// the data should be FLOAT32 and should be ensured in the wrapper 
static PyObject *interp3(PyObject *self, PyObject *args)
{
	PyArrayObject *volume, *result, *C, *R, *S;
	float *pr, *pc, *ps;
        float *pvol, *pvc;
        int xdim, ydim, zdim;

	// We expect 4 arguments of the PyArray_Type
	if(!PyArg_ParseTuple(args, "O!O!O!O!", 
				&PyArray_Type, &volume,
				&PyArray_Type, &R,
				&PyArray_Type, &C,
				&PyArray_Type, &S)) return NULL;

	if ( NULL == volume ) return NULL;
	if ( NULL == C ) return NULL;
	if ( NULL == R ) return NULL;
	if ( NULL == S ) return NULL;

	// result matrix is the same size as C and is float
	result = (PyArrayObject*) PyArray_ZEROS(PyArray_NDIM(C), C->dimensions, NPY_FLOAT, 0); 
	// This is for reference counting ( I think )
	PyArray_FLAGS(result) |= NPY_OWNDATA; 

	// massive use of iterators to progress through the data
	PyArrayIterObject *itr_v, *itr_r, *itr_c, *itr_s;
    itr_v = (PyArrayIterObject *) PyArray_IterNew(result);
    itr_r = (PyArrayIterObject *) PyArray_IterNew(R);
    itr_c = (PyArrayIterObject *) PyArray_IterNew(C);
    itr_s = (PyArrayIterObject *) PyArray_IterNew(S);
    pvol = (float *)PyArray_DATA(volume);
    xdim = PyArray_DIM(volume, 0);
    ydim = PyArray_DIM(volume, 1);
    zdim = PyArray_DIM(volume, 2);
    //printf("%f\n", pvol[4*20*30 + 11*30 + 15]);
    while(PyArray_ITER_NOTDONE(itr_v)) 
    {
		pvc = (float *) PyArray_ITER_DATA(itr_v);
		pr = (float *) PyArray_ITER_DATA(itr_r);
		pc = (float *) PyArray_ITER_DATA(itr_c);
		ps = (float *) PyArray_ITER_DATA(itr_s);
        // The order is weird because the tricubic code below is 
        // for Fortran ordering. Note that the xdim changes fast in
        // the code, whereas the rightmost dim should change fast
        // in C multidimensional arrays.
		*pvc = TriCubic(*ps, *pc, *pr, pvol, zdim, ydim, xdim); 
		PyArray_ITER_NEXT(itr_v);
		PyArray_ITER_NEXT(itr_r);
		PyArray_ITER_NEXT(itr_c);
		PyArray_ITER_NEXT(itr_s);
    }

	return result;
}
예제 #2
0
/*  wrapped cosine function */
static PyObject* cos_func_np(PyObject* self, PyObject* args)
{

    PyArrayObject *in_array;
    PyObject      *out_array;
    PyArrayIterObject *in_iter;
    PyArrayIterObject *out_iter;

    /*  parse single numpy array argument */
    if (!PyArg_ParseTuple(args, "O!", &PyArray_Type, &in_array))
        return NULL;

    /*  construct the output array, like the input array */
    out_array = PyArray_NewLikeArray(in_array, NPY_ANYORDER, NULL, 0);
    if (out_array == NULL)
        return NULL;

    /*  create the iterators */
    /* TODO: this iterator API is deprecated since 1.6
     *       replace in favour of the new NpyIter API */
    in_iter  = (PyArrayIterObject *)PyArray_IterNew((PyObject*)in_array);
    out_iter = (PyArrayIterObject *)PyArray_IterNew(out_array);
    if (in_iter == NULL || out_iter == NULL)
        goto fail;

    /*  iterate over the arrays */
    while (in_iter->index < in_iter->size
            && out_iter->index < out_iter->size) {
        /* get the datapointers */
        double * in_dataptr = (double *)in_iter->dataptr;
        double * out_dataptr = (double *)out_iter->dataptr;
        /* cosine of input into output */
        *out_dataptr = cos(*in_dataptr);
        /* update the iterator */
        PyArray_ITER_NEXT(in_iter);
        PyArray_ITER_NEXT(out_iter);
    }

    /*  clean up and return the result */
    Py_DECREF(in_iter);
    Py_DECREF(out_iter);
    Py_INCREF(out_array);
    return out_array;

    /*  in case bad things happen */
    fail:
        Py_XDECREF(out_array);
        Py_XDECREF(in_iter);
        Py_XDECREF(out_iter);
        return NULL;
}
예제 #3
0
파일: iconic.c 프로젝트: Garyfallidis/nipy
void local_histogram(double* H, 
		     unsigned int clamp, 
		     PyArrayIterObject* iter, 
		     const unsigned int* size)
{
  PyArrayObject *block, *im = iter->ao; 
  PyArrayIterObject* block_iter; 
  unsigned int i, left, right, center, halfsize, dim, offset=0; 
  npy_intp block_dims[3];

  UPDATE_ITERATOR_COORDS(iter); 

  /* Compute block corners */ 
  for (i=0; i<3; i++) {
    center = iter->coordinates[i];
    halfsize = size[i]/2; 
    dim = PyArray_DIM(im, i);
  
    /* Left handside corner */ 
    if (center<halfsize)
      left = 0; 
    else
      left = center-halfsize; 

    /* Right handside corner (plus one)*/ 
    right = center+halfsize+1; 
    if (right>dim) 
      right = dim; 

    /* Block properties */ 
    offset += left*PyArray_STRIDE(im, i); 
    block_dims[i] = right-left;

  }

  /* Create the block as a vew and the block iterator */ 
  block = (PyArrayObject*)PyArray_New(&PyArray_Type, 3, block_dims, 
				      PyArray_TYPE(im), PyArray_STRIDES(im), 
				      (void*)(PyArray_DATA(im)+offset), 
				      PyArray_ITEMSIZE(im),
				      NPY_BEHAVED, NULL);
  block_iter = (PyArrayIterObject*)PyArray_IterNew((PyObject*)block); 

  /* Compute block histogram */ 
  histogram(H, clamp, block_iter); 

  /* Free memory */ 
  Py_XDECREF(block_iter); 
  Py_XDECREF(block); 

  return; 
}		     
void allstats_ubyte(PyObject *inputarray, stats *result) {
	PyObject *iter;
	npy_ubyte *ptr;

	iter = PyArray_IterNew(inputarray);

	while (PyArray_ITER_NOTDONE(iter)) {
		ptr = (npy_ubyte *)PyArray_ITER_DATA(iter);
		updateStats(result, (double) (*ptr));
		PyArray_ITER_NEXT(iter);
	}
	Py_XDECREF(iter);
}
예제 #5
0
/* 
   Resample a 3d image submitted to an affine transformation.
   Tvox is the voxel transformation from the image to the destination grid.  
*/
void cubic_spline_resample3d(PyArrayObject* im_resampled, const PyArrayObject* im,   
			     const double* Tvox, int cast_integer, 
			     int mode_x, int mode_y, int mode_z)
{
  double i1;
  PyObject* py_i1;
  PyArrayObject* im_spline_coeff;
  PyArrayIterObject* imIter = (PyArrayIterObject*)PyArray_IterNew((PyObject*)im_resampled); 
  unsigned int x, y, z;
  unsigned dimX = PyArray_DIM(im, 0);
  unsigned dimY = PyArray_DIM(im, 1);
  unsigned dimZ = PyArray_DIM(im, 2);
  npy_intp dims[3] = {dimX, dimY, dimZ}; 
  double Tx, Ty, Tz;

  /* Compute the spline coefficient image */
  im_spline_coeff = (PyArrayObject*)PyArray_SimpleNew(3, dims, NPY_DOUBLE);
  cubic_spline_transform(im_spline_coeff, im);

  /* Force iterator coordinates to be updated */
  UPDATE_ITERATOR_COORDS(imIter); 

  /* Resampling loop */
  while(imIter->index < imIter->size) {
    x = imIter->coordinates[0];
    y = imIter->coordinates[1]; 
    z = imIter->coordinates[2]; 
    _apply_affine_transform(&Tx, &Ty, &Tz, Tvox, x, y, z); 
    i1 = cubic_spline_sample3d(Tx, Ty, Tz, im_spline_coeff, mode_x, mode_y, mode_z); 
    if (cast_integer)
      i1 = ROUND(i1); 

    /* Copy interpolated value into numpy array */
    py_i1 = PyFloat_FromDouble(i1); 
    PyArray_SETITEM(im_resampled, PyArray_ITER_DATA(imIter), py_i1); 
    Py_DECREF(py_i1); 
    
    /* Increment iterator */
    PyArray_ITER_NEXT(imIter); 

  }

  /* Free memory */
  Py_DECREF(imIter);
  Py_DECREF(im_spline_coeff); 
    
  return;
}
예제 #6
0
/* Array evaluates as "TRUE" if any of the elements are non-zero*/
static int
array_any_nonzero(PyArrayObject *arr)
{
    npy_intp counter;
    PyArrayIterObject *it;
    npy_bool anyTRUE = NPY_FALSE;

    it = (PyArrayIterObject *)PyArray_IterNew((PyObject *)arr);
    if (it == NULL) {
        return anyTRUE;
    }
    counter = it->size;
    while (counter--) {
        if (PyArray_DESCR(arr)->f->nonzero(it->dataptr, arr)) {
            anyTRUE = NPY_TRUE;
            break;
        }
        PyArray_ITER_NEXT(it);
    }
    Py_DECREF(it);
    return anyTRUE;
}
static PyObject*
test_neighborhood_iterator_oob(PyObject* NPY_UNUSED(self), PyObject* args)
{
    PyObject *x, *out, *b1, *b2;
    PyArrayObject *ax;
    PyArrayIterObject *itx;
    int i, typenum, mode1, mode2, st;
    npy_intp bounds[NPY_MAXDIMS*2];
    PyArrayNeighborhoodIterObject *niterx1, *niterx2;

    if (!PyArg_ParseTuple(args, "OOiOi", &x, &b1, &mode1, &b2, &mode2)) {
        return NULL;
    }

    if (!PySequence_Check(b1) || !PySequence_Check(b2)) {
        return NULL;
    }

    typenum = PyArray_ObjectType(x, 0);

    ax = (PyArrayObject*)PyArray_FromObject(x, typenum, 1, 10);
    if (ax == NULL) {
        return NULL;
    }
    if (PySequence_Size(b1) != 2 * PyArray_NDIM(ax)) {
        PyErr_SetString(PyExc_ValueError,
                "bounds sequence 1 size not compatible with x input");
        goto clean_ax;
    }
    if (PySequence_Size(b2) != 2 * PyArray_NDIM(ax)) {
        PyErr_SetString(PyExc_ValueError,
                "bounds sequence 2 size not compatible with x input");
        goto clean_ax;
    }

    out = PyList_New(0);
    if (out == NULL) {
        goto clean_ax;
    }

    itx = (PyArrayIterObject*)PyArray_IterNew(x);
    if (itx == NULL) {
        goto clean_out;
    }

    /* Compute boundaries for the neighborhood iterator */
    for (i = 0; i < 2 * PyArray_NDIM(ax); ++i) {
        PyObject* bound;
        bound = PySequence_GetItem(b1, i);
        if (bounds == NULL) {
            goto clean_itx;
        }
        if (!PyInt_Check(bound)) {
            PyErr_SetString(PyExc_ValueError,
                    "bound not long");
            Py_DECREF(bound);
            goto clean_itx;
        }
        bounds[i] = PyInt_AsLong(bound);
        Py_DECREF(bound);
    }

    /* Create the neighborhood iterator */
    niterx1 = (PyArrayNeighborhoodIterObject*)PyArray_NeighborhoodIterNew(
                    (PyArrayIterObject*)itx, bounds,
                    mode1, NULL);
    if (niterx1 == NULL) {
        goto clean_out;
    }

    for (i = 0; i < 2 * PyArray_NDIM(ax); ++i) {
        PyObject* bound;
        bound = PySequence_GetItem(b2, i);
        if (bounds == NULL) {
            goto clean_itx;
        }
        if (!PyInt_Check(bound)) {
            PyErr_SetString(PyExc_ValueError,
                    "bound not long");
            Py_DECREF(bound);
            goto clean_itx;
        }
        bounds[i] = PyInt_AsLong(bound);
        Py_DECREF(bound);
    }

    niterx2 = (PyArrayNeighborhoodIterObject*)PyArray_NeighborhoodIterNew(
                    (PyArrayIterObject*)niterx1, bounds,
                    mode2, NULL);
    if (niterx1 == NULL) {
        goto clean_niterx1;
    }

    switch (typenum) {
        case NPY_DOUBLE:
            st = copy_double_double(niterx1, niterx2, bounds, &out);
            break;
        default:
            PyErr_SetString(PyExc_ValueError,
                    "Type not supported");
            goto clean_niterx2;
    }

    if (st) {
        goto clean_niterx2;
    }

    Py_DECREF(niterx2);
    Py_DECREF(niterx1);
    Py_DECREF(itx);
    Py_DECREF(ax);
    return out;

clean_niterx2:
    Py_DECREF(niterx2);
clean_niterx1:
    Py_DECREF(niterx1);
clean_itx:
    Py_DECREF(itx);
clean_out:
    Py_DECREF(out);
clean_ax:
    Py_DECREF(ax);
    return NULL;
}
static PyObject*
test_neighborhood_iterator(PyObject* NPY_UNUSED(self), PyObject* args)
{
    PyObject *x, *fill, *out, *b;
    PyArrayObject *ax, *afill;
    PyArrayIterObject *itx;
    int i, typenum, mode, st;
    npy_intp bounds[NPY_MAXDIMS*2];
    PyArrayNeighborhoodIterObject *niterx;

    if (!PyArg_ParseTuple(args, "OOOi", &x, &b, &fill, &mode)) {
        return NULL;
    }

    if (!PySequence_Check(b)) {
        return NULL;
    }

    typenum = PyArray_ObjectType(x, 0);
    typenum = PyArray_ObjectType(fill, typenum);

    ax = (PyArrayObject*)PyArray_FromObject(x, typenum, 1, 10);
    if (ax == NULL) {
        return NULL;
    }
    if (PySequence_Size(b) != 2 * PyArray_NDIM(ax)) {
        PyErr_SetString(PyExc_ValueError,
                "bounds sequence size not compatible with x input");
        goto clean_ax;
    }

    out = PyList_New(0);
    if (out == NULL) {
        goto clean_ax;
    }

    itx = (PyArrayIterObject*)PyArray_IterNew(x);
    if (itx == NULL) {
        goto clean_out;
    }

    /* Compute boundaries for the neighborhood iterator */
    for (i = 0; i < 2 * PyArray_NDIM(ax); ++i) {
        PyObject* bound;
        bound = PySequence_GetItem(b, i);
        if (bounds == NULL) {
            goto clean_itx;
        }
        if (!PyInt_Check(bound)) {
            PyErr_SetString(PyExc_ValueError,
                    "bound not long");
            Py_DECREF(bound);
            goto clean_itx;
        }
        bounds[i] = PyInt_AsLong(bound);
        Py_DECREF(bound);
    }

    /* Create the neighborhood iterator */
    afill = NULL;
    if (mode == NPY_NEIGHBORHOOD_ITER_CONSTANT_PADDING) {
            afill = (PyArrayObject *)PyArray_FromObject(fill, typenum, 0, 0);
            if (afill == NULL) {
            goto clean_itx;
        }
    }

    niterx = (PyArrayNeighborhoodIterObject*)PyArray_NeighborhoodIterNew(
                    (PyArrayIterObject*)itx, bounds, mode, afill);
    if (niterx == NULL) {
        goto clean_afill;
    }

    switch (typenum) {
        case NPY_OBJECT:
            st = copy_object(itx, niterx, bounds, &out);
            break;
        case NPY_INT:
            st = copy_int(itx, niterx, bounds, &out);
            break;
        case NPY_DOUBLE:
            st = copy_double(itx, niterx, bounds, &out);
            break;
        default:
            PyErr_SetString(PyExc_ValueError,
                    "Type not supported");
            goto clean_niterx;
    }

    if (st) {
        goto clean_niterx;
    }

    Py_DECREF(niterx);
    Py_XDECREF(afill);
    Py_DECREF(itx);

    Py_DECREF(ax);

    return out;

clean_niterx:
    Py_DECREF(niterx);
clean_afill:
    Py_XDECREF(afill);
clean_itx:
    Py_DECREF(itx);
clean_out:
    Py_DECREF(out);
clean_ax:
    Py_DECREF(ax);
    return NULL;
}
예제 #9
0
파일: mrf.c 프로젝트: GaelVaroquaux/nipy
PyArrayObject* make_edges(const PyArrayObject* idx,
			  int ngb_size)
{
  int* ngb = _select_neighborhood_system(ngb_size);
  PyArrayIterObject* iter = (PyArrayIterObject*)PyArray_IterNew((PyObject*)idx);
  int* buf_ngb; 
  npy_intp xi, yi, zi, xj, yj, zj;
  npy_intp u2 = idx->dimensions[2]; 
  npy_intp u1 = idx->dimensions[1]*u2;
  npy_intp u0 = idx->dimensions[0]*u1;
  npy_intp mask_size = 0, n_edges = 0;
  npy_intp idx_i;
  npy_intp *buf_idx;
  npy_intp *edges_data, *buf_edges;
  npy_intp ngb_idx;
  npy_intp pos;
  PyArrayObject* edges;
  npy_intp dim[2] = {0, 2};
 
  /* First loop over the input array to determine the mask size */
  while(iter->index < iter->size) {
    buf_idx = (npy_intp*)PyArray_ITER_DATA(iter);
    if (*buf_idx >= 0)
      mask_size ++;
    PyArray_ITER_NEXT(iter); 
  }

  /* Allocate the array of edges using an upper bound of the required
     memory space */
  edges_data = (npy_intp*)malloc(2 * ngb_size * mask_size * sizeof(npy_intp)); 

  /* Second loop over the input array */
  PyArray_ITER_RESET(iter);
  iter->contiguous = 0; /* To force coordinates to be updated */
  buf_edges = edges_data;
  while(iter->index < iter->size) {

    xi = iter->coordinates[0];
    yi = iter->coordinates[1]; 
    zi = iter->coordinates[2]; 
    buf_idx = (npy_intp*)PyArray_ITER_DATA(iter);
    idx_i = *buf_idx;

    /* Loop over neighbors if current point is within the mask */
    if (idx_i >= 0) {
      buf_ngb = ngb;
      for (ngb_idx=0; ngb_idx<ngb_size; ngb_idx++) {

	/* Get neighbor coordinates */
	xj = xi + *buf_ngb; buf_ngb++; 
	yj = yi + *buf_ngb; buf_ngb++;
	zj = zi + *buf_ngb; buf_ngb++;
	pos = xj*u1 + yj*u2 + zj;

	/* Store edge if neighbor is within the mask */
	if ((pos < 0) || (pos >= u0))
	  continue;
	buf_idx = (npy_intp*)idx->data + pos;
	if (*buf_idx < 0)
	  continue;
	buf_edges[0] = idx_i;
	buf_edges[1] = *buf_idx;
	n_edges ++;
	buf_edges += 2;

      }
    }
    
    /* Increment iterator */
    PyArray_ITER_NEXT(iter); 
    
  }

  /* Reallocate edges array to account for connections suppressed due to masking */
  edges_data = realloc((void *)edges_data, 2 * n_edges * sizeof(npy_intp)); 
  dim[0] = n_edges;
  edges = (PyArrayObject*) PyArray_SimpleNewFromData(2, dim, NPY_INTP, (void*)edges_data);

  /* Transfer ownership to python (to avoid memory leaks!) */
  edges->flags = (edges->flags) | NPY_OWNDATA;

  /* Free memory */
  Py_XDECREF(iter);

  return edges;
}
예제 #10
0
//query the ball tree.  Arguments are the array of search points
// and the radius around each point to search
static PyObject *
BallTree_queryball(BallTreeObject *self, PyObject *args, PyObject *kwds){
  //we use goto statements : all variables should be declared up front
    int count_only = 0;
    double r;
    PyObject *arg = NULL;
    PyObject *arr = NULL;
    PyObject *nbrs = NULL;
    PyArrayIterObject* arr_iter = NULL;
    PyArrayIterObject* nbrs_iter = NULL;
    int nd, pt_size, pt_inc;
    static char *kwlist[] = {"x", "r", "count_only", NULL};

  //parse arguments.  If kmax is not provided, the default is 20
    if(!PyArg_ParseTupleAndKeywords(args,kwds,"Od|i",
                                    kwlist,&arg,&r,&count_only)){
        goto fail;
    }

  //check value of r
    if(r < 0){
        PyErr_SetString(PyExc_ValueError,
            "r must not be negative");
        goto fail;
    }

  //get the array object from the first argument
    arr = PyArray_FROM_OTF(arg,NPY_DOUBLE,NPY_ALIGNED);

  //check that the array was properly constructed
    if(arr==NULL){
        PyErr_SetString(PyExc_ValueError,
            "pt must be convertable to array");
        goto fail;
    }

    nd = PyArray_NDIM(arr);
    if(nd == 0){
        PyErr_SetString(PyExc_ValueError,
            "pt cannot be zero-sized array");
        goto fail;
    }
    pt_size = PyArray_DIM(arr,nd-1);
    if( pt_size != self->tree->PointSize() ){
        PyErr_SetString(PyExc_ValueError,
            "points are incorrect dimension");
        goto fail;
    }


  // Case 1: return arrays of all neighbors for each point
  //
    if(!count_only){
    //create a neighbors array.  This is an array of python objects.
    // each of which will be a numpy array of neighbors
        nbrs = (PyObject*)PyArray_SimpleNew(nd-1,PyArray_DIMS(arr),
                                            PyArray_OBJECT);

        if(nbrs==NULL){
            goto fail;
        }

    //create iterators to cycle through points
        --nd;
        arr_iter = (PyArrayIterObject*)PyArray_IterAllButAxis(arr,&nd);
        nbrs_iter = (PyArrayIterObject*)PyArray_IterNew(nbrs);
        ++nd;

        if( arr_iter==NULL || nbrs_iter==NULL ||
        (arr_iter->size != nbrs_iter->size)){
            PyErr_SetString(PyExc_ValueError,
                "unable to construct iterator");
            goto fail;
        }


        pt_inc = PyArray_STRIDES(arr)[nd-1] / PyArray_DESCR(arr)->elsize;
        if(PyArray_NDIM(nbrs)==0){
            BallTree_Point pt(arr,
                (double*)PyArray_ITER_DATA(arr_iter),
                pt_inc,pt_size);
            std::vector<long int> nbrs_vec;
            self->tree->query_ball(pt,r,nbrs_vec);
            npy_intp N_nbrs = nbrs_vec.size();
            PyObject* nbrs_obj = PyArray_SimpleNew(1, &N_nbrs, PyArray_LONG);
            long int* data = (long int*)PyArray_DATA(nbrs_obj);
            for(int i=0; i<N_nbrs; i++)
                data[i] = nbrs_vec[i];
            PyObject* tmp = nbrs;
            nbrs = nbrs_obj;
            Py_DECREF(tmp);
        }else{
            while(arr_iter->index < arr_iter->size){
                BallTree_Point pt(arr,
                    (double*)PyArray_ITER_DATA(arr_iter),
                    pt_inc,pt_size);
                std::vector<long int> nbrs_vec;
                self->tree->query_ball(pt,r,nbrs_vec);

                npy_intp N_nbrs = nbrs_vec.size();

                PyObject* nbrs_obj = PyArray_SimpleNew(1, &N_nbrs,
                                                       PyArray_LONG);
                long int* data = (long int*)PyArray_DATA(nbrs_obj);
                for(int i=0; i<N_nbrs; i++)
                    data[i] = nbrs_vec[i];

                PyObject** nbrs_data = (PyObject**)PyArray_ITER_DATA(nbrs_iter);
                PyObject* tmp = nbrs_data[0];
                nbrs_data[0] = nbrs_obj;
                Py_XDECREF(tmp);

                PyArray_ITER_NEXT(arr_iter);
                PyArray_ITER_NEXT(nbrs_iter);
            }
        }
    }

  // Case 2 : return number of neighbors for each point
    else{
    //create an array to keep track of the count
        nbrs = (PyObject*)PyArray_SimpleNew(nd-1,PyArray_DIMS(arr),
                                            PyArray_LONG);
        if(nbrs==NULL){
            goto fail;
        }

    //create iterators to cycle through points
        --nd;
        arr_iter = (PyArrayIterObject*)PyArray_IterAllButAxis(arr,&nd);
        nbrs_iter = (PyArrayIterObject*)PyArray_IterNew(nbrs);
        ++nd;

        if( arr_iter==NULL || nbrs_iter==NULL ||
            (arr_iter->size != nbrs_iter->size)){
            PyErr_SetString(PyExc_ValueError,
                "unable to construct iterator");
            goto fail;
        }

    //go through points and call BallTree::query_ball to count neighbors
        pt_inc = PyArray_STRIDES(arr)[nd-1] / PyArray_DESCR(arr)->elsize;
        while(arr_iter->index < arr_iter->size){
            BallTree_Point pt(arr,
                (double*)PyArray_ITER_DATA(arr_iter),
                pt_inc,pt_size);

            long int* nbrs_count = (long int*)PyArray_ITER_DATA(nbrs_iter);
            *nbrs_count = self->tree->query_ball(pt,r);

            PyArray_ITER_NEXT(arr_iter);
            PyArray_ITER_NEXT(nbrs_iter);
        }
    }
    Py_DECREF(nbrs_iter);
    Py_DECREF(arr_iter);
    Py_DECREF(arr);
    return nbrs;

    fail:
    Py_XDECREF(nbrs_iter);
    Py_XDECREF(arr_iter);
    Py_XDECREF(arr);
    Py_XDECREF(nbrs);
    return NULL;
}
예제 #11
0
static PyObject*
PyUnits_convert(
    PyUnits* self,
    PyObject* args,
    PyObject* kwds) {

  int            status       = 1;
  PyObject*      input        = NULL;
  PyArrayObject* input_arr    = NULL;
  PyArrayObject* output_arr   = NULL;
  PyObject*      input_iter   = NULL;
  PyObject*      output_iter  = NULL;
  double         input_val;
  double         output_val;

  if (!PyArg_ParseTuple(args, "O:UnitConverter.convert", &input)) {
    goto exit;
  }

  input_arr = (PyArrayObject*)PyArray_FromObject(
      input, NPY_DOUBLE, 0, NPY_MAXDIMS);
  if (input_arr == NULL) {
    goto exit;
  }

  output_arr = (PyArrayObject*)PyArray_SimpleNew(
      PyArray_NDIM(input_arr), PyArray_DIMS(input_arr), PyArray_DOUBLE);
  if (output_arr == NULL) {
    goto exit;
  }

  input_iter = PyArray_IterNew((PyObject*)input_arr);
  if (input_iter == NULL) {
    goto exit;
  }

  output_iter = PyArray_IterNew((PyObject*)output_arr);
  if (output_iter == NULL) {
    goto exit;
  }

  if (self->power != 1.0) {
    while (PyArray_ITER_NOTDONE(input_iter)) {
      input_val = *(double *)PyArray_ITER_DATA(input_iter);
      output_val = pow(self->scale*input_val + self->offset, self->power);
      if (errno) {
        PyErr_SetFromErrno(PyExc_ValueError);
        goto exit;
      }
      *(double *)PyArray_ITER_DATA(output_iter) = output_val;
      PyArray_ITER_NEXT(input_iter);
      PyArray_ITER_NEXT(output_iter);
    }
  } else {
    while (PyArray_ITER_NOTDONE(input_iter)) {
      input_val = *(double *)PyArray_ITER_DATA(input_iter);
      output_val = self->scale*input_val + self->offset;
      *(double *)PyArray_ITER_DATA(output_iter) = output_val;
      PyArray_ITER_NEXT(input_iter);
      PyArray_ITER_NEXT(output_iter);
    }
  }

  status = 0;

 exit:

  Py_XDECREF((PyObject*)input_arr);
  Py_XDECREF(input_iter);
  Py_XDECREF(output_iter);
  if (status) {
    Py_XDECREF((PyObject*)output_arr);
    return NULL;
  }
  return (PyObject*)output_arr;
}
예제 #12
0
PyObject *func_PyArray_IterNew(PyArrayObject *arr) {
  return PyArray_IterNew(reinterpret_cast<PyObject *>(arr));
}
예제 #13
0
파일: AscanfCall.c 프로젝트: RJVB/xgraph
static PyObject *AscanfCall( ascanf_Function *af, PyObject *arglist, long repeats, int asarray, int deref,
						PAO_Options *opts, char *caller )
{ int fargs= 0, aargc= 0, volatile_args= 0;
  double result= 0, *aresult=NULL;
  static double *AARGS= NULL;
  static char *ATYPE= NULL;
  static ascanf_Function *LAF= NULL;
  static size_t LAFN= 0;
  double *aargs= NULL;
  char *atype= NULL;
  ascanf_Function *laf= NULL, *af_array= NULL;
  size_t lafN= 0;
  PyObject *ret= NULL;
  static ascanf_Function *nDindex= NULL;
  int aV = ascanf_verbose;

	if( arglist ){
		if( PyList_Check(arglist) ){
			if( !(arglist= PyList_AsTuple(arglist)) ){
 				PyErr_SetString( XG_PythonError, "unexpected failure converting argument list to tuple" );
// 				PyErr_SetString( PyExc_RuntimeError, "unexpected failure converting argument list to tuple" );
				return(NULL);
			}
		}
		if( !PyTuple_Check(arglist) ){
			PyErr_SetString(
 				XG_PythonError,
// 				PyExc_SyntaxError,
				"arguments to the ascanf method should be passed as a tuple or list\n"
				" NB: a 1-element tuple is specified as (value , ) !!\n"
			);
			return(NULL);
		}

		aargc= PyTuple_Size(arglist);
	}
	else{
		aargc= 0;
	}
	if( !af ){
		goto PAC_ESCAPE;
	}
	if( af->type!= _ascanf_procedure && af->Nargs> 0 ){
	  /* procedures can have as many arguments as MaxArguments, which is probably too much to allocate here.
	   \ However, we know how many arguments a function can get (if all's well...), and we can assure that
	   \ it will have space for those arguments
	   \ 20061015: unless it also has MaxArguments, i.e. Nargs<0 ...
	   */
		fargs= af->Nargs;
	}
	{ long n= (aargc+fargs+1)*2;
		if( opts->call_reentrant ){
			lafN= n;
			aargs= (double*) calloc( lafN, sizeof(double) );
			atype= (char*)  calloc( lafN, sizeof(char) );
			if( !aargs || !atype || !(laf= (ascanf_Function*) calloc( lafN, sizeof(ascanf_Function) )) ){
				PyErr_NoMemory();
				return(NULL);
			}
		}
		else{
			if( !LAF ){
				LAFN= n;
				AARGS= (double*) calloc( LAFN, sizeof(double) );
				ATYPE= (char*) calloc( LAFN, sizeof(char) );
				if( !AARGS || !ATYPE || !(LAF= (ascanf_Function*) calloc( LAFN, sizeof(ascanf_Function) )) ){
					PyErr_NoMemory();
					return(NULL);
				}
			}
			else if( n> LAFN ){
				AARGS= (double*) realloc( AARGS, n * sizeof(double) );
				ATYPE= (char*) realloc( ATYPE, n * sizeof(char) );
				if( !AARGS || !ATYPE || !(LAF= (ascanf_Function*) realloc( LAF, n * sizeof(ascanf_Function) )) ){
					PyErr_NoMemory();
					return(NULL);
				}
				else{
					for( ; LAFN< n; LAFN++ ){
						AARGS[LAFN]= 0;
						memset( &LAF[LAFN], 0, sizeof(ascanf_Function) );
					}
				}
				LAFN= n;
			}
			aargs= AARGS;
			atype= ATYPE;
			laf= LAF;
			lafN= LAFN;
		}
	}

	{ int a= 0, i;
		if( opts->verbose > 1 ){
			ascanf_verbose = 1;
		}
		if( af->type== _ascanf_array ){
			if( !nDindex ){
				nDindex= Py_getNamedAscanfVariable("nDindex");
			}
			if( nDindex ){
				af_array= af;
				aargs[a]= (af->own_address)? af->own_address : take_ascanf_address(af);
				af= nDindex;
				a+= 1;
			}
		}
		for( i= 0; i< aargc; i++, a++ ){
		  PyObject *arg= PyTuple_GetItem(arglist, i);
		  ascanf_Function *aaf;

			if( PyFloat_Check(arg) ){
				aargs[a]= PyFloat_AsDouble(arg);
				atype[a]= 1;
			}
#ifdef USE_COBJ
			else if( PyCObject_Check(arg) ){
				if( (aaf= PyCObject_AsVoidPtr(arg)) && (PyCObject_GetDesc(arg)== aaf->function) ){
					aargs[a]= (aaf->own_address)? aaf->own_address : take_ascanf_address(aaf);
					atype[a]= 2;
				}
				else{
 					PyErr_SetString( XG_PythonError, "unsupported PyCObject type does not contain ascanf pointer" );
// 					PyErr_SetString( PyExc_TypeError, "unsupported PyCObject type does not contain ascanf pointer" );
					goto PAC_ESCAPE;
				}
			}
#else
			else if( PyAscanfObject_Check(arg) ){
				if( (aaf= PyAscanfObject_AsAscanfFunction(arg)) ){
					aargs[a]= (aaf->own_address)? aaf->own_address : take_ascanf_address(aaf);
					atype[a]= 2;
				}
				else{
 					PyErr_SetString( XG_PythonError, "invalid PyAscanfObject type does not contain ascanf pointer" );
// 					PyErr_SetString( PyExc_TypeError, "invalid PyAscanfObject type does not contain ascanf pointer" );
					goto PAC_ESCAPE;
				}
			}
#endif
			else if( PyInt_Check(arg) || PyLong_Check(arg) ){
				aargs[a]= PyInt_AsLong(arg);
				atype[a]= 3;
			}
			else if( PyBytes_Check(arg)
#ifdef IS_PY3K
				|| PyUnicode_Check(arg)
#endif
			){
			  static char *AFname= "AscanfCall-Static-StringPointer";
			  ascanf_Function *saf= &laf[a];
				memset( saf, 0, sizeof(ascanf_Function) );
				saf->type= _ascanf_variable;
				saf->function= ascanf_Variable;
				if( !(saf->name= PyObject_Name(arg)) ){
					saf->name= XGstrdup(AFname);
				}
				saf->is_address= saf->take_address= True;
				saf->is_usage= saf->take_usage= True;
				saf->internal= True;
#ifdef IS_PY3K
				if( PyUnicode_Check(arg) ){
				  PyObject *bytes = NULL;
				  char *str = NULL;
					PYUNIC_TOSTRING( arg, bytes, str );
					if( !str ){
						if( bytes ){
							Py_XDECREF(bytes);
						}
						goto PAC_ESCAPE;
					}
					saf->usage= parse_codes( XGstrdup(str) );
					Py_XDECREF(bytes);
				}
				else
#endif
				{
					saf->usage= parse_codes( XGstrdup( PyBytes_AsString(arg) ) );
				}
				aargs[a]= take_ascanf_address(saf);
				atype[a]= 4;
				if( i && af_array ){
					volatile_args+= 1;
				}
			}
			else if( PyArray_Check(arg)
				|| PyTuple_Check(arg)
				|| PyList_Check(arg)
			){
			  static char *AFname= "AscanfCall-Static-ArrayPointer";
			  ascanf_Function *saf= &laf[a];
			  PyArrayObject *parray;
				atype[a]= 6;
				if( PyList_Check(arg) ){
					if( !(arg= PyList_AsTuple(arg)) ){
 						PyErr_SetString( XG_PythonError, "unexpected failure converting argument to tuple" );
// 						PyErr_SetString( PyExc_RuntimeError, "unexpected failure converting argument to tuple" );
						goto PAC_ESCAPE;
/* 						return(NULL);	*/
					}
					else{
						atype[a]= 5;
					}
				}
				memset( saf, 0, sizeof(ascanf_Function) );
				saf->type= _ascanf_array;
				saf->function= ascanf_Variable;
				if( !(saf->name= PyObject_Name(arg)) ){
					saf->name= XGstrdup(AFname);
				}
				saf->is_address= saf->take_address= True;
				saf->internal= True;
				if( a ){
					saf->car= &laf[a-1];
				}
				else{
					saf->car= &laf[lafN-1];
				}
				if( PyTuple_Check(arg) ){
					saf->N= PyTuple_Size(arg);
					parray= NULL;
				}
				else{
					saf->N= PyArray_Size(arg);
					parray= (PyArrayObject*) arg;
					atype[a]= 7;
				}
				if( (saf->array= (double*) malloc( saf->N * sizeof(double) )) ){
				  int j;
					if( parray ){
					  PyArrayObject* xd= NULL;
					  double *PyArrayBuf= NULL;
					  PyArrayIterObject *it;
						if( (xd = (PyArrayObject*) PyArray_ContiguousFromObject( (PyObject*) arg, PyArray_DOUBLE, 0, 0 )) ){
							PyArrayBuf= (double*)PyArray_DATA(xd); /* size would be N*sizeof(double) */
						}
						else{
							it= (PyArrayIterObject*) PyArray_IterNew(arg);
						}
						if( PyArrayBuf ){
// 							for( j= 0; j< saf->N; j++ ){
// 								  /* 20061016: indices used to be i?!?! */
// 								saf->array[j]= PyArrayBuf[j];
// 							}
							if( saf->array != PyArrayBuf ){
								memcpy( saf->array, PyArrayBuf, saf->N * sizeof(double) );
							}
						}
						else{
							for( j= 0; j< saf->N; j++ ){
								saf->array[j]= PyFloat_AsDouble( PyArray_DESCR(parray)->f->getitem( it->dataptr, arg) );
								PyArray_ITER_NEXT(it);
							}
						}
						if( xd ){
							Py_XDECREF(xd);
						}
						else{
							Py_DECREF(it);
						}
					}
					else{
						for( j= 0; j< saf->N; j++ ){
							saf->array[j]= PyFloat_AsDouble( PyTuple_GetItem(arg,j) );
						}
					}
					aargs[a]= take_ascanf_address(saf);
					if( i && af_array ){
						volatile_args+= 1;
					}
				}
				else{
					PyErr_NoMemory();
					goto PAC_ESCAPE;
				}
			}
#if 0
			else{
 				PyErr_SetString( XG_PythonError, "arguments should be scalars, strings, arrays or ascanf pointers" );
// 				PyErr_SetString( PyExc_SyntaxError, "arguments should be scalars, strings, arrays or ascanf pointers" );
				goto PAC_ESCAPE;
			}
#else
			else{
			  static char *AFname= "AscanfCall-Static-PyObject";
			  ascanf_Function *saf= &laf[a];
				memset( saf, 0, sizeof(ascanf_Function) );
				saf->function= ascanf_Variable;
				saf->internal= True;
				saf= make_ascanf_python_object( saf, arg, "AscanfCall" );
				if( !saf->name ){
					if( saf->PyObject_Name ){
						saf->name= XGstrdup(saf->PyObject_Name);
					}
					else{
						saf->name= XGstrdup(AFname);
					}
				}
				aargs[a]= take_ascanf_address(saf);
				atype[a]= 4;
				if( i && af_array ){
					volatile_args+= 1;
				}
			}
#endif
		}
		if( a> aargc ){
			aargc= a;
		}
	}
예제 #14
0
static PyObject *frputvect(PyObject *self, PyObject *args, PyObject *keywds) {
    FrFile *oFile;
    FrameH *frame;
    FrProcData *proc;
    FrAdcData *adc;
    FrSimData *sim;
    FrVect *vect;
    int verbose=0, nData, nBits, type, subType, arrayType;
    double dx, sampleRate, start;
    char blank[] = "";
    char *filename=NULL, *history=NULL;
    char channel[MAX_STR_LEN], x_unit[MAX_STR_LEN], y_unit[MAX_STR_LEN], kind[MAX_STR_LEN];
    PyObject *temp;
    char msg[MAX_STR_LEN];

    PyObject *channellist, *channellist_iter, *framedict, *array;
    PyArrayIterObject *arrayIter;
    PyArray_Descr *temp_descr;

    static char *kwlist[] = {"filename", "channellist", "history", "verbose",
                             NULL};

    /*--------------- unpack arguments --------------------*/
    verbose = 0;

    /* The | in the format string indicates the next arguments are
       optional.  They are simply not assigned anything. */
    if (!PyArg_ParseTupleAndKeywords(args, keywds, "sO|si", kwlist,
        &filename, &channellist, &history, &verbose)) {
        Py_RETURN_NONE;
    }

    FrLibSetLvl(verbose);

    if (history == NULL) {
        history = blank;
    }

    /*-------- create frames, create vectors, and fill them. ------*/

    // Channel-list must be any type of sequence
    if (!PySequence_Check(channellist)) {
        PyErr_SetNone(PyExc_TypeError);
        return NULL;
    }

    // Get channel name from first dictionary
    framedict = PySequence_GetItem(channellist, (Py_ssize_t)0);
    if (framedict == NULL) {
        PyErr_SetString(PyExc_ValueError, "channellist is empty!");
        return NULL;
    }

    PyDict_ExtractString(channel, framedict, "name");
    Py_XDECREF(framedict);
    if (PyErr_Occurred()) {return NULL;}

    if (verbose > 0) {
        printf("Creating frame %s...\n", channel);
    }

    frame = FrameNew(channel);
    if (frame == NULL) {
        snprintf(msg, MAX_STR_LEN, "FrameNew failed (%s)", FrErrorGetHistory());
        PyErr_SetString(PyExc_FrError, msg);
        return NULL;
    }

    if (verbose > 0) {
        printf("Now iterating...\n");
    }

    // Iterators allow one to deal with non-contiguous arrays
    channellist_iter = PyObject_GetIter(channellist);
    arrayIter = NULL;
    while ((framedict = PyIter_Next(channellist_iter))) {
        if (verbose > 0) {
            printf("In loop...\n");
        }

        // Extract quantities from dict -- all borrowed references
        PyDict_ExtractString(channel, framedict, "name");
        CHECK_ERROR;

        start = PyDict_ExtractDouble(framedict, "start");
        CHECK_ERROR;

        dx = PyDict_ExtractDouble(framedict, "dx");
        CHECK_ERROR;

        array = PyDict_GetItemString(framedict, "data");
        if (!PyArray_Check(array)) {
            snprintf(msg, MAX_STR_LEN, "data is not an array");
            PyErr_SetString(PyExc_TypeError, msg);
        }
        CHECK_ERROR;

        nData = PyArray_SIZE(array);
        nBits = PyArray_ITEMSIZE(array)*8;
        arrayType = PyArray_TYPE(array);

        // kind, x_unit, y_unit, type, and subType have default values
        temp = PyDict_GetItemString(framedict, "kind");
        if (temp != NULL) {strncpy(kind, PyString_AsString(temp), MAX_STR_LEN);}
        else {snprintf(kind, MAX_STR_LEN, "PROC");}

        temp = PyDict_GetItemString(framedict, "x_unit");
        if (temp != NULL) {strncpy(x_unit, PyString_AsString(temp), MAX_STR_LEN);}
        else {strncpy(x_unit, blank, MAX_STR_LEN);}

        temp = PyDict_GetItemString(framedict, "y_unit");
        if (temp != NULL) {strncpy(y_unit, PyString_AsString(temp), MAX_STR_LEN);}
        else {strncpy(y_unit, blank, MAX_STR_LEN);}

        temp = PyDict_GetItemString(framedict, "type");
        if (temp != NULL) {type = (int)PyInt_AsLong(temp);}
        else {type = 1;}

        temp = PyDict_GetItemString(framedict, "subType");
        if (temp != NULL) {subType = (int)PyInt_AsLong(temp);}
        else {subType = 0;}

        // check for errors
        CHECK_ERROR;
        if (dx <= 0 || array == NULL || nData==0) {
            temp = PyObject_Str(framedict);
            snprintf(msg, MAX_STR_LEN, "Input dictionary contents: %s", PyString_AsString(temp));
            Py_XDECREF(temp);
            FrameFree(frame);
            Py_XDECREF(framedict);
            Py_XDECREF(channellist_iter);
            PyErr_SetString(PyExc_ValueError, msg);
            return NULL;
        }


        if (verbose > 0) {
            printf("type = %d, subType = %d, start = %f, dx = %f\n",
                type, subType, start, dx);
        }

        sampleRate = 1./dx;

        if (verbose > 0) {
            printf("Now copying data to vector...\n");
        }

        // Create empty vector (-typecode ==> empty) with metadata,
        // then copy data to vector
        vect = NULL;
        arrayIter = (PyArrayIterObject *)PyArray_IterNew(array);
        if(arrayType == NPY_INT16) {
            vect = FrVectNew1D(channel,-FR_VECT_2S,nData,dx,x_unit,y_unit);
            while (arrayIter->index < arrayIter->size) {
                vect->dataS[arrayIter->index] = *((npy_int16 *)arrayIter->dataptr);
                PyArray_ITER_NEXT(arrayIter);}}
        else if(arrayType == NPY_INT32) {
            vect = FrVectNew1D(channel,-FR_VECT_4S,nData,dx,x_unit,y_unit);
            while (arrayIter->index < arrayIter->size) {
                vect->dataI[arrayIter->index] = *((npy_int32 *)arrayIter->dataptr);
                PyArray_ITER_NEXT(arrayIter);}}
        else if(arrayType == NPY_INT64) {
            vect = FrVectNew1D(channel,-FR_VECT_8S,nData,dx,x_unit,y_unit);
            while (arrayIter->index < arrayIter->size) {
                vect->dataL[arrayIter->index] = *((npy_int64 *)arrayIter->dataptr);
                PyArray_ITER_NEXT(arrayIter);}}
        else if(arrayType == NPY_UINT8) {
            vect = FrVectNew1D(channel,-FR_VECT_1U,nData,dx,x_unit,y_unit);
            while (arrayIter->index < arrayIter->size) {
                vect->dataU[arrayIter->index] = *((npy_uint8 *)arrayIter->dataptr);
                PyArray_ITER_NEXT(arrayIter);}}
        else if(arrayType == NPY_UINT16) {
            vect = FrVectNew1D(channel,-FR_VECT_2U,nData,dx,x_unit,y_unit);
            while (arrayIter->index < arrayIter->size) {
                vect->dataUS[arrayIter->index] = *((npy_uint16 *)arrayIter->dataptr);
                PyArray_ITER_NEXT(arrayIter);}}
        else if(arrayType == NPY_UINT32) {
            vect = FrVectNew1D(channel,-FR_VECT_4U,nData,dx,x_unit,y_unit);
            while (arrayIter->index < arrayIter->size) {
                vect->dataUI[arrayIter->index] = *((npy_uint32 *)arrayIter->dataptr);
                PyArray_ITER_NEXT(arrayIter);}}
        else if(arrayType == NPY_UINT64) {
            vect = FrVectNew1D(channel,-FR_VECT_8U,nData,dx,x_unit,y_unit);
            while (arrayIter->index < arrayIter->size) {
                vect->dataUL[arrayIter->index] = *((npy_uint64 *)arrayIter->dataptr);
                PyArray_ITER_NEXT(arrayIter);}}
        else if(arrayType == NPY_FLOAT32) {
            vect = FrVectNew1D(channel,-FR_VECT_4R,nData,dx,x_unit,y_unit);
            while (arrayIter->index < arrayIter->size) {
                vect->dataF[arrayIter->index] = *((npy_float32 *)arrayIter->dataptr);
                PyArray_ITER_NEXT(arrayIter);}}
        else if(arrayType == NPY_FLOAT64) {
            vect = FrVectNew1D(channel,-FR_VECT_8R,nData,dx,x_unit,y_unit);
            while (arrayIter->index < arrayIter->size) {
                vect->dataD[arrayIter->index] = *((npy_float64 *)arrayIter->dataptr);
                PyArray_ITER_NEXT(arrayIter);}}
        /* FrVects don't have complex pointers.  Numpy stores complex
           numbers in the same way, but we have to trick it into giving
           us a (real) float pointer. */
        else if(arrayType == NPY_COMPLEX64) {
            vect = FrVectNew1D(channel,-FR_VECT_8C,nData,dx,x_unit,y_unit);
            temp_descr = PyArray_DescrFromType(NPY_FLOAT32);
            temp = PyArray_View((PyArrayObject *)array, temp_descr, NULL);
            Py_XDECREF(temp_descr);
            Py_XDECREF(arrayIter);
            arrayIter = (PyArrayIterObject *)PyArray_IterNew(temp);
            while (arrayIter->index < arrayIter->size) {
                vect->dataF[arrayIter->index] = *((npy_float32 *)arrayIter->dataptr);
                PyArray_ITER_NEXT(arrayIter);}
            Py_XDECREF(temp);}
        else if(arrayType == NPY_COMPLEX128) {
            vect = FrVectNew1D(channel,-FR_VECT_16C,nData,dx,x_unit,y_unit);
            temp_descr = PyArray_DescrFromType(NPY_FLOAT64);
            temp = PyArray_View((PyArrayObject *)array, temp_descr, NULL);
            Py_XDECREF(temp_descr);
            Py_XDECREF(arrayIter);
            arrayIter = (PyArrayIterObject *)PyArray_IterNew(temp);
            while (arrayIter->index < arrayIter->size) {
                vect->dataD[arrayIter->index] = *((npy_float64 *)arrayIter->dataptr);
                PyArray_ITER_NEXT(arrayIter);}
            Py_XDECREF(temp);}
        else PyErr_SetString(PyExc_TypeError, msg);

        if (PyErr_Occurred()) {
            if (vect != NULL) FrVectFree(vect);
            FrameFree(frame);
            Py_XDECREF(framedict);
            Py_XDECREF(channellist_iter);
            Py_XDECREF(arrayIter);
            return NULL;
        }

        if (verbose > 0) {
            printf("Done copying...\n");
            FrameDump(frame, stdout, 6);
        }

        // Add Fr*Data to frame and attach vector to Fr*Data
        if (strncmp(kind, "PROC", MAX_STR_LEN)==0) {
            proc = FrProcDataNew(frame, channel, sampleRate, 1, nBits);
            FrVectFree(proc->data);
            proc->data = vect;
            proc->type = type;
            proc->subType = subType;
            frame->GTimeS = (npy_uint32)start;
            frame->GTimeN = (npy_uint32)((start-(frame->GTimeS))*1e9);
            if (type==1) {  // time series
                proc->tRange = nData*dx;
                frame->dt = nData*dx;
            } else if (type==2) {  // frequency series
                proc->fRange = nData*dx;
            }
        } else if (strncmp(kind, "ADC", MAX_STR_LEN)==0) {
            adc = FrAdcDataNew(frame, channel, sampleRate, 1, nBits);
            FrVectFree(adc->data);
            adc->data = vect;
            frame->dt = nData*dx;
            frame->GTimeS = (npy_uint32)start;
            frame->GTimeN = (npy_uint32)((start-(frame->GTimeS))*1e9);
        } else {// Already tested that kind is one of these strings above
            sim = FrSimDataNew(frame, channel, sampleRate, 1, nBits);
            FrVectFree(sim->data);
            sim->data = vect;
            frame->dt = nData*dx;
            frame->GTimeS = (npy_uint32)start;
            frame->GTimeN = (npy_uint32)((start-(frame->GTimeS))*1e9);
        }

        if (verbose > 0) {
            printf("Attached vect to frame.\n");
        }

        // Clean up (all python objects in loop should be borrowed references)
        Py_XDECREF(framedict);
        Py_XDECREF(arrayIter);
    } // end iteration over channellist

    Py_XDECREF(channellist_iter);
    // At this point, there should be no Python references left!

    /*------------- Write file -----------------------------*/
    oFile = FrFileONewH(filename, 1, history); // 1 ==> gzip contents

    if (oFile == NULL) {
        snprintf(msg, MAX_STR_LEN, "%s\n", FrErrorGetHistory());
        PyErr_SetString(PyExc_FrError, msg);
        FrFileOEnd(oFile);
        return NULL;
    }
    if (FrameWrite(frame, oFile) != FR_OK) {
        snprintf(msg, MAX_STR_LEN, "%s\n", FrErrorGetHistory());
        PyErr_SetString(PyExc_FrError, msg);
        FrFileOEnd(oFile);
        return NULL;
    }

    /* The FrFile owns data and vector memory. Do not free them separately. */
    FrFileOEnd(oFile);
    FrameFree(frame);
    Py_RETURN_NONE;
};