*(texturePointer_b++)= (GLubyte) *(bp++);  
					*(texturePointer_b++)= (GLubyte) *(gp++);  
					*(texturePointer_b++)= (GLubyte) *(rp++);  
					*(texturePointer_b++)= (GLubyte) *(ap++);  
				}
			}
			
			textureRecord->depth=32;
		}
		
		// Improved version: Takes 33 ms on a 800x800 texture...
		if(isImageMatrixBytes && numMatrixPlanes==4){
			texturePointer_b=(GLubyte*) texturePointer;			
			rpb=(GLubyte*) ((size_t) byteMatrix);
			gpb=(GLubyte*) ((size_t) rpb + (size_t) iters);
			bpb=(GLubyte*) ((size_t) gpb + (size_t) iters);
			apb=(GLubyte*) ((size_t) bpb + (size_t) iters);
			if (bigendian) {
				// Code for big-endian machines like PowerPC:
				for(ix=0;ix<iters;ix++){
					*(texturePointer_b++)= *(apb++);  
					*(texturePointer_b++)= *(rpb++);  
					*(texturePointer_b++)= *(gpb++);  
					*(texturePointer_b++)= *(bpb++);  
				}
			}
			else {
				// Code for little-endian machines like Intel Pentium:
				for(ix=0;ix<iters;ix++){
					*(texturePointer_b++)= *(bpb++);  
					*(texturePointer_b++)= *(gpb++);  
					*(texturePointer_b++)= *(rpb++);  
					*(texturePointer_b++)= *(apb++);  
				}
			}
			
			textureRecord->depth=32;
		}
	} // End of 8 bpc texture conversion code (fast-path for LDR textures)
    
	// Override for missing floating point texture support?
	if ((usefloatformat==1) && !(windowRecord->gfxcaps & kPsychGfxCapFPTex16)) {
		// Override enabled. Instead of a 16bpc float texture with 11 bit linear precision in the
		// range [-1.0 ; 1.0], we use a 16 bit signed normalized texture with a normalized value
		// range of [-1.0; 1.0], encoded with 1 bit sign and 15 bit magnitude. These textures have
		// an effective linear precision of 15 bits - better than 16 bpc float - but they are restricted
		// to a value range of [-1.0 ; 1.0], as opposed to 16 bpc float textures. Tell user about this
		// replacement at high verbosity levels:
		if (PsychPrefStateGet_Verbosity() > 4)
			printf("PTB-INFO:MakeTexture: Code requested 16 bpc float texture, but this is unsupported. Trying to use 16 bit snorm texture instead.\n");
		
		// Signed normalized textures supported? Otherwise we bail...
		if (!(windowRecord->gfxcaps & kPsychGfxCapSNTex16)) {
			printf("PTB-ERROR:MakeTexture: Code requested 16 bpc floating point texture, but this is unsupported by this graphics card.\n");
			printf("PTB-ERROR:MakeTexture: Tried to use 16 bit snorm texture instead, but failed as this is unsupported as well.\n");
			PsychErrorExitMsg(PsychError_user, "Creation of 15 bit linear precision signed normalized texture failed. Not supported by your graphics hardware!");
		}
		
		// Check value range of pixels. This will not work for out of [-1; 1] range values.
		texturePointer_f=(GLfloat*) texturePointer;
		iters = iters * (size_t) numMatrixPlanes;
		for (ix=0; ix<iters; ix++, texturePointer_f++) {
			if(fabs((double) *texturePointer_f) > 1.0) {
				// Game over!
				printf("PTB-ERROR:MakeTexture: Code requested 16 bpc floating point texture, but this is unsupported by this graphics card.\n");
				printf("PTB-ERROR:MakeTexture: Tried to use 16 bit snorm texture instead, but failed because some pixels are outside the\n");
				printf("PTB-ERROR:MakeTexture: representable range -1.0 to 1.0 for this texture type. Change your code or update your graphics hardware.\n");
				PsychErrorExitMsg(PsychError_user, "Creation of 15 bit linear precision signed normalized texture failed due to out of [-1 ; +1] range pixel values!");
			}
		}
	}

	// This is a special workaround for bugs in FLOAT16 texture creation on Mac OS/X 10.4.x and 10.5.x.
	// The OpenGL fails to properly flush very small values (< 1e-9) to zero when creating a FLOAT16
	// type texture. Instead it seems to initialize with trash data, corrupting the texture.
	// Therefore, if FLOAT16 texture creation is requested, we loop over the whole input buffer and
	// set all values with magnitude smaller than 1e-9 to zero. Better safe than sorry...
	if ((usefloatformat==1) && (windowRecord->gfxcaps & kPsychGfxCapFPTex16)) {
		texturePointer_f=(GLfloat*) texturePointer;
		iters = iters * (size_t) numMatrixPlanes;
		for(ix=0; ix<iters; ix++, texturePointer_f++) if(fabs((double) *texturePointer_f) < 1e-9) { *texturePointer_f = 0.0; }
	}

    // The memory buffer now contains our texture data in a format ready to submit to OpenGL.
    
	// Assign parent window and copy its inheritable properties:
	PsychAssignParentWindow(textureRecord, windowRecord);

    // Texture orientation is zero aka transposed aka non-renderswapped.
    textureRecord->textureOrientation = ((assume_texorientation != 2) && (assume_texorientation != 3)) ? 0 : 2;
    
	// This is our best guess about the number of image channels:
	textureRecord->nrchannels = numMatrixPlanes;

	if (planar_storage) {
		// Setup special rect to fake PsychCreateTexture() into creating a luminance
		// texture numMatrixPlanes times the height (in rows) of the texture, to store the
		// numMatrixPlanes layers concatenated to each other.
		if (textureRecord->textureOrientation == 0) {
			// Normal case: Transposed storage.
			PsychMakeRect(&(textureRecord->rect[0]), 0, 0, xSize * numMatrixPlanes, ySize);
		}
		else {
			// Special case: Non-transposed or isotropic storage:
			PsychMakeRect(&(textureRecord->rect[0]), 0, 0, xSize, ySize * numMatrixPlanes);
		}
		
		// Create planar texture:
		PsychCreateTexture(textureRecord);

		// Restore rect and clientrect of texture to effective size:
		PsychMakeRect(&(textureRecord->rect[0]), 0, 0, xSize, ySize);
		PsychCopyRect(textureRecord->clientrect, textureRecord->rect);
		
		textureRecord->specialflags = kPsychPlanarTexture;
	}
	else {
		// Let's create and bind a new texture object and fill it with our new texture data.
		PsychCreateTexture(textureRecord);
		
		// Assign GLSL filter-/lookup-shaders if needed:
		PsychAssignHighPrecisionTextureShaders(textureRecord, windowRecord, usefloatformat, (usepoweroftwo & 2) ? 1 : 0);
	}
	
	// User specified override shader for this texture provided? This is useful for
	// basic image processing and procedural texture shading:
	if (textureShader!=0) {
		// Assign provided shader as filtershader to this texture: We negate it so
		// that the texture blitter routines know this is a custom shader, not our
		// built in filter shader:
		textureRecord->textureFilterShader = -1 * textureShader;
	}
	
    // Texture ready. Mark it valid and return handle to userspace:
    PsychSetWindowRecordValid(textureRecord);
    PsychCopyOutDoubleArg(1, FALSE, textureRecord->windowIndex);
	
	// Swapping the texture to upright orientation requested?
	if (assume_texorientation == 1) {
		// Transform sourceRecord source texture into a normalized, upright texture if it isn't already in
		// that format. We require this standard orientation for simplified shader design.
		PsychSetShader(windowRecord, 0);
		PsychNormalizeTextureOrientation(textureRecord);
	}
	
	// Shall the texture be finally declared "normally oriented"?
	// This is either due to explicit renderswapping if assume_textureorientation == 1,
	// or because it was already pretransposed in Matlab/Octave if assume_textureorientation == 2,
	// or because user space tells us the texture is isotropic if assume_textureorientation == 3.
	if (assume_texorientation > 0) {
		// Yes. Label it as such:
		textureRecord->textureOrientation = 2;
	}
    
    if(PsychPrefStateGet_DebugMakeTexture()) 	//MARK #4
        StoreNowTime();
    
    return(PsychError_none);
}
예제 #8
0
PsychError SCREENDrawDots(void)
{
    PsychWindowRecordType                   *windowRecord, *parentWindowRecord;
    int                                     m,n,p,mc,nc,idot_type;
    int                                     i, nrpoints, nrsize;
    psych_bool                              isArgThere, usecolorvector, isdoublecolors, isuint8colors;
    double                                  *xy, *size, *center, *dot_type, *colors;
    float                                   *sizef;
    unsigned char                           *bytecolors;
    GLfloat                                 pointsizerange[2];
    psych_bool                              lenient = FALSE;
    psych_bool                              usePointSizeArray = FALSE;
    static psych_bool                       nocando = FALSE;
    int                                     oldverbosity;

    // All sub functions should have these two lines
    PsychPushHelp(useString, synopsisString,seeAlsoString);
    if(PsychIsGiveHelp()){PsychGiveHelp();return(PsychError_none);};

    // Check for superfluous arguments
    PsychErrorExit(PsychCapNumInputArgs(7));   //The maximum number of inputs
    PsychErrorExit(PsychCapNumOutputArgs(4));  //The maximum number of outputs

    // Get the window record from the window record argument and get info from the window record
    PsychAllocInWindowRecordArg(1, kPsychArgRequired, &windowRecord);

    // Get dot_type argument, if any, as it is already needed for a pure point size range query below:
    isArgThere = PsychIsArgPresent(PsychArgIn, 6);
    if(!isArgThere){
        idot_type = 0;
    } else {
        PsychAllocInDoubleMatArg(6, TRUE, &m, &n, &p, &dot_type);
        if(p != 1 || n != 1 || m != 1 || (dot_type[0] < 0 || dot_type[0] > 4))
            PsychErrorExitMsg(PsychError_user, "dot_type must be 0, 1, 2, 3 or 4");
        idot_type = (int) dot_type[0];
    }

    // Query for supported point size range?
    if (PsychGetNumOutputArgs() > 0) {
        PsychSetDrawingTarget(windowRecord);

        // Always query and return aliased range:
        glGetFloatv(GL_ALIASED_POINT_SIZE_RANGE, (GLfloat*) &pointsizerange);
        PsychCopyOutDoubleArg(3, FALSE, (double) pointsizerange[0]);
        PsychCopyOutDoubleArg(4, FALSE, (double) pointsizerange[1]);

        // If driver supports smooth points and usercode doesn't specify a dot type (idot_type 0)
        // or does not request shader + point-sprite based drawing then return smooth point
        // size range as "smooth point size range" - query and assign it. Otherwise, ie., code
        // explicitely wants to use a shader (idot_type >= 3) or has to use one, we will use
        // point-sprites and that means the GL_ALIASED_POINT_SIZE_RANGE limits apply also to
        // our shader based smooth dots, so return those:
        if ((windowRecord->gfxcaps & kPsychGfxCapSmoothPrimitives) && (idot_type < 3))
            glGetFloatv(GL_POINT_SIZE_RANGE, (GLfloat*) &pointsizerange);

        // Whatever the final choice for smooth dots is, return its limits:
        PsychCopyOutDoubleArg(1, FALSE, (double) pointsizerange[0]);
        PsychCopyOutDoubleArg(2, FALSE, (double) pointsizerange[1]);

        // If this was only a query then we are done:
        if (PsychGetNumInputArgs() < 2)
            return(PsychError_none);
    }

    // Query, allocate and copy in all vectors...
    nrpoints = 2;
    nrsize = 0;
    colors = NULL;
    bytecolors = NULL;

    PsychPrepareRenderBatch(windowRecord, 2, &nrpoints, &xy, 4, &nc, &mc, &colors, &bytecolors, 3, &nrsize, &size, (GL_FLOAT == PsychGLFloatType(windowRecord)));
    isdoublecolors = (colors) ? TRUE:FALSE;
    isuint8colors  = (bytecolors) ? TRUE:FALSE;
    usecolorvector = (nc>1) ? TRUE:FALSE;

    // Assign sizef as float-type array of sizes, if float mode active, NULL otherwise:
    sizef = (GL_FLOAT == PsychGLFloatType(windowRecord)) ? (float*) size : NULL;

    // Get center argument
    isArgThere = PsychIsArgPresent(PsychArgIn, 5);
    if(!isArgThere){
        center = (double *) PsychMallocTemp(2 * sizeof(double));
        center[0] = 0;
        center[1] = 0;
    } else {
        PsychAllocInDoubleMatArg(5, TRUE, &m, &n, &p, &center);
        if(p!=1 || n!=2 || m!=1) PsychErrorExitMsg(PsychError_user, "center must be a 1-by-2 vector");
    }

    // Turn on antialiasing to draw circles? Or idot_type 4 for shader based square dots?
    if (idot_type) {
        // Smooth point rendering supported by gfx-driver and hardware? And user does not request our own stuff?
        if ((idot_type == 3) || (idot_type == 4) || !(windowRecord->gfxcaps & kPsychGfxCapSmoothPrimitives)) {
            // No. Need to roll our own shader + point sprite solution.
            if (!windowRecord->smoothPointShader && !nocando) {
                parentWindowRecord = PsychGetParentWindow(windowRecord);
                if (!parentWindowRecord->smoothPointShader) {
                    // Build and assign shader to parent window, but allow this to silently fail:
                    oldverbosity = PsychPrefStateGet_Verbosity();
                    PsychPrefStateSet_Verbosity(0);
                    parentWindowRecord->smoothPointShader = PsychCreateGLSLProgram(PointSmoothFragmentShaderSrc, PointSmoothVertexShaderSrc, NULL);
                    PsychPrefStateSet_Verbosity(oldverbosity);
                }

                if (parentWindowRecord->smoothPointShader) {
                    // Got one compiled - assign it for use:
                    windowRecord->smoothPointShader = parentWindowRecord->smoothPointShader;
                }
                else {
                    // Failed. Record this failure so we can avoid retrying at next DrawDots invocation:
                    nocando = TRUE;
                }
            }

            if (windowRecord->smoothPointShader) {
                // Activate point smooth shader, and point sprite operation on texunit 1 for coordinates on set 1:
                PsychSetShader(windowRecord, windowRecord->smoothPointShader);
                glActiveTexture(GL_TEXTURE1);
                glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE);
                glActiveTexture(GL_TEXTURE0);
                glEnable(GL_POINT_SPRITE);

                // Tell shader from where to get its color information: Unclamped high precision colors from texture coordinate set 0, or regular colors from vertex color attribute?
                glUniform1i(glGetUniformLocation(windowRecord->smoothPointShader, "useUnclampedFragColor"), (windowRecord->defaultDrawShader) ? 1 : 0);

                // Tell shader if it should shade smooth round dots, or square dots:
                glUniform1i(glGetUniformLocation(windowRecord->smoothPointShader, "drawRoundDots"), (idot_type != 4) ? 1 : 0);

                // Tell shader about current point size in pointSize uniform:
                glEnable(GL_PROGRAM_POINT_SIZE);
                usePointSizeArray = TRUE;
            }
            else if (idot_type != 4) {
                // Game over for round dot drawing:
                PsychErrorExitMsg(PsychError_user, "Point smoothing unsupported on your system and our shader based implementation failed as well in Screen('DrawDots').");
            }
            else {
                // Type 4 requested but unsupported. Fallback to type 0, which is the same, just slower:
                idot_type = 0;
            }

            // Request square dots, without anti-aliasing: Better compatibility with
            // shader + point sprite operation, and needed for idot_type 0 fallback.
            glDisable(GL_POINT_SMOOTH);
            glGetFloatv(GL_ALIASED_POINT_SIZE_RANGE, (GLfloat*) &pointsizerange);
        }
        else {
            // User wants hw anti-aliased round smooth dots (idot_type = 1 or 2) and
            // hardware + driver support this. Request smooth points from hardware:
            glEnable(GL_POINT_SMOOTH);
            glGetFloatv(GL_POINT_SIZE_RANGE, (GLfloat*) &pointsizerange);

            // A dot type of 2 requests highest quality point smoothing:
            glHint(GL_POINT_SMOOTH_HINT, (idot_type > 1) ? GL_NICEST : GL_DONT_CARE);
        }
    }
    else {
        glDisable(GL_POINT_SMOOTH);
        glGetFloatv(GL_ALIASED_POINT_SIZE_RANGE, (GLfloat*) &pointsizerange);
    }

    // Does ES-GPU only support a fixed point diameter of 1 pixel?
    if ((pointsizerange[1] <= 1) && PsychIsGLES(windowRecord)) {
        // Yes. Not much point bailing on this, as it should be easily visible
        // during testing of a studies code on a OpenGL-ES device.
        lenient = TRUE;
    }

    // Accept optional 'lenient' flag, if provided:
    PsychCopyInFlagArg(7, FALSE, &lenient);

    // Set size of a single dot:
    if (!lenient && ((sizef && (sizef[0] > pointsizerange[1] || sizef[0] < pointsizerange[0])) ||
        (!sizef && (size[0] > pointsizerange[1] || size[0] < pointsizerange[0])))) {
        printf("PTB-ERROR: You requested a point size of %f units, which is not in the range (%f to %f) supported by your graphics hardware.\n",
                (sizef) ? sizef[0] : size[0], pointsizerange[0], pointsizerange[1]);
        PsychErrorExitMsg(PsychError_user, "Unsupported point size requested in Screen('DrawDots').");
    }

    // Setup initial common point size for all points:
    if (!usePointSizeArray) glPointSize((sizef) ? sizef[0] : (float) size[0]);
    if (usePointSizeArray) glMultiTexCoord1f(GL_TEXTURE2, (sizef) ? sizef[0] : (float) size[0]);

    // Setup modelview matrix to perform translation by 'center':
    glMatrixMode(GL_MODELVIEW);

    // Make a backup copy of the matrix:
    glPushMatrix();

    // Apply a global translation of (center(x,y)) pixels to all following points:
    glTranslatef((float) center[0], (float) center[1], 0);

    // Render the array of 2D-Points - Efficient version:
    // This command sequence allows fast processing of whole arrays
    // of vertices (or points, in this case). It saves the call overhead
    // associated with the original implementation below and is potentially
    // optimized in specific OpenGL implementations.

    // Pass a pointer to the start of the point-coordinate array:
    glVertexPointer(2, PSYCHGLFLOAT, 0, &xy[0]);

    // Enable fast rendering of arrays:
    glEnableClientState(GL_VERTEX_ARRAY);

    if (usecolorvector) {
        PsychSetupVertexColorArrays(windowRecord, TRUE, mc, colors, bytecolors);
    }

    // Render all n points, starting at point 0, render them as POINTS:
    if ((nrsize == 1) || usePointSizeArray) {
        // Only one common size provided, or efficient shader based
        // path in use. We can use the fast path of only submitting
        // one glDrawArrays call to draw all GL_POINTS. For a single
        // common size, no further setup is needed.
        if (nrsize > 1) {
            // Individual size for each dot provided. Setup texture unit 2
            // with a 1D texcoord array that stores per point size info in
            // texture coordinate set 2. But first validate point sizes:
            for (i = 0; i < nrpoints; i++) {
                if (!lenient && ((sizef && (sizef[i] > pointsizerange[1] || sizef[i] < pointsizerange[0])) ||
                    (!sizef && (size[i] > pointsizerange[1] || size[i] < pointsizerange[0])))) {
                    printf("PTB-ERROR: You requested a point size of %f units, which is not in the range (%f to %f) supported by your graphics hardware.\n",
                           (sizef) ? sizef[i] : size[i], pointsizerange[0], pointsizerange[1]);
                    PsychErrorExitMsg(PsychError_user, "Unsupported point size requested in Screen('DrawDots').");
                }
            }

            // Sizes are fine, setup texunit 2:
            glClientActiveTexture(GL_TEXTURE2);
            glEnableClientState(GL_TEXTURE_COORD_ARRAY);
            glTexCoordPointer(1, (sizef) ? GL_FLOAT : GL_DOUBLE, 0, (sizef) ? (const GLvoid*) sizef : (const GLvoid*) size);
        }

        // Draw all points:
        glDrawArrays(GL_POINTS, 0, nrpoints);

        if (nrsize > 1) {
            // Individual size for each dot provided. Reset texture unit 2:
            glTexCoordPointer(1, (sizef) ? GL_FLOAT : GL_DOUBLE, 0, (const GLvoid*) NULL);
            glDisableClientState(GL_TEXTURE_COORD_ARRAY);

            // Back to default texunit 0:
            glClientActiveTexture(GL_TEXTURE0);
        }
    }
    else {
        // Different size for each dot provided and we can't use our shader based implementation:
        // We have to do One GL - call per dot:
        for (i=0; i<nrpoints; i++) {
            if (!lenient && ((sizef && (sizef[i] > pointsizerange[1] || sizef[i] < pointsizerange[0])) ||
                (!sizef && (size[i] > pointsizerange[1] || size[i] < pointsizerange[0])))) {
                printf("PTB-ERROR: You requested a point size of %f units, which is not in the range (%f to %f) supported by your graphics hardware.\n",
                        (sizef) ? sizef[i] : size[i], pointsizerange[0], pointsizerange[1]);
                PsychErrorExitMsg(PsychError_user, "Unsupported point size requested in Screen('DrawDots').");
            }

            // Setup point size for this point:
            if (!usePointSizeArray) glPointSize((sizef) ? sizef[i] : (float) size[i]);

            // Render point:
            glDrawArrays(GL_POINTS, i, 1);
        }
    }

    // Disable fast rendering of arrays:
    glDisableClientState(GL_VERTEX_ARRAY);
    glVertexPointer(2, PSYCHGLFLOAT, 0, NULL);

    if (usecolorvector) PsychSetupVertexColorArrays(windowRecord, FALSE, 0, NULL, NULL);

    // Restore old matrix from backup copy, undoing the global translation:
    glPopMatrix();

    // turn off antialiasing again
    if (idot_type) {
        glDisable(GL_POINT_SMOOTH);

        if (windowRecord->smoothPointShader) {
            // Deactivate point smooth shader and point sprite operation on texunit 1:
            PsychSetShader(windowRecord, 0);
            glActiveTexture(GL_TEXTURE1);
            glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_FALSE);
            glActiveTexture(GL_TEXTURE0);
            glDisable(GL_POINT_SPRITE);
            glDisable(GL_PROGRAM_POINT_SIZE);
        }
    }

    // Reset pointsize to 1.0
    glPointSize(1);

    // Mark end of drawing op. This is needed for single buffered drawing:
    PsychFlushGL(windowRecord);

    //All psychfunctions require this.
    return(PsychError_none);
}
예제 #9
0
PsychError SCREENDrawLine(void)  
{
	
	PsychColorType					color;
	PsychWindowRecordType			*windowRecord;
	double							whiteValue;
	psych_bool						isArgThere;
	double							sX, sY, dX, dY, penSize;
	float                           linesizerange[2];

	//all sub functions should have these two lines
	PsychPushHelp(useString, synopsisString,seeAlsoString);
	if(PsychIsGiveHelp()){PsychGiveHelp();return(PsychError_none);};
	
	//check for superfluous arguments
	PsychErrorExit(PsychCapNumInputArgs(7));   //The maximum number of inputs
	PsychErrorExit(PsychCapNumOutputArgs(0));  //The maximum number of outputs

	//get the window record from the window record argument and get info from the window record
	PsychAllocInWindowRecordArg(1, kPsychArgRequired, &windowRecord);
	
	//Get the color argument or use the default, then coerce to the form determened by the window depth.  
	isArgThere=PsychCopyInColorArg(2, FALSE, &color);
	if(!isArgThere){
		whiteValue=PsychGetWhiteValueFromWindow(windowRecord);
		PsychLoadColorStruct(&color, kPsychIndexColor, whiteValue ); //index mode will coerce to any other.
	}

 	PsychCoerceColorMode( &color);
        
	//get source and destination X and Y values
	PsychCopyInDoubleArg(3, kPsychArgRequired, &sX);
	PsychCopyInDoubleArg(4, kPsychArgRequired, &sY);
	PsychCopyInDoubleArg(5, kPsychArgRequired, &dX);
	PsychCopyInDoubleArg(6, kPsychArgRequired, &dY);
	
	//get and set the pen size
	penSize=1;
	PsychCopyInDoubleArg(7, kPsychArgOptional, &penSize);
	
	// Enable this windowRecords framebuffer as current drawingtarget:
	PsychSetDrawingTarget(windowRecord);

	// Set default draw shader:
	PsychSetShader(windowRecord, -1);

    glGetFloatv(GL_LINE_WIDTH_RANGE, (GLfloat*) &linesizerange);
    if (penSize < linesizerange[0] || penSize > linesizerange[1]) {
		printf("PTB-ERROR: You requested a line width of %f units, which is not in the range (%f to %f) supported by your graphics hardware.\n",
			   penSize, linesizerange[0], linesizerange[1]);
		PsychErrorExitMsg(PsychError_user, "Unsupported line width requested.");
	}

	glLineWidth((GLfloat)penSize);

	PsychUpdateAlphaBlendingFactorLazily(windowRecord);
	PsychSetGLColor(&color, windowRecord);
	glBegin(GL_LINES);
		glVertex2d((GLdouble)sX, (GLdouble)sY);
		glVertex2d((GLdouble)dX, (GLdouble)dY);
	glEnd();
	
	glLineWidth((GLfloat) 1);

	// Mark end of drawing op. This is needed for single buffered drawing:
	PsychFlushGL(windowRecord);

	return(PsychError_none);
}
PsychError SCREENTransformTexture(void)
{
    PsychWindowRecordType *sourceRecord, *targetRecord, *proxyRecord, *sourceRecord2;
    int testarg, specialFlags, usefloatformat, d;

    // All subfunctions should have these two lines.
    PsychPushHelp(useString, synopsisString, seeAlsoString);
    if (PsychIsGiveHelp()) { PsychGiveHelp(); return(PsychError_none); };

    PsychErrorExit(PsychCapNumInputArgs(5));
    PsychErrorExit(PsychRequireNumInputArgs(2));
    PsychErrorExit(PsychCapNumOutputArgs(1));

    // OpenGL FBO's supported? Otherwise this is a no-go...
    if (glBindFramebufferEXT == NULL || glUseProgram == NULL) {
        // Game over!
        printf("PTB-ERROR: Sorry, your graphics driver & hardware does not support the required OpenGL framebuffer object extension or\n");
        printf("PTB-ERROR: the OpenGL shading language for hardware accelerated fragment processing. This function is therefore disabled.\n");
        printf("PTB-ERROR: You will need at least a NVidia GeforceFX-5200, a ATI Radeon 9600 or a Intel GMA-950 graphics card for this\n");
        printf("PTB-ERROR: to work. If you have such a card (or a more recent one) then you'll need to update your graphics drivers.\n\n");

        PsychErrorExitMsg(PsychError_user, "Screen('TransformTexture') command unsupported on your combination of graphics hardware & driver.");
    }

    // Get the window structure for the source texture.
    PsychAllocInWindowRecordArg(1, TRUE, &sourceRecord);
    if (!PsychIsTexture(sourceRecord))
        PsychErrorExitMsg(PsychError_user, "'sourceTexture' argument must be a handle to a texture or offscreen window.");

    // Get the window structure for the proxy object.
    PsychAllocInWindowRecordArg(2, TRUE, &proxyRecord);
    if (proxyRecord->windowType != kPsychProxyWindow)
        PsychErrorExitMsg(PsychError_user, "'transformProxyPtr' argument must be a handle to a proxy object.");

    // Test if optional specialFlags are provided:
    specialFlags = 0;
    PsychCopyInIntegerArg(5, FALSE, &specialFlags);

    // Activate rendering context of the proxy object and soft-reset the drawing engine,
    // so we're in a well defined state. The value 1 means: Reset safely, ie. do any
    // framebuffer backups that might be needed before NULL-ing the binding:
    PsychSetDrawingTarget((PsychWindowRecordType*) 0x1);

    PsychSetGLContext(proxyRecord);

    // Save all state:
    glPushAttrib(GL_ALL_ATTRIB_BITS);

    // Disable alpha-blending:
    glDisable(GL_BLEND);

    // Reset color write mask to "all enabled"
    glColorMask(GL_TRUE,GL_TRUE,GL_TRUE,GL_TRUE);

    // Disable any shaders:
    PsychSetShader(proxyRecord, 0);

    // Transform sourceRecord source texture into a normalized, upright texture if it isn't already in
    // that format. We require this standard orientation for simplified shader design.
    if (!(specialFlags & 1))
        PsychNormalizeTextureOrientation(sourceRecord);

    // Test if optional 2nd source texture is provided:
    testarg = 0;
    PsychCopyInIntegerArg(3, FALSE, &testarg);
    if (testarg != 0) {
        // Tes. Get the window structure for the 2nd source texture.
        PsychAllocInWindowRecordArg(3, TRUE, &sourceRecord2);
        if (!PsychIsTexture(sourceRecord2))
            PsychErrorExitMsg(PsychError_user, "'sourceTexture2' argument must be a handle to a texture or offscreen window.");

        // Transform sourceRecord2 source texture into a normalized, upright texture if it isn't already in
        // that format. We require this standard orientation for simplified shader design.
        if (!(specialFlags & 1))
            PsychNormalizeTextureOrientation(sourceRecord2);
    }
    else {
        // No secondary source texture:
        sourceRecord2 = NULL;
    }

    // Restore proper rendering context:
    PsychSetGLContext(proxyRecord);

    // Test if optional target texture is provided:
    testarg = 0;
    PsychCopyInIntegerArg(4, FALSE, &testarg);

    // Do we need to create a new one from scratch?
    if (testarg == 0) {
        // No valid textureHandle provided. Create a new empty textureRecord which clones some
        // of the properties of the sourceRecord
        targetRecord = NULL;
        PsychCreateWindowRecord(&targetRecord);
        PsychInitWindowRecordTextureFields(targetRecord);

        targetRecord->windowType=kPsychTexture;
        targetRecord->screenNumber = sourceRecord->screenNumber;

        // Assign parent window and copy its inheritable properties:
        PsychAssignParentWindow(targetRecord, sourceRecord);

        targetRecord->depth = sourceRecord->depth;

        // Assume this texture has four channels.
        targetRecord->nrchannels = 4;

        PsychCopyRect(targetRecord->rect, sourceRecord->rect);
        PsychCopyRect(targetRecord->clientrect, targetRecord->rect);

        targetRecord->texturetarget = sourceRecord->texturetarget;

        // Orientation is set to 2 - like an upright Offscreen window texture:
        targetRecord->textureOrientation = 2;

        // Mark it valid and return handle to userspace:
        PsychSetWindowRecordValid(targetRecord);
    }
    else {
        // Get the window structure for the target texture.
        PsychAllocInWindowRecordArg(4, TRUE, &targetRecord);
        if (!PsychIsTexture(targetRecord))
            PsychErrorExitMsg(PsychError_user, "'targetTexture' argument must be a handle to a texture or offscreen window.");
    }

    // Make sure our source textures have at least a pseudo FBO for read-access:
    PsychCreateShadowFBOForTexture(sourceRecord, FALSE, -1);
    if (sourceRecord2)
        PsychCreateShadowFBOForTexture(sourceRecord2, FALSE, -1);

    // Make sure the target texture is upright/normalized:
    if (!(specialFlags & 1))
        PsychNormalizeTextureOrientation(targetRecord);

    // Make sure our target texture has a full-blown FBO attached as a rendertarget.
    // As our proxy object defines the image processing ops, it also defines the
    // required imagingMode properties for the target texture:
    PsychCreateShadowFBOForTexture(targetRecord, TRUE, proxyRecord->imagingMode);

    // Assign GLSL filter-/lookup-shaders if needed: usefloatformat is queried.
    // The 'userRequest' flag is set depending on specialFlags setting & 2.
    glBindTexture(targetRecord->texturetarget, targetRecord->textureNumber);
    glGetTexLevelParameteriv(targetRecord->texturetarget, 0, GL_TEXTURE_RED_SIZE, (GLint*) &d);
    if (d <= 0)
        glGetTexLevelParameteriv(targetRecord->texturetarget, 0, GL_TEXTURE_LUMINANCE_SIZE, (GLint*) &d);
    glBindTexture(targetRecord->texturetarget, 0);

    usefloatformat = 0;
    if (d == 16) usefloatformat = 1;
    if (d >= 32) usefloatformat = 2;
    PsychAssignHighPrecisionTextureShaders(targetRecord, sourceRecord, usefloatformat, (specialFlags & 2) ?  1 : 0);

    // Make sure our proxy has suitable bounce buffers if we need any:
    if (proxyRecord->imagingMode & (kPsychNeedDualPass | kPsychNeedMultiPass)) {
        // Needs multi-pass processing. Create bounce buffer if neccessary:
        PsychCopyRect(proxyRecord->rect, targetRecord->rect);
        PsychCopyRect(proxyRecord->clientrect, targetRecord->rect);

        // Build FBO for bounce-buffering. This will always be upright/normalized,
        // so no need to normalize "texture orientation" for proxyRecord bounce buffers:
        PsychCreateShadowFBOForTexture(proxyRecord, TRUE, proxyRecord->imagingMode);
    }

    // Make sure we don't have VRAM memory feedback loops:
    if ((sourceRecord->textureNumber == targetRecord->textureNumber) ||
        (sourceRecord2 && (sourceRecord2->textureNumber == targetRecord->textureNumber)))
        PsychErrorExitMsg(PsychError_user, "Source texture and target texture must be different!");

    // Apply image processing operation: Use ressources and OpenGL context of proxyRecord, run user defined blit chain,
    // Don't supply user specific data (NULL), don't supply override blitter (NULL), source is read-only (TRUE), no
    // swizzle allowed (FALSE), sourceRecord is source, targetRecord is destination, bounce buffers provided by proxyRecord,
    // no secondary FBO available (NULL).
    PsychPipelineExecuteHook(proxyRecord, kPsychUserDefinedBlit, NULL, NULL, TRUE, FALSE,
                             &(sourceRecord->fboTable[sourceRecord->drawBufferFBO[0]]), (sourceRecord2) ? &(sourceRecord2->fboTable[sourceRecord2->drawBufferFBO[0]]) : NULL,
                             &(targetRecord->fboTable[targetRecord->drawBufferFBO[0]]), (proxyRecord->drawBufferFBO[0]!=-1) ? &(proxyRecord->fboTable[proxyRecord->drawBufferFBO[0]]) : NULL);

    // Restore previous settings:
    glPopAttrib();

    // Set "dirty" flag on texture: (Ab)used to trigger regeneration of mip-maps during texture drawing of mip-mapped textures.
    targetRecord->needsViewportSetup = TRUE;

    //Return the window index and the rect argument.
    PsychCopyOutDoubleArg(1, FALSE, targetRecord->windowIndex);

    // Done.
    return(PsychError_none);
}
PsychError SCREENOpenOffscreenWindow(void) 
{
    int						screenNumber, depth, targetScreenNumber;
    PsychRectType			rect;
    PsychColorType			color;
    PsychWindowRecordType	*exampleWindowRecord, *windowRecord, *targetWindow;
    psych_bool				wasColorSupplied;
    char*					texturePointer;
    size_t					xSize, ySize, nbytes;
    psych_bool				bigendian;
	GLubyte					*rpb;
    int						ix;
	GLenum					fboInternalFormat;
	psych_bool				needzbuffer;
	psych_bool				overridedepth = FALSE;
	int						usefloatformat = 0;
	int						specialFlags = 0;
	int						multiSample = 0;
	
    // Detect endianity (byte-order) of machine:
    ix=255;
    rpb=(GLubyte*) &ix;
    bigendian = ( *rpb == 255 ) ? FALSE : TRUE;
    ix = 0; rpb = NULL;

    //all sub functions should have these two lines
    PsychPushHelp(useString, synopsisString, seeAlsoString);
    if(PsychIsGiveHelp()){PsychGiveHelp();return(PsychError_none);};

    //cap the number of inputs
    PsychErrorExit(PsychCapNumInputArgs(6));   //The maximum number of inputs
    PsychErrorExit(PsychCapNumOutputArgs(2));  //The maximum number of outputs

    //1-User supplies a window ptr 2-User supplies a screen number 3-User supplies rect and pixel size
    if(PsychIsWindowIndexArg(1)){
        PsychAllocInWindowRecordArg(1, TRUE, &exampleWindowRecord);
		// Assign normalized copy of example windows rect -- Top-Left corner is always (0,0)
		PsychNormalizeRect(exampleWindowRecord->clientrect, rect);

        // We copy depth only from exampleWindow if it is a offscreen window (=texture). Copying from
        // onscreen windows doesn't make sense, e.g. depth=16 for onscreen means RGBA8 window, but it
        // would map onto a LUMINANCE+ALPHA texture for the offscreen window! We always use 32 bit RGBA8
        // in such a case.
        depth=(PsychIsOffscreenWindow(exampleWindowRecord)) ? exampleWindowRecord->depth : 32;
		// unless it is a FBO backed onscreen window in imaging mode: Then we can use the depth from it.
		if (exampleWindowRecord->imagingMode & kPsychNeedFastBackingStore || exampleWindowRecord->imagingMode & kPsychNeedFastOffscreenWindows) depth = exampleWindowRecord->depth;
        targetScreenNumber=exampleWindowRecord->screenNumber;
        targetWindow=exampleWindowRecord;
    } else if(PsychIsScreenNumberArg(1)){
        PsychCopyInScreenNumberArg(1, TRUE, &screenNumber);
        PsychGetScreenRect(screenNumber, rect);
        depth=32; // Always use RGBA8 in this case! See above...
        targetScreenNumber=screenNumber;
        targetWindow=NULL;
    } else if(PsychIsUnaffiliatedScreenNumberArg(1)){  //that means -1 or maybe also NaN if we add that option.  
        // Default to a depth of 32 bpp:
        depth = 32;
        targetWindow = NULL;
        // Get first open onscreen window as target window:
        PsychFindScreenWindowFromScreenNumber(kPsychUnaffiliatedWindow, &targetWindow);
		if (targetWindow == NULL) PsychErrorExitMsg(PsychError_user, "Could not find any open onscreen window to act as parent for this offscreen window. Open an onscreen window first!");
		targetScreenNumber = targetWindow->screenNumber;
        PsychGetScreenRect(targetScreenNumber, rect);
    } else {
        targetScreenNumber = 0; // Make compiler happy.
        PsychErrorExit(PsychError_invalidNumdex);
    }

    if (targetWindow==NULL) {
        // Get target window of screen:
        PsychFindScreenWindowFromScreenNumber(targetScreenNumber, &targetWindow);
		if (targetWindow == NULL) PsychErrorExitMsg(PsychError_user, "Could not find any open onscreen window to act as parent for this offscreen window. Open an onscreen window first!");
		targetScreenNumber = targetWindow->screenNumber;
    }
    
    //Depth and rect argument supplied as arguments override those inherited from reference screen or window.
    //Note that PsychCopyIn* prefix means that value will not be overwritten if the arguments are not present.
    PsychCopyInRectArg(3,FALSE, rect);
    if (IsPsychRectEmpty(rect)) PsychErrorExitMsg(PsychError_user, "Invalid rect value provided: Empty rects are not allowed.");

	// Copy in optional depth: This gets overriden in many ways if imaging pipeline is on:
    if (PsychCopyInIntegerArg(4,FALSE, &depth)) overridedepth = TRUE;

    // If any of the no longer supported values 0, 1, 2 or 4 is provided, we
    // silently switch to 32 bits per pixel, which is the safest and fastest setting:
    if (depth==0 || depth==1 || depth==2 || depth==4) depth=32;

    // Final sanity check:
	if (!(targetWindow->imagingMode & kPsychNeedFastOffscreenWindows) && !(targetWindow->imagingMode & kPsychNeedFastBackingStore) && (depth==64 || depth==128)) {
      PsychErrorExitMsg(PsychError_user, "Invalid depth value provided. Must be 8 bpp, 16 bpp, 24 bpp or 32 bpp, unless you enable the imaging pipeline, which provides you with more options!");
	}
	
    if (depth!=8 && depth!=16 && depth!=24 && depth!=32 && depth!=64 && depth!=128) {
      PsychErrorExitMsg(PsychError_user, "Invalid depth value provided. Must be 8 bpp, 16 bpp, 24 bpp, 32 bpp, or if imagingmode is enabled also 64 bpp or 128 bpp!");
    }

	// If the imaging pipeline is enabled for the associated onscreen window and fast backing store, aka FBO's
	// is requested, then we only accept depths of at least 32 bit, i.e. RGBA windows. We override any lower
	// precision spec. This is because some common hardware only supports rendering to RGBA textures, not to
	// RGB, LA or Luminance textures.
	if ((targetWindow->imagingMode & kPsychNeedFastBackingStore || targetWindow->imagingMode & kPsychNeedFastOffscreenWindows) && (depth < 32)) depth = 32;

    // Find the color for the window background.  
    wasColorSupplied=PsychCopyInColorArg(kPsychUseDefaultArgPosition, FALSE, &color);
	
	// If none provided, use a proper white-value for this window:
    if(!wasColorSupplied) PsychLoadColorStruct(&color, kPsychIndexColor, PsychGetWhiteValueFromWindow(targetWindow));  

    // Get the optional specialmode flag:
    PsychCopyInIntegerArg(5, FALSE, &specialFlags);

    // OpenGL-ES only supports GL_TEXTURE_2D targets, so enforce these via flags setting 1:
    if (PsychIsGLES(targetWindow)) specialFlags |= 1;

	// This command converts whatever color we got into RGBA format:
    PsychCoerceColorMode(&color);

    // printf("R=%i G=%i B=%i A=%i I=%i", color.value.rgba.r, color.value.rgba.g,color.value.rgba.b,color.value.rgba.a,color.value.index); 
    // First allocate the offscreen window record to store stuff into. If we exit with an error PsychErrorExit() should
    // call PsychPurgeInvalidWindows which will clean up the window record. 
    PsychCreateWindowRecord(&windowRecord);  // This also fills the window index field.

    // This offscreen window is implemented as a Psychtoolbox texture:
    windowRecord->windowType=kPsychTexture;

    // We need to assign the screen number of the onscreen-window, so PsychCreateTexture()
    // can query the size of the screen/onscreen-window...
    windowRecord->screenNumber = targetScreenNumber;

    // Assign the computed depth:
    windowRecord->depth=depth;

	// Default number of channels:
	windowRecord->nrchannels=depth / 8;

    // Assign the computed rect, but normalize it to start with top-left at (0,0):
    PsychNormalizeRect(rect, windowRecord->rect);

    // Client rect of an offscreen window is always == rect of it:
    PsychCopyRect(windowRecord->clientrect, windowRecord->rect);
    
	// Until here no OpenGL commands executed. Now we need a valid context: Set targetWindow
	// as drawing target. This will perform neccessary context-switch and all backbuffer
	// backup/restore/whatever operations to make sure we can do what we want without
	// possibly screwing any offscreen windows and bindings:
	if (PsychIsOnscreenWindow(targetWindow) || PsychIsOffscreenWindow(targetWindow)) {
		// This is a possible on-/offscreen drawingtarget:
		PsychSetDrawingTarget(targetWindow);
	}
	else {
		// This must be a proxy-window object: Can't transition to it!
		
		// But we can safe-reset the current drawingtarget...
		PsychSetDrawingTarget((PsychWindowRecordType*) 0x1);
		
		// ...and then switch to the OpenGL context of the 'targetWindow' proxy object:
		PsychSetGLContext(targetWindow);

		// Ok, framebuffer and bindings are safe and disabled, context is set. We
		// should be safe to continue with the proxy...
	}
	
	// From here on we have a defined context and state. We can detach the drawing target whenever
	// we want, as everything is backed up somewhere for later reinit.
	
	// Create offscreen window either new style as FBO, or old style as texture:
	if ((targetWindow->imagingMode & kPsychNeedFastBackingStore) || (targetWindow->imagingMode & kPsychNeedFastOffscreenWindows)) {
		// Imaging mode for this window enabled: Use new way of creating the offscreen window:
		
		// We safely unbind any FBO bindings and drawingtargets:
		PsychSetDrawingTarget((PsychWindowRecordType*) 0x1);
		
		// Overriden for imagingmode: There we always have 4 channels...
		windowRecord->nrchannels=4;

		// Start off with standard 8 bpc fixed point:
		fboInternalFormat = GL_RGBA8; windowRecord->depth=32; usefloatformat = 0;
		
		// Need 16 bpc fixed point precision?
		if (targetWindow->imagingMode & kPsychNeed16BPCFixed) {
			fboInternalFormat = (targetWindow->gfxcaps & kPsychGfxCapSNTex16) ? GL_RGBA16_SNORM : GL_RGBA16;
			windowRecord->depth=64;
			usefloatformat = 0;
		}
		
		// Need 16 bpc floating point precision?
		if (targetWindow->imagingMode & kPsychNeed16BPCFloat) { fboInternalFormat = GL_RGBA_FLOAT16_APPLE; windowRecord->depth=64; usefloatformat = 1; }
		
		// Need 32 bpc floating point precision?
		if (targetWindow->imagingMode & kPsychNeed32BPCFloat) { fboInternalFormat = GL_RGBA_FLOAT32_APPLE; windowRecord->depth=128; usefloatformat = 2; }
		
		// Override depth value provided?
		if (overridedepth) {
			// Manual depth specified: Override with that depth:
			switch(depth) {
				case 32:
					fboInternalFormat = GL_RGBA8; windowRecord->depth=32; usefloatformat = 0;
				break;

				case 64:
					fboInternalFormat = GL_RGBA_FLOAT16_APPLE; windowRecord->depth=64; usefloatformat = 1;
					// Need fallback for lack of float 16 support?
					if (!(targetWindow->gfxcaps & kPsychGfxCapFPTex16) && !PsychIsGLES(targetWindow)) {
						// Yes. Try 16 bit signed normalized texture instead:
						if (PsychPrefStateGet_Verbosity() > 4)
							printf("PTB-INFO:OpenOffscreenWindow: Code requested 16 bpc float precision, but this is unsupported. Trying to use 15 bit snorm precision instead.\n");
						fboInternalFormat = GL_RGBA16_SNORM; windowRecord->depth=64; usefloatformat = 0;
						if (!(targetWindow->gfxcaps & kPsychGfxCapSNTex16)) {
							printf("PTB-ERROR:OpenOffscreenWindow: Code requested 16 bpc float precision, but this is unsupported by this graphics card.\n");
							printf("PTB-ERROR:OpenOffscreenWindow: Tried to use 16 bit snorm format instead, but failed as this is unsupported as well.\n");
						}
					}
				break;

				case 128:
					fboInternalFormat = GL_RGBA_FLOAT32_APPLE; windowRecord->depth=128; usefloatformat = 2;
				break;
				
				default:
					fboInternalFormat = GL_RGBA8; windowRecord->depth=32; usefloatformat = 0;
			}			
		}
		
        // Floating point framebuffer on OpenGL-ES requested?
        if (PsychIsGLES(targetWindow) && (usefloatformat > 0)) {
            // Yes. We only support 32 bpc float framebuffers with alpha-blending. On less supportive hardware we fail:
            if (!(targetWindow->gfxcaps & kPsychGfxCapFPTex32) || !(targetWindow->gfxcaps & kPsychGfxCapFPFBO32)) {
                PsychErrorExitMsg(PsychError_user, "Sorry, the requested offscreen window color resolution of 32 bpc floating point is not supported by your graphics card. Game over.");
            }

            // Supported. Upgrade requested format to 32 bpc float, whatever it was before:
            fboInternalFormat = GL_RGBA_FLOAT32_APPLE; windowRecord->depth=128; usefloatformat = 2;
        }

		// Do we need additional depth buffer attachments?
		needzbuffer = (PsychPrefStateGet_3DGfx()>0) ? TRUE : FALSE;
		
		// Copy in optional multiSample argument: It defaults to zero, aka multisampling disabled.
		PsychCopyInIntegerArg(6, FALSE, &multiSample);
		if (multiSample < 0) PsychErrorExitMsg(PsychError_user, "Invalid negative multiSample level provided!");

		// Multisampled anti-aliasing requested?
		if (multiSample > 0) {
			// Yep. Supported by GPU?
			if (!(targetWindow->gfxcaps & kPsychGfxCapFBOMultisample)) {
				// No. We fall back to non-multisampled mode:
				multiSample = 0;
				
				// Tell user if warnings enabled:
				if (PsychPrefStateGet_Verbosity() > 1) {
					printf("PTB-WARNING: You requested stimulus anti-aliasing via multisampling by setting the multiSample parameter of Screen('OpenOffscreenWindow', ...) to a non-zero value.\n");
					printf("PTB-WARNING: You also requested use of the imaging pipeline. Unfortunately, your combination of operating system, graphics hardware and driver does not\n");
					printf("PTB-WARNING: support simultaneous use of the imaging pipeline and multisampled anti-aliasing.\n");
					printf("PTB-WARNING: Will therefore continue without anti-aliasing...\n\n");
					printf("PTB-WARNING: A driver upgrade may resolve this issue. Users of MacOS-X need at least OS/X 10.5.2 Leopard for support on recent ATI hardware.\n\n");
				}
			}
		}

		// Allocate framebuffer object for this Offscreen window:
		if (!PsychCreateFBO(&(windowRecord->fboTable[0]), fboInternalFormat, needzbuffer, (int) PsychGetWidthFromRect(rect), (int) PsychGetHeightFromRect(rect), multiSample, specialFlags)) {
			// Failed!
			PsychErrorExitMsg(PsychError_user, "Creation of Offscreen window in imagingmode failed for some reason :(");
		}

		// Assign this FBO as drawBuffer for mono channel of our Offscreen window:
		windowRecord->drawBufferFBO[0] = 0;
		windowRecord->fboCount = 1;
		
		// Assign it as texture as well:
		windowRecord->textureNumber = windowRecord->fboTable[0]->coltexid;
		windowRecord->textureMemorySizeBytes = 0;
		windowRecord->textureMemory = NULL;
		windowRecord->texturetarget = (specialFlags & 0x1) ? GL_TEXTURE_2D : GL_TEXTURE_RECTANGLE_EXT;
		windowRecord->surfaceSizeBytes = (size_t) (PsychGetWidthFromRect(rect) * PsychGetHeightFromRect(rect) * (windowRecord->depth / 8));

		// Set bpc for FBO backed offscreen window:
		windowRecord->bpc = (int) (windowRecord->depth / 4);

		// Initial setup done, continues below after some shared code...
	}
	else {
		// Traditional texture creation code:
		
		// Special case for alpha-channel: DBL_MAX signals maximum alpha
		// value requested. In our own code we need to manually map this to
		// the maximum uint8 alpha value of 255:
		if (color.value.rgba.a == DBL_MAX) color.value.rgba.a = 255;
		
		// Allocate the texture memory:
		// We only allocate the amount really needed for given format, aka numMatrixPlanes - Bytes per pixel.
		xSize = (size_t) PsychGetWidthFromRect(rect);
		ySize = (size_t) PsychGetHeightFromRect(rect);
		windowRecord->textureMemorySizeBytes = ((size_t) (depth/8)) * xSize * ySize;
		windowRecord->textureMemory = malloc(windowRecord->textureMemorySizeBytes);
		texturePointer=(char*) windowRecord->textureMemory;
		// printf("depth=%i xsize=%i ysize=%i mem=%i ptr=%p", depth, xSize, ySize, windowRecord->textureMemorySizeBytes, texturePointer);
		// Fill with requested background color:
		nbytes=0;
		switch (depth) {
			case 8: // Pure LUMINANCE texture:
				memset((void*) texturePointer, (int) color.value.rgba.r, windowRecord->textureMemorySizeBytes);
				break;
				
			case 16: // LUMINANCE + ALPHA
				while (nbytes < windowRecord->textureMemorySizeBytes) {
					*(texturePointer++) = (psych_uint8) color.value.rgba.r;
					*(texturePointer++) = (psych_uint8) color.value.rgba.a;
					nbytes+=2;
				}
				break;
				
			case 24: // RGB:
				while (nbytes < windowRecord->textureMemorySizeBytes) {
					*(texturePointer++) = (psych_uint8) color.value.rgba.r;
					*(texturePointer++) = (psych_uint8) color.value.rgba.g;
					*(texturePointer++) = (psych_uint8) color.value.rgba.b;
					nbytes+=3;
				}
				break;        
				
			case 32: // RGBA
				if (bigendian) {
					// Code for big-endian machines, e.g., PowerPC:
					while (nbytes < windowRecord->textureMemorySizeBytes) {
						*(texturePointer++) = (psych_uint8) color.value.rgba.a;
						*(texturePointer++) = (psych_uint8) color.value.rgba.r;
						*(texturePointer++) = (psych_uint8) color.value.rgba.g;
						*(texturePointer++) = (psych_uint8) color.value.rgba.b;
						nbytes+=4;
					}
				}
				else {
					// Code for little-endian machines, e.g., IntelPC, IntelMAC, aka Pentium.
					while (nbytes < windowRecord->textureMemorySizeBytes) {
						*(texturePointer++) = (psych_uint8) color.value.rgba.b;
						*(texturePointer++) = (psych_uint8) color.value.rgba.g;
						*(texturePointer++) = (psych_uint8) color.value.rgba.r;
						*(texturePointer++) = (psych_uint8) color.value.rgba.a;
						nbytes+=4;
					}
				}
				break;
		}
	}
	
	// Shared setup code for FBO vs. non-FBO Offscreen windows:
	
	// Assign parent window and copy its inheritable properties:
	PsychAssignParentWindow(windowRecord, targetWindow);
	
    // Texture orientation is type 2 aka upright, non-transposed aka Offscreen window:
    windowRecord->textureOrientation = 2;
    
	if ((windowRecord->imagingMode & kPsychNeedFastBackingStore) || (windowRecord->imagingMode & kPsychNeedFastOffscreenWindows)) {
		// Last step for FBO backed Offscreen window: Clear it to its background color:
		PsychSetDrawingTarget(windowRecord);

		// Set default draw shader:
		PsychSetShader(windowRecord, -1);
	
		// Set background fill color:
		PsychSetGLColor(&color, windowRecord);

		// Setup alpha-blending:
		PsychUpdateAlphaBlendingFactorLazily(windowRecord);

		// Fullscreen fill of a non-onscreen window:
		PsychGLRect(windowRecord->rect);

		// Multisampling requested? If so, we need to enable it:
		if (multiSample > 0) {
			glEnable(GL_MULTISAMPLE);
			while (glGetError() != GL_NO_ERROR);
		}
		
		// Ready. Unbind it.
		PsychSetDrawingTarget(NULL);		
	}
	else {
		// Old-style setup for non-FBO Offscreen windows:
        
        // Special texture format?
		if (specialFlags & 0x1) windowRecord->texturetarget = GL_TEXTURE_2D;
        
		// Let's create and bind a new texture object and fill it with our new texture data.
		PsychCreateTexture(windowRecord);
    }

	// Assign GLSL filter-/lookup-shaders if needed:
	PsychAssignHighPrecisionTextureShaders(windowRecord, targetWindow, usefloatformat, (specialFlags & 2) ? 1 : 0);
	
    // specialFlags setting 8? Disable auto-mipmap generation:
    if (specialFlags & 0x8) windowRecord->specialflags |= kPsychDontAutoGenMipMaps;    

    // A specialFlags setting of 32? Protect texture against deletion via Screen('Close') without providing a explicit handle:
    if (specialFlags & 32) windowRecord->specialflags |= kPsychDontDeleteOnClose;    

    // Window ready. Mark it valid and return handle to userspace:
    PsychSetWindowRecordValid(windowRecord);
    
    //Return the window index and the rect argument.
    PsychCopyOutDoubleArg(1, FALSE, windowRecord->windowIndex);
    PsychCopyOutRectArg(2, FALSE, rect);

    // Ready.
    return(PsychError_none);
}
예제 #12
0
// This also works as 'AddFrameToMovie', as almost all code is shared with 'GetImage'.
// Only difference is where the fetched pixeldata is sent: To the movie encoder or to
// a matlab/octave matrix.
PsychError SCREENGetImage(void) 
{
	PsychRectType   windowRect, sampleRect;
	int 			nrchannels, invertedY, stride;
	size_t			ix, iy, sampleRectWidth, sampleRectHeight, redReturnIndex, greenReturnIndex, blueReturnIndex, alphaReturnIndex, planeSize;
	int				viewid = 0;
	psych_uint8 	*returnArrayBase, *redPlane;
	float 			*dredPlane;
	double 			*returnArrayBaseDouble;
	PsychWindowRecordType	*windowRecord;
	GLboolean		isDoubleBuffer, isStereo;
	char*           buffername = NULL;
	psych_bool		floatprecision = FALSE;
	GLenum			whichBuffer = 0; 
	int				frameduration = 1;
	int				moviehandle = 0;
	unsigned int	twidth, theight, numChannels, bitdepth;
	unsigned char*	framepixels;
	psych_bool      isOES;

	// Called as 2nd personality "AddFrameToMovie" ?
	psych_bool isAddMovieFrame = PsychMatch(PsychGetFunctionName(), "AddFrameToMovie");

	// All sub functions should have these two lines
	if (isAddMovieFrame) {
		PsychPushHelp(useString2, synopsisString2, seeAlsoString);
	}
	else {
		PsychPushHelp(useString, synopsisString, seeAlsoString);
	}
	if(PsychIsGiveHelp()){PsychGiveHelp();return(PsychError_none);};
	
	//cap the numbers of inputs and outputs
	PsychErrorExit(PsychCapNumInputArgs(5));   //The maximum number of inputs
	PsychErrorExit(PsychCapNumOutputArgs(1));  //The maximum number of outputs
	
	// Get windowRecord for this window:
	PsychAllocInWindowRecordArg(kPsychUseDefaultArgPosition, TRUE, &windowRecord);

    // Embedded subset has very limited support for readback formats :
    isOES = PsychIsGLES(windowRecord);

	// Make sure we don't execute on an onscreen window with pending async flip, as this would interfere
	// by touching the system backbuffer -> Impaired timing of the flip thread and undefined readback
	// of image data due to racing with the ops of the flipperthread on the same drawable.
	//
	// Note: It would be possible to allow drawBuffer readback if the drawBuffer is not multi-sampled
	// or if we can safely multisample-resolve without touching the backbuffer, but checking for all
	// special cases adds ugly complexity and is not really worth the effort, so we don't allow this.
	//
	// If this passes then PsychSetDrawingTarget() below will trigger additional validations to check
	// if execution of 'GetImage' is allowed under the current conditions for offscreen windows and
	// textures:
	if (PsychIsOnscreenWindow(windowRecord) && (windowRecord->flipInfo->asyncstate > 0)) {
		PsychErrorExitMsg(PsychError_user, "Calling this function on an onscreen window with a pending asynchronous flip is not allowed!");
	}

	// Set window as drawingtarget: Even important if this binding is changed later on!
	// We need to make sure all needed transitions are done - esp. in non-imaging mode,
	// so backbuffer is in a useable state:
	PsychSetDrawingTarget(windowRecord);
	
	// Disable shaders:
	PsychSetShader(windowRecord, 0);

	// Soft-Reset drawingtarget. This is important to make sure no FBO's are bound,
	// otherwise the following glGets for GL_DOUBLEBUFFER and GL_STEREO will retrieve
	// wrong results, leading to totally wrong read buffer assignments down the road!!
	PsychSetDrawingTarget((PsychWindowRecordType*) 0x1);

    // Queries only available on desktop OpenGL:
    if (!isOES) {
        glGetBooleanv(GL_DOUBLEBUFFER, &isDoubleBuffer);
        glGetBooleanv(GL_STEREO, &isStereo);
    }
    else {
        // Make something reasonable up:
        isStereo = FALSE;
        isDoubleBuffer = TRUE;
    }

    // Force "quad-buffered" stereo mode if our own homegrown implementation is active:
    if (windowRecord->stereomode == kPsychFrameSequentialStereo) isStereo = TRUE;
    
	// Assign read buffer:
	if(PsychIsOnscreenWindow(windowRecord)) {
		// Onscreen window: We read from the front- or front-left buffer by default.
		// This works on single-buffered and double buffered contexts in a consistent fashion:
		
		// Copy in optional override buffer name:
		PsychAllocInCharArg(3, FALSE, &buffername);
		
		// Override buffer name provided?
		if (buffername) {
			// Which one is it?
			
			// "frontBuffer" is always a valid choice:
			if (PsychMatch(buffername, "frontBuffer")) whichBuffer = GL_FRONT;
			// Allow selection of left- or right front stereo buffer in stereo mode:
			if (PsychMatch(buffername, "frontLeftBuffer") && isStereo) whichBuffer = GL_FRONT_LEFT;
			if (PsychMatch(buffername, "frontRightBuffer") && isStereo) whichBuffer = GL_FRONT_RIGHT;
			// Allow selection of backbuffer in double-buffered mode:
			if (PsychMatch(buffername, "backBuffer") && isDoubleBuffer) whichBuffer = GL_BACK;
			// Allow selection of left- or right back stereo buffer in stereo mode:
			if (PsychMatch(buffername, "backLeftBuffer") && isStereo && isDoubleBuffer) whichBuffer = GL_BACK_LEFT;
			if (PsychMatch(buffername, "backRightBuffer") && isStereo && isDoubleBuffer) whichBuffer = GL_BACK_RIGHT;
			// Allow AUX buffer access for debug purposes:
			if (PsychMatch(buffername, "aux0Buffer")) whichBuffer = GL_AUX0;
			if (PsychMatch(buffername, "aux1Buffer")) whichBuffer = GL_AUX1;
			if (PsychMatch(buffername, "aux2Buffer")) whichBuffer = GL_AUX2;
			if (PsychMatch(buffername, "aux3Buffer")) whichBuffer = GL_AUX3;

            // If 'drawBuffer' is requested, but imaging pipeline inactive, ie., there is no real 'drawBuffer', then we
            // map this to the backbuffer, as on a non-imaging configuration, the backbuffer is pretty much exactly the
            // equivalent of the 'drawBuffer':
            if (PsychMatch(buffername, "drawBuffer") && !(windowRecord->imagingMode & kPsychNeedFastBackingStore)) whichBuffer = GL_BACK;
		}
		else {
			// Default is frontbuffer:
			whichBuffer = GL_FRONT;
		}
	}
	else {
		// Offscreen window or texture: They only have one buffer, which is the
		// backbuffer in double-buffered mode and the frontbuffer in single buffered mode:
		whichBuffer=(isDoubleBuffer) ? GL_BACK : GL_FRONT;
	}
	
	// Enable this windowRecords framebuffer as current drawingtarget. This should
	// also allow us to "GetImage" from Offscreen windows:
	if ((windowRecord->imagingMode & kPsychNeedFastBackingStore) || (windowRecord->imagingMode & kPsychNeedFastOffscreenWindows)) {
		// Special case: Imaging pipeline active - We need to activate system framebuffer
		// so we really read the content of the framebuffer and not of some FBO:
		if (PsychIsOnscreenWindow(windowRecord)) {
			// It's an onscreen window:
            
            // Homegrown frame-sequential stereo active? Need to remap some stuff:
            if (windowRecord->stereomode == kPsychFrameSequentialStereo) {
                // Back/Front buffers map to backleft/frontleft buffers:
                if (whichBuffer == GL_BACK) whichBuffer = GL_BACK_LEFT;
                if (whichBuffer == GL_FRONT) whichBuffer = GL_FRONT_LEFT;
                
                // Special case: Want to read from stereo front buffer?
                if ((whichBuffer == GL_FRONT_LEFT) || (whichBuffer == GL_FRONT_RIGHT)) {
                    // These don't really exist in our homegrown implementation. Their equivalents are the
                    // regular system front/backbuffers. Due to the bufferswaps happening every video
                    // refresh cycle and the complex logic on when and how to blit finalizedFBOs into
                    // the system buffers and the asynchronous execution of the parallel flipper thread,
                    // we don't know which buffer (GL_BACK or GL_FRONT) corresponds to the leftFront or
                    // rightFront buffer. Let's be stupid and just return the current front buffer for
                    // FRONT_LEFT and the current back buffer for FRONT_RIGHT, but warn user about the
                    // ambiguity:
                    whichBuffer = (whichBuffer == GL_FRONT_LEFT) ? GL_FRONT : GL_BACK;
                    
                    if (PsychPrefStateGet_Verbosity() > 2) {
                        printf("PTB-WARNING: In Screen('GetImage'): You selected retrieval of one of the stereo front buffers, while our homegrown frame-sequential\n");
                        printf("PTB-WARNING: In Screen('GetImage'): stereo display mode is active. This will impair presentation timing and may cause flicker. The\n");
                        printf("PTB-WARNING: In Screen('GetImage'): mapping of 'frontLeftBuffer' and 'frontRightBuffer' to actual stimulus content is very ambiguous\n");
                        printf("PTB-WARNING: In Screen('GetImage'): in this mode. You may therefore end up with the content of the wrong buffer returned! Check results\n");
                        printf("PTB-WARNING: In Screen('GetImage'): carefully! Better read from 'backLeftBuffer' or 'backRightBuffer' for well defined results.\n\n");
                    }
                }
            }
            
            // Homegrown frame-sequential stereo active and backleft or backright buffer requested?
            if (((whichBuffer == GL_BACK_LEFT) || (whichBuffer == GL_BACK_RIGHT)) && (windowRecord->stereomode == kPsychFrameSequentialStereo)) {
                // We can get the equivalent of the backLeft/RightBuffer from the finalizedFBO's in this mode. Get their content:                
				viewid = (whichBuffer == GL_BACK_RIGHT) ? 1 : 0;
				whichBuffer = GL_COLOR_ATTACHMENT0_EXT;
                
                // Bind finalizedFBO as framebuffer to read from:
                glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, windowRecord->fboTable[windowRecord->finalizedFBO[viewid]]->fboid);
                
                // Make sure binding gets released at end of routine:
                viewid = -1;
                
            } // No frame-sequential stereo: Full imaging pipeline active and one of the drawBuffer's requested?
            else if (buffername && (PsychMatch(buffername, "drawBuffer")) && (windowRecord->imagingMode & kPsychNeedFastBackingStore)) {
				// Activate drawBufferFBO:
				PsychSetDrawingTarget(windowRecord);
				whichBuffer = GL_COLOR_ATTACHMENT0_EXT;
				
				// Is the drawBufferFBO multisampled?
				viewid = (((windowRecord->stereomode > 0) && (windowRecord->stereodrawbuffer == 1)) ? 1 : 0);
				if (windowRecord->fboTable[windowRecord->drawBufferFBO[viewid]]->multisample > 0) {
					// It is! We can't read from a multisampled FBO. Need to perform a multisample resolve operation and read
					// from the resolved unisample buffer instead. This is only safe if the unisample buffer is either a dedicated
					// FBO, or - in case its the final system backbuffer etc. - if preflip operations haven't been performed yet.
					// If non dedicated buffer (aka finalizedFBO) and preflip ops have already happened, then the backbuffer contains
					// final content for an upcoming Screen('Flip') and we can't use (and therefore taint) that buffer.
					if ((windowRecord->inputBufferFBO[viewid] == windowRecord->finalizedFBO[viewid]) && (windowRecord->backBufferBackupDone)) {
						// Target for resolve is finalized FBO (probably system backbuffer) and preflip ops have run already. We
						// can't do the resolve op, as this would screw up the backbuffer with the final stimulus:
						printf("PTB-ERROR: Tried to 'GetImage' from a multisampled 'drawBuffer', but can't perform anti-aliasing pass due to\n");
						printf("PTB-ERROR: lack of a dedicated resolve buffer.\n");
						printf("PTB-ERROR: You can get what you wanted by either one of two options:\n");
						printf("PTB-ERROR: Either enable a processing stage in the imaging pipeline, even if you don't need it, e.g., by setting\n");
						printf("PTB-ERROR: the imagingmode argument in the 'OpenWindow' call to kPsychNeedImageProcessing. This will create a\n");
						printf("PTB-ERROR: suitable resolve buffer. Or place the 'GetImage' call before any Screen('DrawingFinished') call, then\n");
						printf("PTB-ERROR: i can (ab-)use the system backbuffer as a temporary resolve buffer.\n\n");
						PsychErrorExitMsg(PsychError_user, "Tried to 'GetImage' from a multi-sampled 'drawBuffer'. Unsupported operation under given conditions.");						
					}
					else {
						// Ok, the inputBufferFBO is a suitable temporary resolve buffer. Perform a multisample resolve blit to it:
						// A simple glBlitFramebufferEXT() call will do the copy & downsample operation:
						glBindFramebufferEXT(GL_READ_FRAMEBUFFER_EXT, windowRecord->fboTable[windowRecord->drawBufferFBO[viewid]]->fboid);
						glBindFramebufferEXT(GL_DRAW_FRAMEBUFFER_EXT, windowRecord->fboTable[windowRecord->inputBufferFBO[viewid]]->fboid);
						glBlitFramebufferEXT(0, 0, windowRecord->fboTable[windowRecord->inputBufferFBO[viewid]]->width, windowRecord->fboTable[windowRecord->inputBufferFBO[viewid]]->height,
											 0, 0, windowRecord->fboTable[windowRecord->inputBufferFBO[viewid]]->width, windowRecord->fboTable[windowRecord->inputBufferFBO[viewid]]->height,
											 GL_COLOR_BUFFER_BIT, GL_NEAREST);

						// Bind inputBuffer as framebuffer:
						glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, windowRecord->fboTable[windowRecord->inputBufferFBO[viewid]]->fboid);
						viewid = -1;
					}
				}
			}
			else {
				// No: Activate system framebuffer:
				PsychSetDrawingTarget(NULL);
			}
		}
		else {
			// Offscreen window or texture: Select drawing target as usual,
			// but set color attachment as read buffer:
			PsychSetDrawingTarget(windowRecord);
			whichBuffer = GL_COLOR_ATTACHMENT0_EXT;

			// We do not support multisampled readout:
			if (windowRecord->fboTable[windowRecord->drawBufferFBO[0]]->multisample > 0) {
				printf("PTB-ERROR: You tried to Screen('GetImage', ...); from an offscreen window or texture which has multisample anti-aliasing enabled.\n");
				printf("PTB-ERROR: This operation is not supported. You must first use Screen('CopyWindow') to create a non-multisampled copy of the\n");
				printf("PTB-ERROR: texture or offscreen window, then use 'GetImage' on that copy. The copy will be anti-aliased, so you'll get what you\n");
				printf("PTB-ERROR: wanted with a bit more effort. Sorry for the inconvenience, but this is mostly a hardware limitation.\n\n");
				
				PsychErrorExitMsg(PsychError_user, "Tried to 'GetImage' from a multi-sampled texture or offscreen window. Unsupported operation.");
			}
		}
	}
	else {
		// Normal case: No FBO based imaging - Select drawing target as usual:
		PsychSetDrawingTarget(windowRecord);
	}
	
    if (!isOES) {
        // Select requested read buffer, after some double-check:
        if (whichBuffer == 0) PsychErrorExitMsg(PsychError_user, "Invalid or unknown 'bufferName' argument provided.");
        glReadBuffer(whichBuffer);

        if (PsychPrefStateGet_Verbosity() > 5) printf("PTB-DEBUG: In Screen('GetImage'): GL-Readbuffer whichBuffer = %i\n", whichBuffer);
    }
    else {
        // OES: No way to select readbuffer, it is "hard-coded" by system spec, depending
        // on framebuffer. For bound FBO, always color attachment zero, for system framebuffer,
        // always front buffer on single-buffered setup, back buffer on double-buffered setup:
        if (buffername && PsychIsOnscreenWindow(windowRecord) && (whichBuffer != GL_COLOR_ATTACHMENT0_EXT)) {
            // Some part of the real system framebuffer of an onscreen window explicitely requested.
            if ((windowRecord->windowType == kPsychSingleBufferOnscreen) && (whichBuffer != GL_FRONT) && (PsychPrefStateGet_Verbosity() > 1)) {
                printf("PTB-WARNING: Tried to Screen('GetImage') single-buffered framebuffer '%s', but only 'frontBuffer' supported on OpenGL-ES. Returning that instead.\n", buffername);
            }
            
            if ((windowRecord->windowType == kPsychDoubleBufferOnscreen) && (whichBuffer != GL_BACK) && (PsychPrefStateGet_Verbosity() > 1)) {
                printf("PTB-WARNING: Tried to Screen('GetImage') double-buffered framebuffer '%s', but only 'backBuffer' supported on OpenGL-ES. Returning that instead.\n", buffername);
            }
        }
    }

    if (whichBuffer == GL_COLOR_ATTACHMENT0_EXT) {
        // FBO of texture / offscreen window / onscreen drawBuffer/inputBuffer
        // has size of clientrect -- potentially larger or smaller than backbuffer:
        PsychCopyRect(windowRect, windowRecord->clientrect);
    }
    else {
        // Non-FBO backed texture / offscreen window / onscreen window has size
        // of raw rect (==clientrect for non-onscreen, == backbuffer size for onscreen):
        PsychCopyRect(windowRect, windowRecord->rect);
    }

	// Retrieve optional read rectangle:    
	if(!PsychCopyInRectArg(2, FALSE, sampleRect)) PsychCopyRect(sampleRect, windowRect);
    
	if (IsPsychRectEmpty(sampleRect)) return(PsychError_none);

	// Compute sampling rectangle:
	if ((PsychGetWidthFromRect(sampleRect) >= INT_MAX) || (PsychGetHeightFromRect(sampleRect) >= INT_MAX)) {
		PsychErrorExitMsg(PsychError_user, "Too big 'rect' argument provided. Both width and height of the rect must not exceed 2^31 pixels!");
	}

	sampleRectWidth = (size_t) PsychGetWidthFromRect(sampleRect);
	sampleRectHeight= (size_t) PsychGetHeightFromRect(sampleRect);

	// Regular image fetch to runtime, or adding to a movie?
	if (!isAddMovieFrame) {
		// Regular fetch:

		// Get optional floatprecision flag: We return data with float-precision if
		// this flag is set. By default we return uint8 data:
		PsychCopyInFlagArg(4, FALSE, &floatprecision);
		
		// Get the optional number of channels flag: By default we return 3 channels,
		// the Red, Green, and blue color channel:
		nrchannels = 3;
		PsychCopyInIntegerArg(5, FALSE, &nrchannels);
		if (nrchannels < 1 || nrchannels > 4) PsychErrorExitMsg(PsychError_user, "Number of requested channels 'nrchannels' must be between 1 and 4!");
		
		if (!floatprecision) {
			// Readback of standard 8bpc uint8 pixels:  

            // No Luminance + Alpha on OES:
            if (isOES && (nrchannels == 2)) PsychErrorExitMsg(PsychError_user, "Number of requested channels 'nrchannels' == 2 not supported on OpenGL-ES!");

			PsychAllocOutUnsignedByteMatArg(1, TRUE, (int) sampleRectHeight, (int) sampleRectWidth, (int) nrchannels, &returnArrayBase);
            if (isOES) {
                // We only do RGBA reads on OES, then discard unwanted stuff ourselves:
                redPlane  = (psych_uint8*) PsychMallocTemp((size_t) 4 * sampleRectWidth * sampleRectHeight);
            }
            else {
                redPlane  = (psych_uint8*) PsychMallocTemp((size_t) nrchannels * sampleRectWidth * sampleRectHeight);
            }
			planeSize = sampleRectWidth * sampleRectHeight;

			glPixelStorei(GL_PACK_ALIGNMENT,1);
			invertedY = (int) (windowRect[kPsychBottom] - sampleRect[kPsychBottom]);

            if (isOES) {
                glReadPixels((int) sampleRect[kPsychLeft], invertedY, (int) sampleRectWidth, (int) sampleRectHeight, GL_RGBA, GL_UNSIGNED_BYTE, redPlane);
                stride = 4;
            }
            else {
                stride = nrchannels;
                if (nrchannels==1) glReadPixels((int) sampleRect[kPsychLeft], invertedY, (int) sampleRectWidth, (int) sampleRectHeight, GL_RED, GL_UNSIGNED_BYTE, redPlane); 
                if (nrchannels==2) glReadPixels((int) sampleRect[kPsychLeft], invertedY, (int) sampleRectWidth, (int) sampleRectHeight, GL_LUMINANCE_ALPHA, GL_UNSIGNED_BYTE, redPlane);
                if (nrchannels==3) glReadPixels((int) sampleRect[kPsychLeft], invertedY, (int) sampleRectWidth, (int) sampleRectHeight, GL_RGB, GL_UNSIGNED_BYTE, redPlane);
                if (nrchannels==4) glReadPixels((int) sampleRect[kPsychLeft], invertedY, (int) sampleRectWidth, (int) sampleRectHeight, GL_RGBA, GL_UNSIGNED_BYTE, redPlane);
            }
			
			//in one pass transpose and flip what we read with glReadPixels before returning.  
			//-glReadPixels insists on filling up memory in sequence by reading the screen row-wise whearas Matlab reads up memory into columns.
			//-the Psychtoolbox screen as setup by gluOrtho puts 0,0 at the top left of the window but glReadPixels always believes that it's at the bottom left.     
			for(ix=0; ix < sampleRectWidth; ix++){
				for(iy=0; iy < sampleRectHeight; iy++){
					// Compute write-indices for returned data:
					redReturnIndex=PsychIndexElementFrom3DArray(sampleRectHeight, sampleRectWidth, nrchannels, iy, ix, 0);
					greenReturnIndex=PsychIndexElementFrom3DArray(sampleRectHeight, sampleRectWidth,  nrchannels, iy, ix, 1);
					blueReturnIndex=PsychIndexElementFrom3DArray(sampleRectHeight, sampleRectWidth,  nrchannels, iy, ix, 2);
					alphaReturnIndex=PsychIndexElementFrom3DArray(sampleRectHeight, sampleRectWidth,  nrchannels, iy, ix, 3);
					
					// Always return RED/LUMINANCE channel:
					returnArrayBase[redReturnIndex] = redPlane[(ix + ((sampleRectHeight-1) - iy ) * sampleRectWidth) * (size_t) stride + 0];  
					// Other channels on demand:
					if (nrchannels>1) returnArrayBase[greenReturnIndex] = redPlane[(ix + ((sampleRectHeight-1) - iy ) * sampleRectWidth) * (size_t) stride + 1];
					if (nrchannels>2) returnArrayBase[blueReturnIndex]  = redPlane[(ix + ((sampleRectHeight-1) - iy ) * sampleRectWidth) * (size_t) stride + 2];
					if (nrchannels>3) returnArrayBase[alphaReturnIndex] = redPlane[(ix + ((sampleRectHeight-1) - iy ) * sampleRectWidth) * (size_t) stride + 3];
				}
			}		
		}
		else {
			// Readback of standard 32bpc float pixels into a double matrix:  

            // No Luminance + Alpha on OES:
            if (isOES && (nrchannels == 2)) PsychErrorExitMsg(PsychError_user, "Number of requested channels 'nrchannels' == 2 not supported on OpenGL-ES!");

            // Only float readback on floating point FBO's with EXT_color_buffer_float support:
            if (isOES && ((whichBuffer != GL_COLOR_ATTACHMENT0_EXT) || (windowRecord->bpc < 16) || !glewIsSupported("GL_EXT_color_buffer_float"))) {
                printf("PTB-ERROR: Tried to 'GetImage' pixels in floating point format from a non-floating point surface, or not supported by your hardware.\n");
                PsychErrorExitMsg(PsychError_user, "'GetImage' of floating point values from given object not supported on OpenGL-ES!");
            }

			PsychAllocOutDoubleMatArg(1, TRUE, (int) sampleRectHeight, (int) sampleRectWidth, (int) nrchannels, &returnArrayBaseDouble);
            if (isOES) {
                dredPlane = (float*) PsychMallocTemp((size_t) 4 * sizeof(float) * sampleRectWidth * sampleRectHeight);
                stride = 4;
            }
            else {
                dredPlane = (float*) PsychMallocTemp((size_t) nrchannels * sizeof(float) * sampleRectWidth * sampleRectHeight);
                stride = nrchannels;
            }
			planeSize = sampleRectWidth * sampleRectHeight * sizeof(float);

			glPixelStorei(GL_PACK_ALIGNMENT, 1);
			invertedY = (int) (windowRect[kPsychBottom]-sampleRect[kPsychBottom]);

            if (!isOES) {
                if (nrchannels==1) glReadPixels((int) sampleRect[kPsychLeft], invertedY, (int) sampleRectWidth, (int) sampleRectHeight, GL_RED, GL_FLOAT, dredPlane); 
                if (nrchannels==2) glReadPixels((int) sampleRect[kPsychLeft], invertedY, (int) sampleRectWidth, (int) sampleRectHeight, GL_LUMINANCE_ALPHA, GL_FLOAT, dredPlane);
                if (nrchannels==3) glReadPixels((int) sampleRect[kPsychLeft], invertedY, (int) sampleRectWidth, (int) sampleRectHeight, GL_RGB, GL_FLOAT, dredPlane);
                if (nrchannels==4) glReadPixels((int) sampleRect[kPsychLeft], invertedY, (int) sampleRectWidth, (int) sampleRectHeight, GL_RGBA, GL_FLOAT, dredPlane);
            }
            else {
                glReadPixels((int) sampleRect[kPsychLeft], invertedY, (int) sampleRectWidth, (int) sampleRectHeight, GL_RGBA, GL_FLOAT, dredPlane);
            }

			//in one pass transpose and flip what we read with glReadPixels before returning.  
			//-glReadPixels insists on filling up memory in sequence by reading the screen row-wise whearas Matlab reads up memory into columns.
			//-the Psychtoolbox screen as setup by gluOrtho puts 0,0 at the top left of the window but glReadPixels always believes that it's at the bottom left.     
			for(ix=0; ix < sampleRectWidth; ix++){
				for(iy=0; iy < sampleRectHeight; iy++){
					// Compute write-indices for returned data:
					redReturnIndex=PsychIndexElementFrom3DArray(sampleRectHeight, sampleRectWidth, nrchannels, iy, ix, 0);
					greenReturnIndex=PsychIndexElementFrom3DArray(sampleRectHeight, sampleRectWidth,  nrchannels, iy, ix, 1);
					blueReturnIndex=PsychIndexElementFrom3DArray(sampleRectHeight, sampleRectWidth,  nrchannels, iy, ix, 2);
					alphaReturnIndex=PsychIndexElementFrom3DArray(sampleRectHeight, sampleRectWidth,  nrchannels, iy, ix, 3);
					
					// Always return RED/LUMINANCE channel:
					returnArrayBaseDouble[redReturnIndex] = dredPlane[(ix + ((sampleRectHeight-1) - iy ) * sampleRectWidth) * (size_t) stride + 0];  
					// Other channels on demand:
					if (nrchannels>1) returnArrayBaseDouble[greenReturnIndex] = dredPlane[(ix + ((sampleRectHeight-1) - iy ) * sampleRectWidth) * (size_t) stride + 1];
					if (nrchannels>2) returnArrayBaseDouble[blueReturnIndex]  = dredPlane[(ix + ((sampleRectHeight-1) - iy ) * sampleRectWidth) * (size_t) stride + 2];
					if (nrchannels>3) returnArrayBaseDouble[alphaReturnIndex] = dredPlane[(ix + ((sampleRectHeight-1) - iy ) * sampleRectWidth) * (size_t) stride + 3];
				}
			}		
		}
	}
	
	if (isAddMovieFrame) {
		// Adding of image to a movie requested:
		
		// Get optional moviehandle:
		moviehandle = 0;
		PsychCopyInIntegerArg(4, FALSE, &moviehandle);
		if (moviehandle < 0) PsychErrorExitMsg(PsychError_user, "Provided 'moviehandle' is negative. Must be greater or equal to zero!");
		
		// Get optional frameduration:
		frameduration = 1;
		PsychCopyInIntegerArg(5, FALSE, &frameduration);
		if (frameduration < 1) PsychErrorExitMsg(PsychError_user, "Number of requested framedurations 'frameduration' is negative. Must be greater than zero!");
		
        framepixels = PsychGetVideoFrameForMoviePtr(moviehandle, &twidth, &theight, &numChannels, &bitdepth);
		if (framepixels) {
			glPixelStorei(GL_PACK_ALIGNMENT,1);
			invertedY = (int) (windowRect[kPsychBottom] - sampleRect[kPsychBottom]);
			
            if (isOES) {
                if (bitdepth != 8) PsychErrorExitMsg(PsychError_user, "AddFrameToMovie failed due to wrong bpc value. Only 8 bpc supported on OpenGL-ES.");

                if (numChannels == 4) {
                    // OES: BGRA supported?
                    if (glewIsSupported("GL_EXT_read_format_bgra")) {
                        // Yep: Readback in a compatible and acceptably fast format:
                        glReadPixels((int) sampleRect[kPsychLeft], invertedY, twidth, theight, GL_BGRA, GL_UNSIGNED_BYTE, framepixels);
                    }
                    else {
                        // Suboptimal readback path. will also cause swapped colors in movie writing:
                        glReadPixels((int) sampleRect[kPsychLeft], invertedY, twidth, theight, GL_RGBA, GL_UNSIGNED_BYTE, framepixels);
                    }
                }
                else if (numChannels == 3) {
                    glReadPixels((int) sampleRect[kPsychLeft], invertedY, twidth, theight, GL_RGB, GL_UNSIGNED_BYTE, framepixels);
                }
                else PsychErrorExitMsg(PsychError_user, "AddFrameToMovie failed due to wrong number of channels. Only 3 or 4 channels are supported on OpenGL-ES.");
            }
            else {
                // Desktop-GL: Use optimal format and support 16 bpc bitdepth as well.
                switch (numChannels) {
                    case 4:
                        glReadPixels((int) sampleRect[kPsychLeft], invertedY, twidth, theight, GL_BGRA, (bitdepth <= 8) ? GL_UNSIGNED_INT_8_8_8_8 : GL_UNSIGNED_SHORT, framepixels);
                        break;
                        
                    case 3:
                        glReadPixels((int) sampleRect[kPsychLeft], invertedY, twidth, theight, GL_RGB, (bitdepth <= 8) ? GL_UNSIGNED_BYTE : GL_UNSIGNED_SHORT, framepixels);
                        break;
                        
                    case 1:
                        glReadPixels((int) sampleRect[kPsychLeft], invertedY, twidth, theight, GL_RED, (bitdepth <= 8) ? GL_UNSIGNED_BYTE : GL_UNSIGNED_SHORT, framepixels);
                        break;
                        
                    default:
                        PsychErrorExitMsg(PsychError_user, "AddFrameToMovie failed due to wrong number of channels. Only 1, 3 or 4 channels are supported on OpenGL.");
                        break;
                }
            }

            // Add frame to movie, mark it as "upside down", with invalid -1 timestamp and a duration of frameduration ticks:
			if (PsychAddVideoFrameToMovie(moviehandle, frameduration, TRUE, -1) != 0) {
				PsychErrorExitMsg(PsychError_user, "AddFrameToMovie failed with error above!");
			}
		}
		else {
			PsychErrorExitMsg(PsychError_user, "Invalid 'moviePtr' provided. Doesn't correspond to a movie open for recording!");
		}
	}
	
	if (viewid == -1) {
		// Need to reset framebuffer binding to get rid of the inputBufferFBO which is bound due to
		// multisample resolve ops, or of other special FBO bindings --> Activate system framebuffer:
		PsychSetDrawingTarget(NULL);		
	}

	return(PsychError_none);
}
예제 #13
0
PsychError SCREENWaitBlanking(void) 
{
    PsychWindowRecordType *windowRecord;
    int waitFrames, framesWaited;
    double tvbl, ifi;
    long screenwidth, screenheight;
    int vbl_startline, beampos, lastline;
    psych_uint64 vblCount, vblRefCount;
    CGDirectDisplayID	cgDisplayID;
    GLint read_buffer, draw_buffer;
    
    // All subfunctions should have these two lines.  
    PsychPushHelp(useString, synopsisString, seeAlsoString);
    if(PsychIsGiveHelp()){PsychGiveHelp();return(PsychError_none);};
    
    PsychErrorExit(PsychCapNumInputArgs(2));     //The maximum number of inputs
    PsychErrorExit(PsychRequireNumInputArgs(1)); //The required number of inputs	
    PsychErrorExit(PsychCapNumOutputArgs(1));    //The maximum number of outputs
    
    // Get the window record from the window record argument and get info from the window record
    PsychAllocInWindowRecordArg(kPsychUseDefaultArgPosition, TRUE, &windowRecord);
    
    if(!PsychIsOnscreenWindow(windowRecord))
        PsychErrorExitMsg(PsychError_user, "Tried to call 'WaitBlanking' on something else than an onscreen window!");
    
    // Get the number of frames to wait:
    waitFrames = 0;
    PsychCopyInIntegerArg(2, FALSE, &waitFrames);

	// We default to wait at least one interval if no argument supplied:
    waitFrames = (waitFrames < 1) ? 1 : waitFrames;
    
    // Enable this windowRecords framebuffer as current drawingtarget:
    // This is needed to make sure that Offscreen windows work propely.
    PsychSetDrawingTarget(windowRecord);
    
    // Retrieve display handle for beamposition queries:
    PsychGetCGDisplayIDFromScreenNumber(&cgDisplayID, windowRecord->screenNumber);
    
    // Retrieve final vbl_startline, aka physical height of the display in pixels:
    PsychGetScreenSize(windowRecord->screenNumber, &screenwidth, &screenheight);
    vbl_startline = (int) screenheight;
    
    // Query duration of a monitor refresh interval: We try to use the measured interval,
	// but fallback of the nominal value reported by the operating system if necessary:
    if ((ifi = windowRecord->VideoRefreshInterval)<=0) {
        if (PsychGetNominalFramerate(windowRecord->screenNumber) > 0) {
            // Valid nominal framerate returned by OS: Calculate nominal IFI from it.
            ifi = 1.0 / ((double) PsychGetNominalFramerate(windowRecord->screenNumber));        
        }
        else {
            // No reasonable value available! We fallback to an assumed 60 Hz refresh...
            ifi = 1.0 / 60.0;
        }
    }
    
    // Query vblcount to test if this method works correctly:
    PsychOSGetVBLTimeAndCount(windowRecord, &vblRefCount);
    
    // Check if beamposition queries are supported by this OS and working properly:
    if (-1 != PsychGetDisplayBeamPosition(cgDisplayID, windowRecord->screenNumber) && windowRecord->VBL_Endline >= 0) {
        // Beamposition queries supported and fine. We can wait for VBL without bufferswap-tricks:
        // This is the OS-X way of doing things. We query the rasterbeamposition and compare it
        // to the known values for the VBL area. If we enter VBL, we take a timestamp and return -
        // or wait for the next VBL if waitFrames>0
        
        // Query current beamposition when entering WaitBlanking:
        beampos = PsychGetDisplayBeamPosition(cgDisplayID, windowRecord->screenNumber);
        // Are we in VBL when entering WaitBlanking? If so, we should wait for one additional frame,
        // because by definition, WaitBlanking should always wait for at least one monitor refresh
        // interval...
        if ((beampos<=windowRecord->VBL_Endline) && (beampos>=vbl_startline)) waitFrames++;
        
        while(waitFrames > 0) {
            // Enough time for a sleep? If the beam is far away from VBL area, we try to sleep to
            // yield some CPU time to other processes in the system -- we are nice citizens ;)
            beampos = PsychGetDisplayBeamPosition(cgDisplayID, windowRecord->screenNumber);
            while (( ((float)(vbl_startline - beampos)) / (float) windowRecord->VBL_Endline * ifi) > 0.003) {
                // At least 3 milliseconds left until retrace. We sleep for 1 millisecond.
                PsychWaitIntervalSeconds(0.001);
                beampos = PsychGetDisplayBeamPosition(cgDisplayID, windowRecord->screenNumber);
            }
            
            // Less than 3 ms away from retrace. Busy-Wait for retrace...
			lastline = PsychGetDisplayBeamPosition(cgDisplayID, windowRecord->screenNumber);
			beampos = lastline;
			while ((beampos < vbl_startline) && (beampos >= lastline)) {
				lastline = beampos;
				beampos = (long) PsychGetDisplayBeamPosition(cgDisplayID, windowRecord->screenNumber);
			} 
			
            // Retrace! Take system timestamp of VBL onset:
            PsychGetAdjustedPrecisionTimerSeconds(&tvbl);
            
            // If this wasn't the last frame to wait, we need to wait for end of retrace before
            // repeating the loop, because otherwise we would detect the same VBL and skip frames.
            // If it is the last frame, we skip it and return as quickly as possible to save the
            // Matlab script some extra Millisecond for drawing...
            if (waitFrames>1) { 
                beampos = vbl_startline;
                while ((beampos<=windowRecord->VBL_Endline) && (beampos>=vbl_startline)) { beampos = PsychGetDisplayBeamPosition(cgDisplayID, windowRecord->screenNumber); };
            }
            
            // Done with this refresh interval...
            // Decrement remaining number of frames to wait:
            waitFrames--;
        }
    }
    else if (vblRefCount > 0) {
        // Display beamposition queries unsupported, but vblank count queries seem to work. Try those.
        // Should work on Linux and OS/X:
        while(waitFrames > 0) {
            vblCount = vblRefCount;

            // Wait for next vblank counter increment - aka start of next frame (its vblank):
            while (vblCount == vblRefCount) {
                // Requery:
                PsychOSGetVBLTimeAndCount(windowRecord, &vblCount);
                // Yield at least 100 usecs. This is accurate as this code-path
                // only executes on OS/X and Linux, never on Windows (as of 01/06/2011):
                PsychYieldIntervalSeconds(0.000100);
            }

            vblRefCount = vblCount;
            
            // Done with this refresh interval...
            // Decrement remaining number of frames to wait:
            waitFrames--;
        }
    }
    else {            
        // Other methods unsupported. We use the doublebuffer swap method of waiting for retrace.
        //
        // Working principle: On each frame, we first copy the content of the (user visible) frontbuffer into the backbuffer.
        // Then we ask the OS to perform a front-backbuffer swap on next vertical retrace and go to sleep via glFinish() et al.
        // until the OS signals swap-completion. This way PTB's/Matlabs execution will stall until VBL, when swap happens and
        // we get woken up. We repeat this procedure 'waitFrames' times, then we take a high precision timestamp and exit the
        // Waitblanking loop. As backbuffer and frontbuffer are identical (due to the copy) at swap time, the visual display
        // won't change at all for the subject.
        // This method should work reliably, but it has one drawback: A random wakeup delay (scheduling jitter) is added after
        // retrace has been entered, so Waitblanking returns only after the beam has left retrace state on older hardware.
        // This means a bit less time (1 ms?) for stimulus drawing on Windows than on OS-X where Waitblanking returns faster. 
        
        // Child protection:
        if (windowRecord->windowType != kPsychDoubleBufferOnscreen) {
            PsychErrorExitMsg(PsychError_internal, "WaitBlanking tried to perform swap-waiting on a single buffered window!");
        }
        
        // Setup buffers for front->back copy op:
        
        // Backup old read- writebuffer assignments:
        glGetIntegerv(GL_READ_BUFFER, &read_buffer);
        glGetIntegerv(GL_DRAW_BUFFER, &draw_buffer);
        
        // Set read- and writebuffer properly:
        glReadBuffer(GL_FRONT);
        glDrawBuffer(GL_BACK);
        
        // Reset viewport to full-screen default:
        glViewport(0, 0, screenwidth, screenheight);                
        glScissor(0, 0, screenwidth, screenheight);                
        
        // Reset color buffer writemask to "All enabled":
        glColorMask(TRUE, TRUE, TRUE, TRUE);
        glDisable(GL_BLEND);
        glPixelZoom(1,1);

		// Disable draw shader:
		PsychSetShader(windowRecord, 0);

        // Swap-Waiting loop for 'waitFrames' frames:
        while(waitFrames > 0) {
            // Copy current content of front buffer into backbuffer:
            glRasterPos2i(0, screenheight);
            glCopyPixels(0, 0, screenwidth, screenheight, GL_COLOR);            
            
            // Ok, front- and backbuffer are now identical, so a bufferswap
            // will be a visual no-op.
            
            // Enable beamsyncing of bufferswaps to VBL:
            PsychOSSetVBLSyncLevel(windowRecord, 1);                
            
            // Trigger bufferswap in sync with retrace:
            PsychOSFlipWindowBuffers(windowRecord);
            
            // Wait for swap-completion, aka beginning of VBL:
            PsychWaitPixelSyncToken(windowRecord);
            
            // VBL happened - Take system timestamp:
            PsychGetAdjustedPrecisionTimerSeconds(&tvbl);
            
            // This code-chunk is an alternate way of syncing, only used for debugging:
            if (false) {
                // Disable beamsyncing of bufferswaps to VBL:
                PsychOSSetVBLSyncLevel(windowRecord, 0);                
                // Swap buffers immediately without vsync:
                PsychOSFlipWindowBuffers(windowRecord);
            }
            
            // Decrement remaining number of frames to wait:
            waitFrames--;
        } // Do it again...
        
        // Enable beamsyncing of bufferswaps to VBL:
        PsychOSSetVBLSyncLevel(windowRecord, 1);                
        
        // Restore assignment of read- writebuffers and such:
        glEnable(GL_BLEND);
        glReadBuffer(read_buffer);
        glDrawBuffer(draw_buffer);        
        // Done with Windows waitblanking...
    }
    
    // Compute number of frames waited: It is timestamp of return of this waitblanking minus
    // timestamp of return of last waitblanking, divided by duration of a monitor refresh
    // interval, mathematically rounded to an integral number:
    framesWaited = (int) (((tvbl - windowRecord->time_at_last_vbl) / ifi) + 0.5f);
    
    // Update timestamp for next invocation of Waitblanking:
    windowRecord->time_at_last_vbl = tvbl;
    
    // Return optional number of frames waited:
    PsychCopyOutDoubleArg(1, FALSE, (double) framesWaited);
    
    // Done.
    return(PsychError_none);
}
예제 #14
0
PsychError SCREENCopyWindow(void) 
{
	PsychRectType			sourceRect, targetRect, targetRectInverted;
	PsychWindowRecordType	*sourceWin, *targetWin;
	GLdouble				sourceVertex[2], targetVertex[2]; 
	double					t1;
	double					sourceRectWidth, sourceRectHeight;
	GLuint					srcFBO, dstFBO;
	GLenum					glerr;
	
	//all sub functions should have these two lines
	PsychPushHelp(useString, synopsisString, seeAlsoString);
	if(PsychIsGiveHelp()){PsychGiveHelp();return(PsychError_none);};

	//cap the number of inputs
	PsychErrorExit(PsychCapNumInputArgs(5));   //The maximum number of inputs
	PsychErrorExit(PsychCapNumOutputArgs(0));  //The maximum number of outputs
        
	//get parameters for the source window:
	PsychAllocInWindowRecordArg(1, TRUE, &sourceWin);
	PsychCopyRect(sourceRect, sourceWin->rect);

	// Special case for stereo: Only half the real window width:
	PsychMakeRect(&sourceRect, sourceWin->rect[kPsychLeft], sourceWin->rect[kPsychTop],
				  sourceWin->rect[kPsychLeft] + PsychGetWidthFromRect(sourceWin->rect)/((sourceWin->specialflags & kPsychHalfWidthWindow) ? 2 : 1),
				  sourceWin->rect[kPsychTop] + PsychGetHeightFromRect(sourceWin->rect)/((sourceWin->specialflags & kPsychHalfHeightWindow) ? 2 : 1));
	
	PsychCopyInRectArg(3, FALSE, sourceRect);
	if (IsPsychRectEmpty(sourceRect)) return(PsychError_none);

	//get paramters for the target window:
	PsychAllocInWindowRecordArg(2, TRUE, &targetWin);

	// By default, the targetRect is equal to the sourceRect, but centered in
	// the target window.
	PsychCopyRect(targetRect, targetWin->rect);

	// Special case for stereo: Only half the real window width:
	PsychMakeRect(&targetRect, targetWin->rect[kPsychLeft], targetWin->rect[kPsychTop],
				  targetWin->rect[kPsychLeft] + PsychGetWidthFromRect(targetWin->rect)/((targetWin->specialflags & kPsychHalfWidthWindow) ? 2 : 1),
				  targetWin->rect[kPsychTop] + PsychGetHeightFromRect(targetWin->rect)/((targetWin->specialflags & kPsychHalfHeightWindow) ? 2 : 1));

	PsychCopyInRectArg(4, FALSE, targetRect);
	if (IsPsychRectEmpty(targetRect)) return(PsychError_none);

	if (0) {
		printf("SourceRect: %f %f %f %f  ---> TargetRect: %f %f %f %f\n", sourceRect[0], sourceRect[1],
             sourceRect[2], sourceRect[3], targetRect[0], targetRect[1],targetRect[2],targetRect[3]);
	}

	// Validate rectangles:
	if (!ValidatePsychRect(sourceRect) || sourceRect[kPsychLeft]<sourceWin->rect[kPsychLeft] ||
		sourceRect[kPsychTop]<sourceWin->rect[kPsychTop] || sourceRect[kPsychRight]>sourceWin->rect[kPsychRight] ||
		sourceRect[kPsychBottom]>sourceWin->rect[kPsychBottom]) {
		PsychErrorExitMsg(PsychError_user, "Invalid source rectangle specified - (Partially) outside of source window.");
	}
	
	if (!ValidatePsychRect(targetRect) || targetRect[kPsychLeft]<targetWin->rect[kPsychLeft] ||
		targetRect[kPsychTop]<targetWin->rect[kPsychTop] || targetRect[kPsychRight]>targetWin->rect[kPsychRight] ||
		targetRect[kPsychBottom]>targetWin->rect[kPsychBottom]) {
		PsychErrorExitMsg(PsychError_user, "Invalid target rectangle specified - (Partially) outside of target window.");
	}
	
	if (!(PsychPrefStateGet_ConserveVRAM() & kPsychAvoidCPUGPUSync)) PsychTestForGLErrors();

	// Does this GL implementation support the EXT_framebuffer_blit extension for fast blitting between
	// framebuffers? And is the imaging pipeline active? And is the kPsychAvoidFramebufferBlitIfPossible not set?
	if ((sourceWin->gfxcaps & kPsychGfxCapFBOBlit) && (targetWin->gfxcaps & kPsychGfxCapFBOBlit) &&
		(sourceWin->imagingMode > 0) && (targetWin->imagingMode > 0) && !(PsychPrefStateGet_ConserveVRAM() & kPsychAvoidFramebufferBlitIfPossible)) {
		// Yes :-) -- This simplifies the CopyWindow implementation to a simple framebuffer blit op,
		// regardless what the source- or destination is:
		
		// Set each windows framebuffer as a drawingtarget once: This is just to make sure all of them
		// have proper FBO's attached:
		PsychSetDrawingTarget(sourceWin);
		PsychSetDrawingTarget(targetWin);
		
		// Soft-Reset drawing target - Detach anything bound or setup:
		PsychSetDrawingTarget(0x1);
		
		// Find source framebuffer:
		if (sourceWin->fboCount == 0) {
			// No FBO's attached to sourceWin: Must be a system framebuffer, e.g., if imagingMode == kPsychNeedFastOffscreenWindows and
			// this is the onscreen window system framebuffer. Assign system framebuffer handle:
			srcFBO = 0;
		}
		else {
			// FBO's attached: Want drawBufferFBO 0 or 1 - 1 for right eye view in stereomode, 0 for
			// everything else: left eye view, monoscopic buffer, offscreen windows / textures:
			if ((sourceWin->stereomode > 0) && (sourceWin->stereodrawbuffer == 1)) {
				// We are in stereo mode and want to access the right-eye channel. Bind FBO-1
				srcFBO = sourceWin->fboTable[sourceWin->drawBufferFBO[1]]->fboid;
			}
			else {
				srcFBO = sourceWin->fboTable[sourceWin->drawBufferFBO[0]]->fboid;
			}
		}

		// Find target framebuffer:
		if (targetWin->fboCount == 0) {
			// No FBO's attached to targetWin: Must be a system framebuffer, e.g., if imagingMode == kPsychNeedFastOffscreenWindows and
			// this is the onscreen window system framebuffer. Assign system framebuffer handle:
			dstFBO = 0;
		}
		else {
			// FBO's attached: Want drawBufferFBO 0 or 1 - 1 for right eye view in stereomode, 0 for
			// everything else: left eye view, monoscopic buffer, offscreen windows / textures:
			if ((targetWin->stereomode > 0) && (targetWin->stereodrawbuffer == 1)) {
				// We are in stereo mode and want to access the right-eye channel. Bind FBO-1
				dstFBO = targetWin->fboTable[targetWin->drawBufferFBO[1]]->fboid;
			}
			else {
				dstFBO = targetWin->fboTable[targetWin->drawBufferFBO[0]]->fboid;
			}
		}

		// Bind read- / write- framebuffers:
		glBindFramebufferEXT(GL_READ_FRAMEBUFFER_EXT, srcFBO);
		glBindFramebufferEXT(GL_DRAW_FRAMEBUFFER_EXT, dstFBO);

		// Perform blit-operation: If blitting from a multisampled FBO into a non-multisampled one, this will also perform the
		// multisample resolve operation:
		glBlitFramebufferEXT(sourceRect[kPsychLeft], PsychGetHeightFromRect(sourceWin->rect) - sourceRect[kPsychBottom], sourceRect[kPsychRight], PsychGetHeightFromRect(sourceWin->rect) - sourceRect[kPsychTop],
							 targetRect[kPsychLeft], PsychGetHeightFromRect(targetWin->rect) - targetRect[kPsychBottom], targetRect[kPsychRight], PsychGetHeightFromRect(targetWin->rect) - targetRect[kPsychTop],
							 GL_COLOR_BUFFER_BIT, GL_NEAREST);

		if (PsychPrefStateGet_Verbosity() > 5) {
			printf("FBB-SRC: X0 = %f Y0 = %f X1 = %f Y1 = %f \n", sourceRect[kPsychLeft], PsychGetHeightFromRect(sourceWin->rect) - sourceRect[kPsychBottom], sourceRect[kPsychRight], PsychGetHeightFromRect(sourceWin->rect) - sourceRect[kPsychTop]);
			printf("FBB-DST: X0 = %f Y0 = %f X1 = %f Y1 = %f \n", targetRect[kPsychLeft], PsychGetHeightFromRect(targetWin->rect) - targetRect[kPsychBottom], targetRect[kPsychRight], PsychGetHeightFromRect(targetWin->rect) - targetRect[kPsychTop]);
		}
		
		if (!(PsychPrefStateGet_ConserveVRAM() & kPsychAvoidCPUGPUSync)) {
			if ((glerr = glGetError())!=GL_NO_ERROR) {			

				// Reset framebuffer binding to something safe - The system framebuffer:
				glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0);
			
				if((glerr == GL_INVALID_OPERATION) && (PsychGetWidthFromRect(sourceRect) != PsychGetWidthFromRect(targetRect) ||
													   PsychGetHeightFromRect(sourceRect) != PsychGetHeightFromRect(targetRect))) {
					// Non-matching sizes. Make sure we do not operate on multisampled stuff
					PsychErrorExitMsg(PsychError_user, "CopyWindow failed: Most likely cause: You tried to copy a multi-sampled window into a non-multisampled window, but there is a size mismatch of sourceRect and targetRect. Matching size is required for such copies.");
				}
				else {
					if (glerr == GL_INVALID_OPERATION) {
						PsychErrorExitMsg(PsychError_user, "CopyWindow failed: Most likely cause: You tried to copy from a multi-sampled window into another multisampled window, but there is a mismatch between the multiSample levels of both. Identical multiSample values are required for such copies.");
					}
					else {
						printf("CopyWindow failed for unresolved reason: OpenGL says after call to glBlitFramebufferEXT(): %s\n", gluErrorString(glerr));
						PsychErrorExitMsg(PsychError_user, "CopyWindow failed for unresolved reason.");
					}
				}
			}
		}
		
		// Reset framebuffer binding to something safe - The system framebuffer:
		glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0);
		
		// Just to make sure we catch invalid values:
		if (!(PsychPrefStateGet_ConserveVRAM() & kPsychAvoidCPUGPUSync)) PsychTestForGLErrors();
		
		// Done.
		return(PsychError_none);
	}

	// We have four possible combinations for copy ops:
	// Onscreen -> Onscreen
	// Onscreen -> Texture
	// Texture  -> Texture
	// Texture  -> Onscreen
        
	// Texture -> something copy? (Offscreen to Offscreen or Offscreen to Onscreen)
	// This should work for both, copies from a texture/offscreen window to a different texture/offscreen window/onscreen window,
	// and for copies of a subregion of a texture/offscreen window into a non-overlapping subregion of the texture/offscreen window
	// itself:
	if (sourceWin->windowType == kPsychTexture) {
		// Bind targetWin (texture or onscreen windows framebuffer) as
		// drawing target and just blit texture into it. Binding is done implicitely
		
		if ((sourceWin == targetWin) && (targetWin->imagingMode > 0)) {
			// Copy of a subregion of an offscreen window into itself while imaging pipe active, ie. FBO storage: This is actually the same
			// as on onscreen -> onscreen copy, just with the targetWin FBO bound.
			
			// Set target windows framebuffer as drawing target:
			PsychSetDrawingTarget(targetWin);

			// Disable alpha-blending:
			glDisable(GL_BLEND);
			
			// Disable any shading during copy-op:
			PsychSetShader(targetWin, 0);

			// Start position for pixel write is:
			glRasterPos2f(targetRect[kPsychLeft], targetRect[kPsychBottom]);
			
			// Zoom factor if rectangle sizes don't match:
			glPixelZoom(PsychGetWidthFromRect(targetRect) / PsychGetWidthFromRect(sourceRect), PsychGetHeightFromRect(targetRect) / PsychGetHeightFromRect(sourceRect));
			
			// Perform pixel copy operation:
			glCopyPixels(sourceRect[kPsychLeft], PsychGetHeightFromRect(sourceWin->rect) - sourceRect[kPsychBottom], (int) PsychGetWidthFromRect(sourceRect), (int) PsychGetHeightFromRect(sourceRect), GL_COLOR);
			
			// That's it.
			glPixelZoom(1,1);
			
			// Flush drawing commands and wait for render-completion in single-buffer mode:
			PsychFlushGL(targetWin);				
		}
		else {
				// Sourcewin != Targetwin and/or imaging pipe (FBO storage) not used. We blit the
				// backing texture into itself, aka into its representation inside the system
				// backbuffer. The blit routine will setup proper bindings:

				// Disable alpha-blending:
				glDisable(GL_BLEND);

				// We use filterMode == 1 aka Bilinear filtering, so we get nice texture copies
				// if size of sourceRect and targetRect don't match and some scaling is needed.
				// We maybe could map the copyMode argument into some filterMode settings, but
				// i don't know the spec of copyMode, so ...
				PsychBlitTextureToDisplay(sourceWin, targetWin, sourceRect, targetRect, 0, 1, 1);
				
				// That's it.
				
				// Flush drawing commands and wait for render-completion in single-buffer mode:
				PsychFlushGL(targetWin);
		}
	}

	// Onscreen to texture copy?
	if (PsychIsOnscreenWindow(sourceWin) && PsychIsOffscreenWindow(targetWin)) {
		// With the current implemenation we can't zoom if sizes of sourceRect and targetRect don't
		// match: Only one-to-one copy possible...
		if(PsychGetWidthFromRect(sourceRect) != PsychGetWidthFromRect(targetRect) ||
		   PsychGetHeightFromRect(sourceRect) != PsychGetHeightFromRect(targetRect)) {
				// Non-matching sizes. We can't perform requested scaled copy :(
				PsychErrorExitMsg(PsychError_user, "Size mismatch of sourceRect and targetRect. Matching size is required for Onscreen to Offscreen copies. Sorry.");
		}
		
		// Update selected textures content:
		// Looks weird but we need the framebuffer of sourceWin:
		PsychSetDrawingTarget(sourceWin);

		// Disable alpha-blending:
		glDisable(GL_BLEND);
		
		// Disable any shading during copy-op:
		PsychSetShader(sourceWin, 0);

		// Texture objects are shared across contexts, so doesn't matter if targetWin's texture actually
		// belongs to the bound context of sourceWin:
		glBindTexture(PsychGetTextureTarget(targetWin), targetWin->textureNumber);
		
		// Copy into texture:
		glCopyTexSubImage2D(PsychGetTextureTarget(targetWin), 0, targetRect[kPsychLeft], PsychGetHeightFromRect(targetWin->rect) - targetRect[kPsychBottom], sourceRect[kPsychLeft], PsychGetHeightFromRect(sourceWin->rect) - sourceRect[kPsychBottom],
							(int) PsychGetWidthFromRect(sourceRect), (int) PsychGetHeightFromRect(sourceRect));
		
		// Unbind texture object:
		glBindTexture(PsychGetTextureTarget(targetWin), 0);
		
		// That's it.
		glPixelZoom(1,1);
	}

	// Onscreen to Onscreen copy?
	if (PsychIsOnscreenWindow(sourceWin) && PsychIsOnscreenWindow(targetWin)) {
		// Currently only works for copies of subregion -> subregion inside same onscreen window,
		// not across different onscreen windows! TODO: Only possible with EXT_framebuffer_blit
		if (sourceWin != targetWin) PsychErrorExitMsg(PsychError_user, "Sorry, the current implementation only supports copies within the same onscreen window, not accross onscreen windows.");

		// Set target windows framebuffer as drawing target:
		PsychSetDrawingTarget(targetWin);
		
		// Disable alpha-blending:
		glDisable(GL_BLEND);
		
		// Disable any shading during copy-op:
		PsychSetShader(targetWin, 0);

		// Start position for pixel write is:
		glRasterPos2f(targetRect[kPsychLeft], targetRect[kPsychBottom]);
		
		// Zoom factor if rectangle sizes don't match:
		glPixelZoom(PsychGetWidthFromRect(targetRect) / PsychGetWidthFromRect(sourceRect), PsychGetHeightFromRect(targetRect) / PsychGetHeightFromRect(sourceRect));
		
		// Perform pixel copy operation:
		glCopyPixels(sourceRect[kPsychLeft], PsychGetHeightFromRect(sourceWin->rect) - sourceRect[kPsychBottom], (int) PsychGetWidthFromRect(sourceRect), (int) PsychGetHeightFromRect(sourceRect), GL_COLOR);
		
		// That's it.
		glPixelZoom(1,1);
		
		// Flush drawing commands and wait for render-completion in single-buffer mode:
		PsychFlushGL(targetWin);
	}

	// Just to make sure we catch invalid values:
	if (!(PsychPrefStateGet_ConserveVRAM() & kPsychAvoidCPUGPUSync)) PsychTestForGLErrors();

	// Done.
	return(PsychError_none);
}
/* PsychPrepareRenderBatch()
 *
 * Perform setup for a batch of render requests for a specific primitive. Some 2D Screen
 * drawing commands allow to specify a list of primitives to draw instead of only a single
 * one. E.g. 'DrawDots' allows to draw thousands of dots with one single DrawDots command.
 * This helper routine is called by such batch-capable commands. It checks which input arguments
 * are provided and if its a single one or multiple ones. It sets up the rendering pipe accordingly,
 * performing required conversion steps. The actual drawing routine just needs to perform primitive
 * specific code.
 */
void PsychPrepareRenderBatch(PsychWindowRecordType *windowRecord, int coords_pos, int* coords_count, double** xy, int colors_pos, int* colors_count, int* colorcomponent_count, double** colors, unsigned char** bytecolors, int sizes_pos, int* sizes_count, double** size)
{
	PsychColorType							color;
	int                                     m,n,p,mc,nc,pc;
	int                                     i, nrpoints, nrsize;
	psych_bool                              isArgThere, isdoublecolors, isuint8colors, usecolorvector, needxy;
	double									*tmpcolors, *pcolors, *tcolors;
	double									convfactor, whiteValue;

	needxy = (coords_pos > 0) ? TRUE: FALSE;
	coords_pos = abs(coords_pos);
	colors_pos = abs(colors_pos);
	sizes_pos = abs(sizes_pos);
	
	// Get mandatory or optional xy coordinates argument
	isArgThere = PsychIsArgPresent(PsychArgIn, coords_pos);
	if(!isArgThere && needxy) {
		PsychErrorExitMsg(PsychError_user, "No position argument supplied");
	}
	
	if (isArgThere) {
		PsychAllocInDoubleMatArg(coords_pos, TRUE, &m, &n, &p, xy);
		if(p!=1 || (m!=*coords_count && (m*n)!=*coords_count)) {
			printf("PTB-ERROR: Coordinates must be a %i tuple or a %i rows vector.\n", *coords_count, *coords_count);
			PsychErrorExitMsg(PsychError_user, "Invalid format for coordinate specification.");
		}
		
		if (m!=1) {
			nrpoints=n;
			*coords_count = n;
		}
		else {
			// Special case: 1 row vector provided for single argument.
			nrpoints=1;
			*coords_count = 1;
		}
	}
	else {
		nrpoints = 0;
		*coords_count = 0;
	}
	
	if (size) {
		// Get optional size argument
		isArgThere = PsychIsArgPresent(PsychArgIn, sizes_pos);
		if(!isArgThere){
			// No size provided: Use a default size of 1.0:
			*size = (double *) PsychMallocTemp(sizeof(double));
			*size[0] = 1;
			nrsize=1;
		} else {
			PsychAllocInDoubleMatArg(sizes_pos, TRUE, &m, &n, &p, size);
			if(p!=1) PsychErrorExitMsg(PsychError_user, "Size must be a scalar or a vector with one column or row");
			nrsize=m*n;
			if (nrsize!=nrpoints && nrsize!=1 && *sizes_count!=1) PsychErrorExitMsg(PsychError_user, "Size vector must contain one size value per item.");
		}
		
		*sizes_count = nrsize;
	}	

	// Check if color argument is provided:
	isArgThere = PsychIsArgPresent(PsychArgIn, colors_pos);        
	if(!isArgThere) {
		// No color argument provided - Use defaults:
		whiteValue=PsychGetWhiteValueFromWindow(windowRecord);
		PsychLoadColorStruct(&color, kPsychIndexColor, whiteValue ); //index mode will coerce to any other.
		usecolorvector=false;
	}
	else {
		// Some color argument provided. Check first, if it's a valid color vector:
		isdoublecolors = PsychAllocInDoubleMatArg(colors_pos, kPsychArgAnything, &mc, &nc, &pc, colors);
		isuint8colors  = PsychAllocInUnsignedByteMatArg(colors_pos, kPsychArgAnything, &mc, &nc, &pc, bytecolors);
		
		// Do we have a color vector, aka one element per vertex?
		if((isdoublecolors || isuint8colors) && pc==1 && mc!=1 && nc==nrpoints && nrpoints>1) {
			// Looks like we might have a color vector... ... Double-check it:
			if (mc!=3 && mc!=4) PsychErrorExitMsg(PsychError_user, "Color vector must be a 3 or 4 row vector");
			// Yes. colors is a valid pointer to it.
			usecolorvector=true;
			
			if (isdoublecolors) {
				if (fabs(windowRecord->colorRange)!=1) {
					// We have to loop through the vector and divide all values by windowRecord->colorRange, so the input values
					// 0-colorRange get mapped to the range 0.0-1.0, as OpenGL expects values in range 0-1 when
					// a color vector is passed in Double- or Float format.
					// This is inefficient, as it burns some cpu-cycles, but necessary to keep color
					// specifications consistent in the PTB - API.
					convfactor = 1.0 / fabs(windowRecord->colorRange);
					tmpcolors=PsychMallocTemp(sizeof(double) * nc * mc);
					pcolors = *colors;
					tcolors = tmpcolors;
					for (i=0; i<(nc*mc); i++) {
						*(tcolors++)=(*pcolors++) * convfactor;
					}
				}
				else {
					// colorRange is == 1 --> No remapping needed as colors are already in proper range!
					// Just setup pointer to our unaltered input color vector:
					tmpcolors=*colors;
				}
				
				*colors = tmpcolors;
			}
			else {
				// Color vector in uint8 format. Nothing to do.
			}
		}
		else {
			// No color vector provided: Check for a single valid color triplet or quadruple:
			usecolorvector=false;
			isArgThere=PsychCopyInColorArg(colors_pos, TRUE, &color);                
		}
	}
	
	// Enable this windowRecords framebuffer as current drawingtarget:
	PsychSetDrawingTarget(windowRecord);
	
	// Setup default drawshader:
	PsychSetShader(windowRecord, -1);
	
	// Setup alpha blending properly:
	PsychUpdateAlphaBlendingFactorLazily(windowRecord);
	
 	// Setup common color for all objects if no color vector has been provided:
	if (!usecolorvector) {
		PsychCoerceColorMode(&color);
		PsychSetGLColor(&color, windowRecord);
		*colors_count = 1;
	}
	else {
		*colors_count = nc;
	}
	*colorcomponent_count = mc;
		
	return;
}
예제 #16
0
PsychError SCREENPutImage(void) 
{
	PsychRectType			windowRect, positionRect;
	int						ix, iy;
	size_t					matrixRedIndex, matrixGreenIndex, matrixBlueIndex, matrixAlphaIndex, matrixGrayIndex;
	int						inputM, inputN, inputP, positionRectWidth, positionRectHeight;
	size_t					pixelIndex = 0;
	PsychWindowRecordType	*windowRecord;
	unsigned char			*inputMatrixByte;
	double					*inputMatrixDouble;
	GLfloat					*pixelData;
	GLfloat					matrixGrayValue, matrixRedValue, matrixGreenValue, matrixBlueValue, matrixAlphaValue;
	PsychArgFormatType		inputMatrixType;
	GLfloat					xZoom = 1, yZoom = -1;
        
	// All sub functions should have these two lines.
	PsychPushHelp(useString, synopsisString, seeAlsoString);
	if (PsychIsGiveHelp()) {
		PsychGiveHelp();
		return PsychError_none;
	};

	// Cap the number of inputs.
	PsychErrorExit(PsychCapNumInputArgs(4));   //The maximum number of inputs
	PsychErrorExit(PsychCapNumOutputArgs(0));  //The maximum number of outputs
        
	// Get the image matrix.
	inputMatrixType = PsychGetArgType(2);
	switch (inputMatrixType) {
		case PsychArgType_none:
		case PsychArgType_default:
			PsychErrorExitMsg(PsychError_user, "imageArray argument required");
			break;
		case PsychArgType_uint8:
			PsychAllocInUnsignedByteMatArg(2, TRUE, &inputM, &inputN, &inputP, &inputMatrixByte);
			break;
		case PsychArgType_double:
			PsychAllocInDoubleMatArg(2, TRUE, &inputM, &inputN, &inputP, &inputMatrixDouble);
			break;
		default:
			PsychErrorExitMsg(PsychError_user, "imageArray must be uint8 or double type");
			break;
	}

    if (inputP != 1 && inputP != 3 && inputP != 4) {
        PsychErrorExitMsg(PsychError_user, "Third dimension of image matrix must be 1, 3, or 4");
    }
        
	// Get the window and get the rect and stuff.
	PsychAllocInWindowRecordArg(kPsychUseDefaultArgPosition, TRUE, &windowRecord);

    // A no-go on OES:
    if (PsychIsGLES(windowRecord)) {
        PsychErrorExitMsg(PsychError_unimplemented, "Sorry, Screen('PutImage') is not supported on OpenGL-ES embedded graphics hardware. Use 'MakeTexture' and 'DrawTexture' instead.");
    }

	PsychGetRectFromWindowRecord(windowRect, windowRecord);
	if (PsychCopyInRectArg(3, FALSE, positionRect)) {
		if (IsPsychRectEmpty(positionRect)) {
			return PsychError_none;
		}
		positionRectWidth  = (int) PsychGetWidthFromRect(positionRect);
		positionRectHeight = (int) PsychGetHeightFromRect(positionRect);
		if (positionRectWidth != inputN  || positionRectHeight != inputM) {
			// Calculate the zoom factor.
			xZoom = (GLfloat)   positionRectWidth  / (GLfloat) inputN;
			yZoom = -((GLfloat) positionRectHeight / (GLfloat) inputM);
		}
	}
	else {
	   positionRect[kPsychLeft] = 0;
	   positionRect[kPsychTop] = 0;
	   positionRect[kPsychRight] = inputN;
	   positionRect[kPsychBottom] = inputM;
	   PsychCenterRect(positionRect, windowRect, positionRect);
	}
        
	// Allocate memory to hold the pixel data that we'll later pass to OpenGL.
	pixelData = (GLfloat*) PsychMallocTemp(sizeof(GLfloat) * (size_t) inputN * (size_t) inputM * 4);
	
	// Loop through all rows and columns of the pixel data passed from Matlab, extract it,
	// and stick it into 'pixelData'.
	for (iy = 0; iy < inputM; iy++) {
		for (ix = 0; ix < inputN; ix++) {
			if (inputP == 1) { // Grayscale
							   // Extract the grayscale value.
				matrixGrayIndex = PSYCHINDEXELEMENTFROM3DARRAY((size_t) inputM, (size_t) inputN, 1, (size_t) iy, (size_t) ix, 0);
				if (inputMatrixType == PsychArgType_uint8) {
					// If the color range is > 255, then force it to 255 for 8-bit values.
					matrixGrayValue = (GLfloat)inputMatrixByte[matrixGrayIndex];
					if (windowRecord->colorRange > 255) {
						matrixGrayValue /= (GLfloat)255;
					}
					else {
						matrixGrayValue /= (GLfloat)windowRecord->colorRange;
					}
				}
				else {
					matrixGrayValue = (GLfloat)(inputMatrixDouble[matrixGrayIndex] / windowRecord->colorRange);
				}
				
				// RGB will all be the same for grayscale.  We'll go ahead and fix alpha to the max value.
				pixelData[pixelIndex++] = matrixGrayValue; // R
				pixelData[pixelIndex++] = matrixGrayValue; // G
				pixelData[pixelIndex++] = matrixGrayValue; // B
				pixelData[pixelIndex++] = (GLfloat) 1.0; // A
			}
			else if (inputP == 3) { // RGB
				matrixRedIndex = PSYCHINDEXELEMENTFROM3DARRAY((size_t) inputM, (size_t) inputN, 3, (size_t) iy, (size_t) ix, 0);
				matrixGreenIndex = PSYCHINDEXELEMENTFROM3DARRAY((size_t) inputM, (size_t) inputN, 3, (size_t) iy, (size_t) ix, 1);
				matrixBlueIndex = PSYCHINDEXELEMENTFROM3DARRAY((size_t) inputM, (size_t) inputN, 3, (size_t) iy, (size_t) ix, 2);
				
				if (inputMatrixType == PsychArgType_uint8) {
					// If the color range is > 255, then force it to 255 for 8-bit values.
					matrixRedValue = (GLfloat)inputMatrixByte[matrixRedIndex];
					matrixGreenValue = (GLfloat)inputMatrixByte[matrixGreenIndex];
					matrixBlueValue = (GLfloat)inputMatrixByte[matrixBlueIndex];
					if (windowRecord->colorRange > 255) {
						matrixRedValue /= (GLfloat)255;
						matrixGreenValue /= (GLfloat)255;
						matrixBlueValue /= (GLfloat)255;
					}
					else {
						matrixRedValue /= (GLfloat)windowRecord->colorRange;
						matrixGreenValue /= (GLfloat)windowRecord->colorRange;
						matrixBlueValue /= (GLfloat)windowRecord->colorRange;
					}
				}
				else {
					matrixRedValue = (GLfloat)(inputMatrixDouble[matrixRedIndex] / windowRecord->colorRange);
					matrixGreenValue = (GLfloat)(inputMatrixDouble[matrixGreenIndex] / windowRecord->colorRange);
					matrixBlueValue = (GLfloat)(inputMatrixDouble[matrixBlueIndex] / windowRecord->colorRange);
				}
				
				pixelData[pixelIndex++] = matrixRedValue;
				pixelData[pixelIndex++] = matrixGreenValue;
				pixelData[pixelIndex++] = matrixBlueValue;
				pixelData[pixelIndex++] = (GLfloat)1.0;
			}
			else if (inputP == 4) { // RGBA
				matrixRedIndex = PSYCHINDEXELEMENTFROM3DARRAY((size_t) inputM, (size_t) inputN, 4, (size_t) iy, (size_t) ix, 0);
				matrixGreenIndex = PSYCHINDEXELEMENTFROM3DARRAY((size_t) inputM, (size_t) inputN, 4, (size_t) iy, (size_t) ix, 1);
				matrixBlueIndex = PSYCHINDEXELEMENTFROM3DARRAY((size_t) inputM, (size_t) inputN, 4, (size_t) iy, (size_t) ix, 2);
				matrixAlphaIndex = PSYCHINDEXELEMENTFROM3DARRAY((size_t) inputM, (size_t) inputN, 4, (size_t) iy, (size_t) ix, 3);
				
				if (inputMatrixType == PsychArgType_uint8) {
					// If the color range is > 255, then force it to 255 for 8-bit values.
					matrixRedValue = (GLfloat)inputMatrixByte[matrixRedIndex];
					matrixGreenValue = (GLfloat)inputMatrixByte[matrixGreenIndex];
					matrixBlueValue = (GLfloat)inputMatrixByte[matrixBlueIndex];
					matrixAlphaValue = (GLfloat)inputMatrixByte[matrixAlphaIndex];
					if (windowRecord->colorRange > 255) {
						matrixRedValue /= (GLfloat)255;
						matrixGreenValue /= (GLfloat)255;
						matrixBlueValue /= (GLfloat)255;
						matrixAlphaValue /= (GLfloat)255;
					}
					else {
						matrixRedValue /= (GLfloat)windowRecord->colorRange;
						matrixGreenValue /= (GLfloat)windowRecord->colorRange;
						matrixBlueValue /= (GLfloat)windowRecord->colorRange;
						matrixAlphaValue /= (GLfloat)windowRecord->colorRange;
					}
				}
				else {
					matrixRedValue = (GLfloat)(inputMatrixDouble[matrixRedIndex] / windowRecord->colorRange);
					matrixGreenValue = (GLfloat)(inputMatrixDouble[matrixGreenIndex] / (GLfloat)windowRecord->colorRange);
					matrixBlueValue = (GLfloat)(inputMatrixDouble[matrixBlueIndex] / (GLfloat)windowRecord->colorRange);
					matrixAlphaValue = (GLfloat)(inputMatrixDouble[matrixAlphaIndex] / (GLfloat)windowRecord->colorRange);
				}
				
				pixelData[pixelIndex++] = matrixRedValue;
				pixelData[pixelIndex++] = matrixGreenValue;
				pixelData[pixelIndex++] = matrixBlueValue;
				pixelData[pixelIndex++] = matrixAlphaValue;
			}
		} // for (iy = 0; iy < inputM; iy++)
	} // for (ix = 0; ix < inputN; ix++)
	
	// Enable this windowRecords framebuffer as current drawingtarget:
	PsychSetDrawingTarget(windowRecord);
	
	// Disable draw shader:
	PsychSetShader(windowRecord, 0);
	
	PsychUpdateAlphaBlendingFactorLazily(windowRecord);
	
	// Set the raster position so that we can draw starting at this location.
	glRasterPos2f((GLfloat)(positionRect[kPsychLeft]), (GLfloat)(positionRect[kPsychTop]));
	
	// Tell glDrawPixels to unpack the pixel array along GLfloat boundaries.
	glPixelStorei(GL_UNPACK_ALIGNMENT, (GLint)sizeof(GLfloat));
	
	// Dump the pixels onto the screen.
	glPixelZoom(xZoom, yZoom);
	glDrawPixels(inputN, inputM, GL_RGBA, GL_FLOAT, pixelData);
	glPixelZoom(1,1);
	
	PsychFlushGL(windowRecord);  // This does nothing if we are multi buffered, otherwise it glFlushes
	PsychTestForGLErrors();
	
	return PsychError_none;
}
PsychError SCREENPreloadTextures(void)  
{	
	PsychWindowRecordType                   *windowRecord, *texwin;
	psych_bool                                 isArgThere;
        int                                     *texhandles;
        PsychWindowRecordType                   **windowRecordArray;        
        int                                     i, n, numWindows, myhandle; 
        double                                  *success;
        psych_bool*                                residency;
        GLuint*                                 texids;
        GLboolean*                              texresident;
        psych_bool                                 failed = false;
        GLclampf                                maxprio = 1.0f;
        GLenum                                  target;

	//all sub functions should have these two lines
	PsychPushHelp(useString, synopsisString,seeAlsoString);
	if(PsychIsGiveHelp()){PsychGiveHelp();return(PsychError_none);};
	
	//check for superfluous arguments
	PsychErrorExit(PsychCapNumInputArgs(2));        //The maximum number of inputs
	PsychErrorExit(PsychRequireNumInputArgs(1));    //The minimum number of inputs
	PsychErrorExit(PsychCapNumOutputArgs(2));       //The maximum number of outputs
	
	//get the window record from the window record argument and get info from the window record
	PsychAllocInWindowRecordArg(1, kPsychArgRequired, &windowRecord);
		
	// Get optional texids vector:
	isArgThere = PsychIsArgPresent(PsychArgIn, 2);
        PsychAllocInIntegerListArg(2, FALSE, &n, &texhandles);
        if (n < 1) isArgThere=FALSE;
        
        // Enable this windowRecords framebuffer as current drawingtarget:
        PsychSetDrawingTarget(windowRecord);

		// Disable shader:
		PsychSetShader(windowRecord, 0);
	

        glDisable(GL_TEXTURE_2D);

	// Fetch global texturing mode:
	target=PsychGetTextureTarget(windowRecord);

        glEnable(target);
        glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
        glColor4f(0, 0, 0, 0);
	// Setup identity modelview matrix:
        glMatrixMode(GL_MODELVIEW);
        glPushMatrix();
        glLoadIdentity();

        PsychCreateVolatileWindowRecordPointerList(&numWindows, &windowRecordArray);            

        // Process vector of all texids for all requested textures:
        if (!isArgThere) {
            // No handles provided: In this case, we preload all textures:
            n=0;
            for(i=0; i<numWindows; i++) {                
                if (windowRecordArray[i]->windowType==kPsychTexture) {
                    n++;
                    // Prioritize this texture:
                    glPrioritizeTextures(1, (GLuint*) &(windowRecordArray[i]->textureNumber), &maxprio);
                    // Bind this texture:
                    glBindTexture(target, windowRecordArray[i]->textureNumber);
                    // Render a single textured point, thereby enforcing a texture upload:
                    glBegin(GL_QUADS);
                    glTexCoord2f(0,0); glVertex2i(10,10);
                    glTexCoord2f(0,1); glVertex2i(10,11);
                    glTexCoord2f(1,1); glVertex2i(11,11);
                    glTexCoord2f(1,0); glVertex2i(11,10);                    
                    glEnd();
                }
            }
            
            texids = (GLuint*) PsychMallocTemp(sizeof(GLuint) * n);
            texresident = (GLboolean*) PsychMallocTemp(sizeof(GLboolean) * n);

            n=0;
            for(i=0; i<numWindows; i++) {                
                if (windowRecordArray[i]->windowType==kPsychTexture) {
                    texids[n] = (GLuint) windowRecordArray[i]->textureNumber;
                    n++;
                }
            }
        }
        else {
            // Vector with texture handles provided: Just preload them.
            texids = (GLuint*) PsychMallocTemp(sizeof(GLuint) * n);
            texresident = (GLboolean*) PsychMallocTemp(sizeof(GLboolean) * n);
            myhandle=0;
            for (i=0; i<n; i++) {
                myhandle = texhandles[i];
                texwin = NULL;
                if (IsWindowIndex(myhandle)) FindWindowRecord(myhandle, &texwin);
                if (texwin && texwin->windowType==kPsychTexture) {
                    // Prioritize this texture:
                    glPrioritizeTextures(1, (GLuint*) &(texwin->textureNumber), &maxprio);
                    // Bind this texture:
                    glBindTexture(target, texwin->textureNumber);
                    // Render a single textured point, thereby enforcing a texture upload:
                    glBegin(GL_QUADS);
                    glTexCoord2f(0,0); glVertex2i(10,10);
                    glTexCoord2f(0,1); glVertex2i(10,11);
                    glTexCoord2f(1,1); glVertex2i(11,11);
                    glTexCoord2f(1,0); glVertex2i(11,10);                    
                    glEnd();
                    texids[i] = (GLuint) texwin->textureNumber;
                }
                else {
                    // This handle is invalid or at least no texture handle:
                    printf("PTB-ERROR! Screen('PreloadTextures'): Entry %i of texture handle vector (handle %i) is not a texture handle!\n",
                           i, myhandle);
                    failed = true;
                }
            }
        }
        
        // Restore old matrix from backup copy, undoing the global translation:
        glPopMatrix();
        // Disable texture engine:
        glDisable(GL_TEXTURE_2D);
        glDisable(target);

        // Wait for prefetch completion:
        glFinish();
        
        // We don't need these anymore:
        PsychDestroyVolatileWindowRecordPointerList(windowRecordArray);
        
        if (failed) {
            PsychErrorExitMsg(PsychError_user, "At least one texture handle in texids-vector was invalid! Aborted.");
        }
        
        // Query residency state of all preloaded textures:
        success = NULL;
        PsychAllocOutDoubleArg(1, FALSE, &success);
        *success = (double) glAreTexturesResident(n, texids, texresident);
        
        // Sync pipe again, just to be safe...
        glFinish();
        
        // Count them and copy them into output vector:
        PsychAllocOutBooleanMatArg(2, FALSE, n, 1, 1, &residency);
        
        for (i=0; i<n; i++) {
            residency[i] = (psych_bool) ((*success) ? TRUE : texresident[i]);
        }
        
        PsychTestForGLErrors();
        
 	// Done. Our PsychMallocTemp'ed arrays will be auto-released...
	return(PsychError_none);
}
예제 #18
0
void PsychRenderArc(unsigned int mode)
{
	PsychColorType			color;
	PsychRectType           rect;
	double					*startAngle, *arcAngle, *penWidth, *penHeight;
	PsychWindowRecordType	*windowRecord;
	int						whiteValue;
	double                  dotSize;
	psych_bool					isArgThere;
	GLUquadric              *diskQuadric = NULL;
	double cx, cy, w, h;
	
	//get the window record from the window record argument and get info from the window record
	PsychAllocInWindowRecordArg(kPsychUseDefaultArgPosition, TRUE, &windowRecord);
	
	//Get the color argument or use the default, then coerce to the form determened by the window depth.  
	isArgThere=PsychCopyInColorArg(kPsychUseDefaultArgPosition, FALSE, &color);
	if(!isArgThere){
		whiteValue=PsychGetWhiteValueFromWindow(windowRecord);
		PsychLoadColorStruct(&color, kPsychIndexColor, whiteValue ); //index mode will coerce to any other.
	}
 	PsychCoerceColorMode( &color);
	
	// Get the rect to which the object should be inscribed: Default is "full screen"
	PsychMakeRect(rect, 0, 0, PsychGetWidthFromRect(windowRecord->rect), PsychGetHeightFromRect(windowRecord->rect));
	PsychCopyInRectArg(3, FALSE, rect);
	if (IsPsychRectEmpty(rect)) return;
	
	w=PsychGetWidthFromRect(rect);
	h=PsychGetHeightFromRect(rect);
	
	PsychGetCenterFromRectAbsolute(rect, &cx, &cy);
	if (w==0 || h==0) PsychErrorExitMsg(PsychError_user, "Invalid rect (width or height equals zero) provided!");
	
	// Get start angle: 
	PsychAllocInDoubleArg(4, TRUE,  &startAngle);
	PsychAllocInDoubleArg(5, TRUE,  &arcAngle);
	
	if (mode==2) {
		// Get pen width and height:
		penWidth=NULL;
		penHeight=NULL;
		PsychAllocInDoubleArg(6, FALSE,  &penWidth);
		PsychAllocInDoubleArg(7, FALSE,  &penHeight);
		// Check if penWidth and penHeight spec'd. If so, they
		// need to be equal:
		if (penWidth && penHeight && (*penWidth!=*penHeight)) {
			PsychErrorExitMsg(PsychError_user, "penWidth and penHeight must be equal on OS-X if both are specified!");
		}
		dotSize=1;
		if (penWidth) dotSize = *penWidth;
		if (penHeight) dotSize = *penHeight;
	}
	
	// Enable this windowRecords framebuffer as current drawingtarget:
	PsychSetDrawingTarget(windowRecord);
	
	// Set default drawshader:
	PsychSetShader(windowRecord, -1);
	
	PsychUpdateAlphaBlendingFactorLazily(windowRecord);
	PsychSetGLColor(&color,  windowRecord);
	
	// Backup our modelview matrix:
	glMatrixMode(GL_MODELVIEW);
	glPushMatrix();
	
	// Position disk at center of rect:
	glTranslated(cx, cy, 0);
	
	// Scale in order to fit to rect in case w!=h:
	glScaled(1.0, -h/w, 1.0);
	
	// Draw filled partial disk:
	diskQuadric=gluNewQuadric();
	
	switch (mode) {
		case 1: // One pixel thin arc: InnerRadius = OuterRadius - 1
			gluPartialDisk(diskQuadric, (w/2) - 1.0, w/2, w, 2, *startAngle, *arcAngle);
			break;
		case 2: // dotSize thick arc:  InnerRadius = OuterRadius - dotsize
			gluPartialDisk(diskQuadric, (dotSize < (w/2)) ? (w/2) - dotSize : 0, w/2, w, 2, *startAngle, *arcAngle);
			break;
		case 3: // Filled arc:
			gluPartialDisk(diskQuadric, 0, w/2, w, 1, *startAngle, *arcAngle);
			break;
	}
	
	gluDeleteQuadric(diskQuadric);
	
	// Restore old matrix:
	glPopMatrix();
	
	// Mark end of drawing op. This is needed for single buffered drawing:
	PsychFlushGL(windowRecord);
	
	return;
}