예제 #1
0
void lcd_init() {
	ROM_SysCtlPeripheralEnable(LCD_PORTENABLE);
	ROM_GPIOPinTypeGPIOOutput(LCD_PORT, (LCD_RS | LCD_E | LCD_D4 | LCD_D5 | LCD_D6 | LCD_D7));

	// Please refer to the HLCD_D44780 datasheet for how these initializations work!
	ROM_SysCtlDelay(ROM_SysCtlClockGet()/3/2);

	ROM_GPIOPinWrite(LCD_PORT, LCD_RS,  0x00);

	ROM_GPIOPinWrite(LCD_PORT, LCD_D4 | LCD_D5 | LCD_D6 | LCD_D7,  0x30);
	ROM_GPIOPinWrite(LCD_PORT, LCD_E, 0x02);ROM_SysCtlDelay((20e-6)*ROM_SysCtlClockGet()/3); ROM_GPIOPinWrite(LCD_PORT, LCD_E, 0x00);

	ROM_SysCtlDelay((50e-3)*ROM_SysCtlClockGet()/3);

	ROM_GPIOPinWrite(LCD_PORT, LCD_D4 | LCD_D5 | LCD_D6 | LCD_D7,  0x30);
	ROM_GPIOPinWrite(LCD_PORT, LCD_E, 0x02);ROM_SysCtlDelay((20e-6)*ROM_SysCtlClockGet()/3);ROM_GPIOPinWrite(LCD_PORT, LCD_E, 0x00);

	ROM_SysCtlDelay((50e-3)*ROM_SysCtlClockGet()/3);

	ROM_GPIOPinWrite(LCD_PORT, LCD_D4 | LCD_D5 | LCD_D6 | LCD_D7,  0x30);
	ROM_GPIOPinWrite(LCD_PORT, LCD_E, 0x02);ROM_SysCtlDelay((20e-6)*ROM_SysCtlClockGet()/3); ROM_GPIOPinWrite(LCD_PORT, LCD_E, 0x00);

	ROM_SysCtlDelay((10e-3)*ROM_SysCtlClockGet()/3);

	ROM_GPIOPinWrite(LCD_PORT, LCD_D4 | LCD_D5 | LCD_D6 | LCD_D7,  0x20);
	ROM_GPIOPinWrite(LCD_PORT, LCD_E, 0x02);ROM_SysCtlDelay((20e-6)*ROM_SysCtlClockGet()/3); ROM_GPIOPinWrite(LCD_PORT, LCD_E, 0x00);

	ROM_SysCtlDelay((10e-3)*ROM_SysCtlClockGet()/3);

	lcd_command(LCD_CLEARDISPLAY);	// Clear the screen.
	lcd_command(0x06);	// Cursor moves right.
	lcd_command(LCD_DISPLAYCONTROL | LCD_DISPLAYON | LCD_CURSOROFF | LCD_BLINKOFF);	// Don't show any cursor, turn on LCD.
}
예제 #2
0
/*
 * pollOptode() tells the Optode to "do_sample."  Data is received
 * via the UART3 interrupt handler.
 */
void pollOptode()
{
	//send "do_sample\n\r" to Optode
	UARTSendOptode(UART3_BASE, (char *)"do_sample\n\r");


	//SEE OPTODE MANUAL PAGES 17-19 TO LEARN MORE ABOUT RESPONSE TIMES
	//AND ABOUT XON XOFF HANDSHAKES
	//give optode time to respond
	ROM_SysCtlDelay(ONESEC);
	ROM_SysCtlDelay(ONESEC);
}
예제 #3
0
파일: Wire.cpp 프로젝트: gferrera/AidaDSP
//Initialize as a master
void TwoWire::begin(void)
{

    if(i2cModule == NOT_ACTIVE) {
        i2cModule = BOOST_PACK_WIRE;
    }

    ROM_SysCtlPeripheralEnable(g_uli2cPeriph[i2cModule]);

    //Configure GPIO pins for I2C operation
    ROM_GPIOPinConfigure(g_uli2cConfig[i2cModule][0]);
    ROM_GPIOPinConfigure(g_uli2cConfig[i2cModule][1]);
    ROM_GPIOPinTypeI2C(g_uli2cBase[i2cModule], g_uli2cSDAPins[i2cModule]);
    ROM_GPIOPinTypeI2CSCL(g_uli2cBase[i2cModule], g_uli2cSCLPins[i2cModule]);
    ROM_I2CMasterInitExpClk(MASTER_BASE, F_CPU, speedMode);//Bus speed

    if(speedMode==I2C_SPEED_FASTMODE_PLUS)//Force 1Mhz
    {
        uint32_t ui32TPR = ((F_CPU + (2 * 10 * 1000000l) - 1) / (2 * 10 * 1000000l)) - 1;
        HWREG(MASTER_BASE + I2C_O_MTPR) = ui32TPR;
    }

    //force a stop condition
    if(!ROM_GPIOPinRead(g_uli2cBase[i2cModule], g_uli2cSCLPins[i2cModule]))
        forceStop();

    //Handle any startup issues by pulsing SCL
    if(ROM_I2CMasterBusBusy(MASTER_BASE) || ROM_I2CMasterErr(MASTER_BASE)
            || !ROM_GPIOPinRead(g_uli2cBase[i2cModule], g_uli2cSCLPins[i2cModule])) {
        uint8_t doI = 0;
        ROM_GPIOPinTypeGPIOOutput(g_uli2cBase[i2cModule], g_uli2cSCLPins[i2cModule]);
        unsigned long mask = 0;
        do {
            for(unsigned long i = 0; i < 10 ; i++) {
                if(speedMode==I2C_SPEED_FASTMODE_PLUS)
                    ROM_SysCtlDelay(F_CPU/1000000/3);//1000Hz=desired frequency, delay iteration=3 cycles
                else if(speedMode==I2C_SPEED_FASTMODE)
                    ROM_SysCtlDelay(F_CPU/400000/3);//400Hz=desired frequency, delay iteration=3 cycles
                else
                    ROM_SysCtlDelay(F_CPU/100000/3);//100Hz=desired frequency, delay iteration=3 cycles
                mask = (i%2) ? g_uli2cSCLPins[i2cModule] : 0;
                ROM_GPIOPinWrite(g_uli2cBase[i2cModule], g_uli2cSCLPins[i2cModule], mask);
            }
            doI++;
        } while(ROM_I2CMasterBusBusy(MASTER_BASE) && doI < 100);

        ROM_GPIOPinTypeI2CSCL(g_uli2cBase[i2cModule], g_uli2cSCLPins[i2cModule]);
        if(!ROM_GPIOPinRead(g_uli2cBase[i2cModule], g_uli2cSCLPins[i2cModule]))
            forceStop();

    }

}
예제 #4
0
void lcd_command(unsigned char command) {
	ROM_GPIOPinWrite(LCD_PORT, LCD_D4 | LCD_D5 | LCD_D6 | LCD_D7, (command & 0xf0) );
	ROM_GPIOPinWrite(LCD_PORT, LCD_RS, 0x00);
	ROM_GPIOPinWrite(LCD_PORT, LCD_E, 0x02);ROM_SysCtlDelay((20e-6)*ROM_SysCtlClockGet()/3); ROM_GPIOPinWrite(LCD_PORT, LCD_E, 0x00);

	ROM_SysCtlDelay((100e-6)*ROM_SysCtlClockGet()/3);

	ROM_GPIOPinWrite(LCD_PORT, LCD_D4 | LCD_D5 | LCD_D6 | LCD_D7, (command & 0x0f) << 4 );
	ROM_GPIOPinWrite(LCD_PORT, LCD_RS, 0x00);
	ROM_GPIOPinWrite(LCD_PORT, LCD_E, 0x02);ROM_SysCtlDelay((20e-6)*ROM_SysCtlClockGet()/3); ROM_GPIOPinWrite(LCD_PORT, LCD_E, 0x00);

	ROM_SysCtlDelay((5e-3)*ROM_SysCtlClockGet()/3);
}
예제 #5
0
 int main()
 {
 ROM_SysCtlClockSet(SYSCTL_SYSDIV_4|SYSCTL_USE_PLL|SYSCTL_XTAL_16MHZ|SYSCTL_OSC_MAIN);
 ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);
 ROM_GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, LED_RED|LED_BLUE|LED_GREEN);
 for (;;) {
 // set the red LED pin high, others low
 ROM_GPIOPinWrite(GPIO_PORTF_BASE, LED_RED|LED_GREEN|LED_BLUE, LED_RED);
 ROM_SysCtlDelay(4000000);
 ROM_GPIOPinWrite(GPIO_PORTF_BASE, LED_RED|LED_GREEN|LED_BLUE, 0);
 ROM_SysCtlDelay(5000000);
 }
 }
void signalUnhandleError(void)
{
	while (1)
	{
		ROM_GPIOPinWrite(LED_PORT_BASE, LED_ALL, LED_RED);
		ROM_SysCtlDelay(2000000);

		ROM_GPIOPinWrite(LED_PORT_BASE, LED_ALL, LED_GREEN);
		ROM_SysCtlDelay(2000000);

		ROM_GPIOPinWrite(LED_PORT_BASE, LED_ALL, LED_BLUE);
		ROM_SysCtlDelay(2000000);
	}
}
예제 #7
0
void lcd_write(unsigned char inputData) {
	ROM_GPIOPinWrite(LCD_PORT, LCD_D4 | LCD_D5 | LCD_D6 | LCD_D7, (inputData & 0xf0) );
	ROM_GPIOPinWrite(LCD_PORT, LCD_RS, 0x01);
	ROM_GPIOPinWrite(LCD_PORT, LCD_E, 0x02);
	ROM_SysCtlDelay((20e-6)*ROM_SysCtlClockGet()/3);
	ROM_GPIOPinWrite(LCD_PORT, LCD_E, 0x00);
	ROM_SysCtlDelay((100e-6)*ROM_SysCtlClockGet()/3);

	ROM_GPIOPinWrite(LCD_PORT, LCD_D4 | LCD_D5 | LCD_D6 | LCD_D7, (inputData & 0x0f) << 4 );
	ROM_GPIOPinWrite(LCD_PORT, LCD_RS, 0x01);
	ROM_GPIOPinWrite(LCD_PORT, LCD_E, 0x02);
	ROM_SysCtlDelay((20e-6)*ROM_SysCtlClockGet()/3);
	ROM_GPIOPinWrite(LCD_PORT, LCD_E, 0x00);
	ROM_SysCtlDelay((5e-3)*ROM_SysCtlClockGet()/3);
}
예제 #8
0
// Main ----------------------------------------------------------------------------------------------
int main(void){

	// Enable lazy stacking
	ROM_FPULazyStackingEnable();

	// Set the system clock to run at 40Mhz off PLL with external crystal as reference.
	ROM_SysCtlClockSet(SYSCTL_SYSDIV_5 | SYSCTL_USE_PLL | SYSCTL_XTAL_16MHZ | SYSCTL_OSC_MAIN);

	// Initialize the UART and write status.
	ConfigureUART();
	UARTprintf("ISL29023 Example\n");

	// Enable LEDs
	ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);
	ROM_GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, LED_RED|LED_BLUE|LED_GREEN);

	// Enable I2C3
	ConfigureI2C3();

	// Create struct
	tISL29023 islSensHub;

	// Create print variables
	uint32_t printValue[2];

	ISL29023ChangeSettings(ISL29023_COMMANDII_RANGE64k, ISL29023_COMMANDII_RES16, &islSensHub);

	while(1){
		// Get ALS
		ISL29023GetALS(&islSensHub);
		FloatToPrint(islSensHub.alsVal, printValue);
		UARTprintf("ALS: %d.%03d |.| ",printValue[0],printValue[1]);

		// Get IR
		ISL29023GetIR(&islSensHub);
		FloatToPrint(islSensHub.irVal, printValue);
		UARTprintf("IR: %d.%03d\n",printValue[0],printValue[1]);

		// Blink LED
		ROM_GPIOPinWrite(GPIO_PORTF_BASE, LED_RED|LED_GREEN|LED_BLUE, LED_GREEN);
		ROM_SysCtlDelay(ROM_SysCtlClockGet()/3/10);	// Delay for 100ms (1/10s) :: ClockGet()/3 = 1second
		ROM_GPIOPinWrite(GPIO_PORTF_BASE, LED_RED|LED_GREEN|LED_BLUE, 0);

		// Delay for second
		ROM_SysCtlDelay(ROM_SysCtlClockGet()/3);
	}

}
예제 #9
0
파일: starter1.c 프로젝트: manavm/Classes
int main0(void){  
  // "Embedded Systems: Real Time Interfacing to ARM Cortex M Microcontrollers",
  // ISBN: 978-1463590154, Jonathan Valvano, copyright (c) 2014, Volume 2, Program 11.2
  UINT8             IsDHCP = 0;
  _NetCfgIpV4Args_t ipV4;
  SlSockAddrIn_t    Addr;
  UINT16            AddrSize = 0;
  INT16             SockID = 0;
  UINT32            data;
  unsigned char     len = sizeof(_NetCfgIpV4Args_t);
  initClk();         // PLL 50 MHz, ADC needs PPL active          15
  ADC0_InitSWTriggerSeq3(7);  // Ain7 is on PD0                   16
  sl_Start(0, 0, 0); // Initializing the CC3100 device            17
  WlanConnect();     // connect to AP                             18
  sl_NetCfgGet(SL_IPV4_STA_P2P_CL_GET_INFO,&IsDHCP,&len,       // 19
               (unsigned char *)&ipV4);                        // 20
  Addr.sin_family = SL_AF_INET;                       //          21 
  Addr.sin_port = sl_Htons((UINT16)PORT_NUM);         //          22
  Addr.sin_addr.s_addr = sl_Htonl((UINT32)IP_ADDR);   //          23
  AddrSize = sizeof(SlSockAddrIn_t);                  //          24
  SockID = sl_Socket(SL_AF_INET,SL_SOCK_DGRAM, 0);    //          25
  while(1){
    uBuf[0] = ATYPE;      // analog data type                     26
    uBuf[1] = '=';        //                                      27
    data = ADC0_InSeq3(); // 0 to 4095, Ain7 is on PD0            28
    Int2Str(data,(char*)&uBuf[2]); // 6 digit number              29
    sl_SendTo(SockID, uBuf, BUF_SIZE, 0,        //                30
                         (SlSockAddr_t *)&Addr, AddrSize); //     31
    ROM_SysCtlDelay(ROM_SysCtlClockGet() / 25);  // 40ms          32
  }
}
예제 #10
0
void system_Process_System_State(void)
{
	switch (system_GetState())
	{
		case SYSTEM_POWER_UP:
			break;
		case SYSTEM_INITIALIZE:
			break;
		case SYSTEM_CALIB_SENSOR:
			break;
		case SYSTEM_SAVE_CALIB_SENSOR:
			break;
		case SYSTEM_ESTIMATE_MOTOR_MODEL:
			ProcessSpeedControl();
			break;
		case SYSTEM_SAVE_MOTOR_MODEL:
			break;
		case SYSTEM_WAIT_TO_RUN:
			break;
		case SYSTEM_RUN_SOLVE_MAZE:
			pid_Wallfollow_process();
			ProcessSpeedControl();
			break;
		case SYSTEM_RUN_IMAGE_PROCESSING:
			LED1_ON();
			ProcessSpeedControl();
			break;
		case SYSTEM_ERROR:
			speed_Enable_Hbridge(false);
			system_Enable_BoostCircuit(false);
			IntMasterDisable();
			while (1)
			{
				LED1_ON();
				LED2_ON();
				LED3_ON();
				ROM_SysCtlDelay(ROM_SysCtlClockGet() / 3);
				LED1_OFF();
				LED2_OFF();
				LED3_OFF();
				ROM_SysCtlDelay(ROM_SysCtlClockGet() / 3);
			}
//			break;
	}
}
예제 #11
0
/*
 * @brief: Read all 3 axes of HMC5883L
 * @param[in]: ptr output to individual axes
 * @param[out]: none
 */
void hmc5883l_ReadXYZ(int16_t *x, int16_t *y, int16_t *z){
	uint8_t b[6];
	i2c_WriteByte(I2C_ID_HMC5883L, HMC5883L_RA_MODE, HMC5883L_MODE_SINGLE);
	ROM_SysCtlDelay(6*(ROM_SysCtlClockGet()/3000));
	i2c_ReadBuf(I2C_ID_HMC5883L, HMC5883L_DATA, 6, b);
	*x = ((int16_t)(((uint16_t)b[0]<<8) | (uint16_t)b[1]))*xyz_comp_num[0]/xyz_comp_den[0];
	*y = ((int16_t)(((uint16_t)b[2]<<8) | (uint16_t)b[3]))*xyz_comp_num[1]/xyz_comp_den[1];
	*z = ((int16_t)(((uint16_t)b[4]<<8) | (uint16_t)b[5]))*xyz_comp_num[2]/xyz_comp_den[2];
}
예제 #12
0
void delay_ms(uint32_t ui32Ms) {

// 1 clock cycle = 1 / SysCtlClockGet() second
// 1 SysCtlDelay = 3 clock cycle = 3 / SysCtlClockGet() second
// 1 second = SysCtlClockGet() / 3
// 0.001 second = 1 ms = SysCtlClockGet() / 3 / 1000

	ROM_SysCtlDelay(ui32Ms * (ROM_SysCtlClockGet() / 3 / 1000));
}
예제 #13
0
int I2CRead(unsigned char slave, unsigned char address, unsigned int len, unsigned char * readdata, unsigned int readcnt)
{
unsigned long ulToRead;

	// Start with a dummy write to get the address set in the EEPROM.
	ROM_I2CMasterSlaveAddrSet(I2C_MASTER_BASE, slave, false);

	// Place the address to be written in the data register.
	ROM_I2CMasterDataPut(I2C_MASTER_BASE, address);

	// Perform a single send, writing the address as the only byte.
	ROM_I2CMasterControl(I2C_MASTER_BASE, I2C_MASTER_CMD_BURST_SEND_START);

	// Wait until the current byte has been transferred.
	if(!WaitI2CFinished()) 
	{ 
		return(false); 
	}

	// Put the I2C master into receive mode.
	ROM_I2CMasterSlaveAddrSet(I2C_MASTER_BASE, slave, true);

	// Start the receive.
	ROM_I2CMasterControl(I2C_MASTER_BASE, ((readcnt > 1) ? I2C_MASTER_CMD_BURST_RECEIVE_START :
	I2C_MASTER_CMD_SINGLE_RECEIVE));

	// Receive the required number of bytes.
	ulToRead = readcnt;

	while(ulToRead)
	{
		// Wait until the current byte has been read.
		while(ROM_I2CMasterIntStatus(I2C_MASTER_BASE, false) == 0){}
		// Fixes I2C transactions.. ?
		ROM_SysCtlDelay(1000);

		// Clear pending interrupt notification.
		ROM_I2CMasterIntClear(I2C_MASTER_BASE);

		// Read the received character.
		*readdata++ = ROM_I2CMasterDataGet(I2C_MASTER_BASE);
		ulToRead--;

		// Set up for the next byte if any more remain.
		if(ulToRead)
		{
			ROM_I2CMasterControl(I2C_MASTER_BASE, ((ulToRead == 1) ? I2C_MASTER_CMD_BURST_RECEIVE_FINISH :
			I2C_MASTER_CMD_BURST_RECEIVE_CONT));
		}
	}

	return(readcnt - ulToRead);
}
예제 #14
0
//*****************************************************************************
//
// Delay for 5 us.
//
//*****************************************************************************
void delayFiveMicroseconds(uint32_t g_ui32SysClock) {
	//
	// Delay for 5 us. The value of the number provided to SysCtlDelay
	// is the number of loops (3 assembly instructions each) to iterate through.
	// Interrupts are disabled temporarily to ensure the pulse length is 5us.
	//
	ROM_IntMasterDisable();

	ROM_SysCtlDelay(g_ui32SysClock / 3 / 200000);

	ROM_IntMasterEnable();
}
예제 #15
0
static inline void shift_bit(shiftbrite* sb, uint16_t val) {
  if( val )
  {
      ROM_GPIOPinWrite( sb->data_pin.port, sb->data_pin.pin, sb->data_pin.pin );
  }
  else
  {
      ROM_GPIOPinWrite( sb->data_pin.port, sb->data_pin.pin, ~sb->data_pin.pin );
  }
  ROM_SysCtlDelay(5);
  pulse(sb->clock_pin);

}
예제 #16
0
void system_Process_System_State(void)
{
	switch (system_GetState())
	{
		case SYSTEM_POWER_UP:
			break;
		case SYSTEM_INITIALIZE:
			break;
		case SYSTEM_ESTIMATE_MOTOR_MODEL:
			break;
		case SYSTEM_SAVE_MOTOR_MODEL:
			break;
		case SYSTEM_WAIT_TO_RUN:
			break;
		case SYSTEM_RUN_BALANCE:
			loop();
			break;
		case SYSTEM_RUN_IMAGE_PROCESSING:
			LED1_ON();
			break;
		case SYSTEM_ERROR:
			speed_Enable_Hbridge(false);
			system_Enable_BoostCircuit(false);
			IntMasterDisable();
			while (1)
			{
				LED1_ON();
				LED2_ON();
				LED3_ON();
				ROM_SysCtlDelay(ROM_SysCtlClockGet() / 3);
				LED1_OFF();
				LED2_OFF();
				LED3_OFF();
				ROM_SysCtlDelay(ROM_SysCtlClockGet() / 3);
			}
	}
}
예제 #17
0
//Initialize as a master
void TwoWire::begin(void)
{
  pinMode(RED_LED, OUTPUT);

  if(i2cModule == NOT_ACTIVE) {
      i2cModule = BOOST_PACK_WIRE;
  }

  ROM_SysCtlPeripheralEnable(g_uli2cPeriph[i2cModule]);

  //Configure GPIO pins for I2C operation
  ROM_GPIOPinConfigure(g_uli2cConfig[i2cModule][0]);
  ROM_GPIOPinConfigure(g_uli2cConfig[i2cModule][1]);
  ROM_GPIOPinTypeI2C(g_uli2cBase[i2cModule], g_uli2cSDAPins[i2cModule]);
  ROM_GPIOPinTypeI2CSCL(g_uli2cBase[i2cModule], g_uli2cSCLPins[i2cModule]);
  ROM_I2CMasterInitExpClk(MASTER_BASE, F_CPU, false);//max bus speed=400kHz for gyroscope

  //force a stop condition
  if(!ROM_GPIOPinRead(g_uli2cBase[i2cModule], g_uli2cSCLPins[i2cModule]))
	  forceStop();

  //Handle any startup issues by pulsing SCL
  if(ROM_I2CMasterBusBusy(MASTER_BASE) || ROM_I2CMasterErr(MASTER_BASE) 
	|| !ROM_GPIOPinRead(g_uli2cBase[i2cModule], g_uli2cSCLPins[i2cModule])){
	  uint8_t doI = 0;
  	  ROM_GPIOPinTypeGPIOOutput(g_uli2cBase[i2cModule], g_uli2cSCLPins[i2cModule]);
  	  unsigned long mask = 0;
  	  do{
  		  for(unsigned long i = 0; i < 10 ; i++) {
  			  ROM_SysCtlDelay(F_CPU/100000/3);//100Hz=desired frequency, delay iteration=3 cycles
  			  mask = (i%2) ? g_uli2cSCLPins[i2cModule] : 0;
  			  ROM_GPIOPinWrite(g_uli2cBase[i2cModule], g_uli2cSCLPins[i2cModule], mask);
  		  }
  		  doI++;
  	  }while(ROM_I2CMasterBusBusy(MASTER_BASE) && doI < 100);

  	  ROM_GPIOPinTypeI2CSCL(g_uli2cBase[i2cModule], g_uli2cSCLPins[i2cModule]);
  	  if(!ROM_GPIOPinRead(g_uli2cBase[i2cModule], g_uli2cSCLPins[i2cModule]))
  		  forceStop();

  }

}
예제 #18
0
//*****************************************************************************
//
// SHT21 Application error handler.
//
//*****************************************************************************
void
SHT21AppErrorHandler(char *pcFilename, uint_fast32_t ui32Line)
{
	uint32_t ui32LEDState;

	//
	// Set terminal color to red and print error status and locations.
	//
	UARTprintf("\033[31;1m");
	UARTprintf("Error: %d, File: %s, Line: %d\n"
			"See I2C status definitions in utils\\i2cm_drv.h\n",
			g_vui8ErrorFlag, pcFilename, ui32Line);

	//
	// Return terminal color to normal.
	//
	UARTprintf("\033[0m");

	//
	// Read the initial LED state and clear the CLP_D2 LED.
	//
	LEDRead(&ui32LEDState);
	ui32LEDState &= ~CLP_D2;

	//
	// Go to sleep wait for interventions.  A more robust application could
	// attempt corrective actions here.
	//
	while(1)
	{
		//
		// Toggle LED D1 to indicate the error.
		//
		ui32LEDState ^= CLP_D1;
		LEDWrite(CLP_D1 | CLP_D2, ui32LEDState);

		//
		// Do Nothing.
		//
		ROM_SysCtlDelay(g_ui32SysClock / (10 * 3));

	}
}
void BattSenseISR(void)
{
	uint32_t ADCResult, BatteryVoltage;
	ROM_ADCIntClear(ADC0_BASE, 3);
	ROM_ADCSequenceDataGet(ADC0_BASE, 3, (uint32_t *)&ADCResult);
	BatteryVoltage = ((float)ADCResult) / 4096 * 3.3 * (220 + 680) / 220;
#warning CHECK BATT SENSE
#if 0
	if (BatteryVoltage < (float)11.0)
	{
		HBridgeEnable();
		throttleStop();
		while(1)
		{
			LED3_TOGGLE;
			ROM_SysCtlDelay(ROM_SysCtlClockGet()/3);
		}
	}
#endif
}
예제 #20
0
void LED_Loop()
{
	LED_B_ON;
	ROM_SysCtlDelay((ROM_SysCtlClockGet())/3/2);
	LED_R_ON;
	ROM_SysCtlDelay((ROM_SysCtlClockGet())/3/2);
	LED_G_ON;
	ROM_SysCtlDelay((ROM_SysCtlClockGet())/3/2);
	LED_B_OFF;
	ROM_SysCtlDelay((ROM_SysCtlClockGet())/3/2);
	LED_R_OFF;
	ROM_SysCtlDelay((ROM_SysCtlClockGet())/3/2);
	LED_G_OFF;
	ROM_SysCtlDelay((ROM_SysCtlClockGet())/3/2);
}
예제 #21
0
static tBoolean WaitI2CFinished(void)
{
	// Wait until the current byte has been transferred.
	while(ROM_I2CMasterIntStatus(I2C_MASTER_BASE, false) == 0){}

	if(ROM_I2CMasterErr(I2C_MASTER_BASE) != I2C_MASTER_ERR_NONE)
	{
		ROM_I2CMasterIntClear(I2C_MASTER_BASE);
		return(false);
	}

	// Clear any interrupts set.
	while(ROM_I2CMasterIntStatus(I2C_MASTER_BASE, false))
	{
		ROM_I2CMasterIntClear(I2C_MASTER_BASE);
	}

	// Fixes I2C transactions.. ?
	ROM_SysCtlDelay(10000);

	return(true);
}
예제 #22
0
파일: lcd.c 프로젝트: thyyppa/Stellaris6100
/**
 * Initialize the lcd
 */
void lcd_init()
{
    enable_lcd();

    setPin( LCD_PORT, LCD_RST, 0 );
    setPin( LCD_PORT, LCD_RST, 1 );
    ROM_SysCtlDelay( 500 );

    spi_command( SLEEPOUT );
    spi_command( BSTRON );
    spi_command( COLMOD );

    spi_command( MADCTL );
    spi_data( 0xC0 );

    spi_command( SETCON );
    spi_data( 0x40 );
    spi_command( DISPON );
    setPin( LCD_PORT, LCD_CS, 0 );

    lcd_clear();
}
예제 #23
0
파일: usart.c 프로젝트: checko/F4OS
void init_usart(void) {
    /* Enable UART0 clock */
    SYSCTL_RCGC1_R |= SYSCTL_RCGC1_UART0;

    /* Enable GPIOA clock */
    SYSCTL_RCGC2_R |= SYSCTL_RCGC2_GPIOA;

    ROM_SysCtlDelay(1);

    /* Alternate functions UART */
    GPIO_PORTA_PCTL_R |= (1 << 4) | (1 << 0);

    /* Set to output */
    GPIO_PORTA_DIR_R &= ~(GPIO_PIN_1 | GPIO_PIN_0);

    /* Set PA0 and PA1 to alternate function */
    GPIO_PORTA_AFSEL_R |= GPIO_PIN_1 | GPIO_PIN_0;

    /* Digital pins */
    GPIO_PORTA_DEN_R |= GPIO_PIN_1 | GPIO_PIN_0;

    /* Disable UART */
    UART0_CTL_R &= ~(UART_CTL_UARTEN);

    usart_baud(115200);

    /* Enable FIFO, 8-bit words */
    UART0_LCRH_R = UART_LCRH_FEN | UART_LCRH_WLEN_8;

    /* Use system clock */
    UART0_CC_R = UART_CC_CS_SYSCLK;

    /* Enable UART */
    UART0_CTL_R |= UART_CTL_UARTEN | UART_CTL_RXE | UART_CTL_TXE;

    usart_ready = 1;
}
예제 #24
0
//*****************************************************************************
//
// This is the main application entry function.
//
//*****************************************************************************
int
main(void)
{
    uint32_t ui32TxCount;
    uint32_t ui32RxCount;
    //uint32_t ui32Loop;

    //
    // Enable lazy stacking for interrupt handlers.  This allows floating-point
    // instructions to be used within interrupt handlers, but at the expense of
    // extra stack usage.
    //
    ROM_FPULazyStackingEnable();

    //
    // Set the clocking to run from the PLL at 50MHz
    //
#if 1
    ROM_SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |
                       SYSCTL_XTAL_16MHZ);

    //
    // Configure the required pins for USB operation.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOD);
    ROM_GPIOPinTypeUSBAnalog(GPIO_PORTD_BASE, GPIO_PIN_5 | GPIO_PIN_4);
       //ROM_SysTickPeriodSet(ROM_SysCtlClockGet() / 100);

    /* This code taken from: http://e2e.ti.com/support/microcontrollers/tiva_arm/f/908/t/311237.aspx
    */
#else       
#include "hw_nvic.h"
       FlashErase(0x00000000);
       ROM_IntMasterDisable();
       ROM_SysTickIntDisable();
       ROM_SysTickDisable();
       uint32_t ui32SysClock;
       ROM_SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN | SYSCTL_XTAL_16MHZ);
       ui32SysClock = ROM_SysCtlClockGet();
       ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOD);
       ROM_GPIOPinTypeUSBAnalog(GPIO_PORTD_BASE, GPIO_PIN_4 | GPIO_PIN_5);
       ROM_SysTickPeriodSet(ROM_SysCtlClockGet() / 100);
       HWREG(NVIC_DIS0) = 0xffffffff;
       HWREG(NVIC_DIS1) = 0xffffffff;
       HWREG(NVIC_DIS2) = 0xffffffff;
       HWREG(NVIC_DIS3) = 0xffffffff;
       HWREG(NVIC_DIS4) = 0xffffffff;
       int ui32Addr;
       for(ui32Addr = NVIC_PRI0; ui32Addr <= NVIC_PRI34; ui32Addr+=4)
       {
          HWREG(ui32Addr) = 0;
       }
       HWREG(NVIC_SYS_PRI1) = 0;
       HWREG(NVIC_SYS_PRI2) = 0;
       HWREG(NVIC_SYS_PRI3) = 0;
       ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_USB0);
       ROM_SysCtlPeripheralReset(SYSCTL_PERIPH_USB0);
       ROM_SysCtlUSBPLLEnable();
       ROM_SysCtlDelay(ui32SysClock*2 / 3);
       ROM_IntMasterEnable();
       ROM_UpdateUSB(0);
       while(1)
           {
           }
#endif
#define BOOTLOADER_TEST 0
#if BOOTLOADER_TEST
#include "hw_nvic.h"
    
    //ROM_UpdateUART();
    // May need to do the following here:
    //  0. See if this will cause bootloader to start
    //ROM_FlashErase(0); 
    //ROM_UpdateUSB(0);
    
#define SYSTICKS_PER_SECOND 100
    uint32_t ui32SysClock = ROM_SysCtlClockGet();
    ROM_SysTickPeriodSet(ROM_SysCtlClockGet() / SYSTICKS_PER_SECOND);
    ROM_SysTickIntEnable();
    ROM_SysTickEnable();
    
    //USBDCDTerm(0);
    
    // Disable all interrupts
    ROM_IntMasterDisable();
    ROM_SysTickIntDisable();
    ROM_SysTickDisable();
    HWREG(NVIC_DIS0) = 0xffffffff;
    HWREG(NVIC_DIS1) = 0xffffffff;
    HWREG(NVIC_DIS2) = 0xffffffff;
    HWREG(NVIC_DIS3) = 0xffffffff;
    HWREG(NVIC_DIS4) = 0xffffffff;
       int ui32Addr;
       for(ui32Addr = NVIC_PRI0; ui32Addr <= NVIC_PRI34; ui32Addr+=4)
       {
          HWREG(ui32Addr) = 0;
       }
       HWREG(NVIC_SYS_PRI1) = 0;
       HWREG(NVIC_SYS_PRI2) = 0;
       HWREG(NVIC_SYS_PRI3) = 0;
    
    //  1. Enable USB PLL
    //ROM_SysCtlUSBPLLEnable();
    //  2. Enable USB controller
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_USB0);
    ROM_SysCtlPeripheralReset(SYSCTL_PERIPH_USB0);
    //USBClockEnable(USB0_BASE, 8, USB_CLOCK_INTERNAL);
    //HWREG(USB0_BASE + USB_O_CC) = (8 - 1) | USB_CLOCK_INTERNAL;

    ROM_SysCtlUSBPLLEnable();
    
    //  3. Enable USB D+ D- pins

    //  4. Activate USB DFU
    ROM_SysCtlDelay(ui32SysClock * 2 / 3);
    ROM_IntMasterEnable();  // Re-enable interrupts at NVIC level
    ROM_UpdateUSB(0);
    //  5. Should never get here since update is in progress
#endif // BOOTLOADER_TEST

    //
    // Enable the GPIO port that is used for the on-board LED.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOB);    // gjs Our board uses GPIOB for LEDs
    // gjs original ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);

    //
    // Enable the GPIO pins for the LED (PF2 & PF3).
    //
    ROM_GPIOPinTypeGPIOOutput(GPIO_PORTB_BASE, GPIO_PIN_0|GPIO_PIN_1);
    // gjs original ROM_GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_3|GPIO_PIN_2);

    //
    // Not configured initially.
    //
    g_bUSBConfigured = false;

    //
    // Enable the UART that we will be redirecting.
    //
    ROM_SysCtlPeripheralEnable(USB_UART_PERIPH);

    //
    // Enable and configure the UART RX and TX pins
    //
    ROM_SysCtlPeripheralEnable(TX_GPIO_PERIPH);
    ROM_SysCtlPeripheralEnable(RX_GPIO_PERIPH);
    ROM_GPIOPinTypeUART(TX_GPIO_BASE, TX_GPIO_PIN);
    ROM_GPIOPinTypeUART(RX_GPIO_BASE, RX_GPIO_PIN);

    //
    // TODO: Add code to configure handshake GPIOs if required.
    //

    //
    // Set the default UART configuration.
    //
    ROM_UARTConfigSetExpClk(USB_UART_BASE, ROM_SysCtlClockGet(),
                            DEFAULT_BIT_RATE, DEFAULT_UART_CONFIG);
    ROM_UARTFIFOLevelSet(USB_UART_BASE, UART_FIFO_TX4_8, UART_FIFO_RX4_8);

    //
    // Configure and enable UART interrupts.
    //
    ROM_UARTIntClear(USB_UART_BASE, ROM_UARTIntStatus(USB_UART_BASE, false));
    ROM_UARTIntEnable(USB_UART_BASE, (UART_INT_OE | UART_INT_BE | UART_INT_PE |
                      UART_INT_FE | UART_INT_RT | UART_INT_TX | UART_INT_RX));

    //
    // Enable the system tick.
    //
#if 0    
    ROM_SysTickPeriodSet(ROM_SysCtlClockGet() / SYSTICKS_PER_SECOND);
    ROM_SysTickIntEnable();
    ROM_SysTickEnable();
#endif
    //
    // Initialize the transmit and receive buffers.
    //
    USBBufferInit(&g_sTxBuffer);
    USBBufferInit(&g_sRxBuffer);

    //
    // Set the USB stack mode to Device mode with VBUS monitoring.
    //
    USBStackModeSet(0, eUSBModeDevice, 0);

    //
    // Pass our device information to the USB library and place the device
    // on the bus.
    //
    USBDCDCInit(0, &g_sCDCDevice);

    //
    // Clear our local byte counters.
    //
    ui32RxCount = 0;
    ui32TxCount = 0;

    //
    // Enable interrupts now that the application is ready to start.
    //
    ROM_IntEnable(USB_UART_INT);

    // Enable FreeRTOS
    mainA(); // FreeRTOS. Will not return
    
#if 0    
    //
    // Main application loop.
    //
    while(1)
    {
        //
        // Have we been asked to update the status display?
        //
        if(g_ui32Flags & COMMAND_STATUS_UPDATE)
        {
            //
            // Clear the command flag
            //
            ROM_IntMasterDisable();
            g_ui32Flags &= ~COMMAND_STATUS_UPDATE;
            ROM_IntMasterEnable();
        }

        //
        // Has there been any transmit traffic since we last checked?
        //
        if(ui32TxCount != g_ui32UARTTxCount)
        {
            //
            // Turn on the Green LED.
            //
            // gjs ROM_UARTCharPutNonBlocking(USB_UART_BASE, 'b');

#if 1
            if (ui32TxCount & 1) {
                GPIOPinWrite(GPIO_PORTB_BASE, GPIO_PIN_0, GPIO_PIN_0);
            } else {
                GPIOPinWrite(GPIO_PORTB_BASE, GPIO_PIN_0, 0);
            }
#else            
            if (1 || g_ui32UARTTxCount & 0x01) {
                GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_3, GPIO_PIN_3);
            } else {
                //GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_3, 0);
            }

            //
            // Delay for a bit.
            //
            for(uint32_t ui32Loop = 0; ui32Loop < 150000; ui32Loop++)
            {
            }

            //
            // Turn off the Green LED.
            //
            GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_3, 0);
#endif            

            //
            // Take a snapshot of the latest transmit count.
            //
            ui32TxCount = g_ui32UARTTxCount;
        }

        //
        // Has there been any receive traffic since we last checked?
        //
        if(ui32RxCount != g_ui32UARTRxCount)
        {
            //
            // Turn on the Blue LED.
            //
#if 1
            if (ui32RxCount & 1) {
                GPIOPinWrite(GPIO_PORTB_BASE, GPIO_PIN_1, GPIO_PIN_1);
            } else {
                GPIOPinWrite(GPIO_PORTB_BASE, GPIO_PIN_1, 0);
            }
#else            
            GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, GPIO_PIN_2);

            //
            // Delay for a bit.
            //
            for(uint32_t ui32Loop = 0; ui32Loop < 150000; ui32Loop++)
            {
            }

            //
            // Turn off the Blue LED.
            //
            GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, 0);
#endif
            //
            // Take a snapshot of the latest receive count.
            //
            ui32RxCount = g_ui32UARTRxCount;

        }
    }
#endif    
}
예제 #25
0
//*****************************************************************************
//
// Main 'C' Language entry point.
//
//*****************************************************************************
int
main(void)
{
    float fTemperature, fPressure, fAltitude;
    int32_t i32IntegerPart;
    int32_t i32FractionPart;

    //
    // Setup the system clock to run at 40 MHz from PLL with crystal reference
    //
    ROM_SysCtlClockSet(SYSCTL_SYSDIV_5 | SYSCTL_USE_PLL | SYSCTL_XTAL_16MHZ |
                       SYSCTL_OSC_MAIN);

    //
    // Initialize the UART.
    //
    ConfigureUART();

    //
    // Print the welcome message to the terminal.
    //
    UARTprintf("\033[2JBMP180 Example\n");

    //
    // Set the color to a white approximation.
    //
    g_pui32Colors[RED] = 0x8000;
    g_pui32Colors[BLUE] = 0x8000;
    g_pui32Colors[GREEN] = 0x8000;

    //
    // Initialize RGB driver. Use a default intensity and blink rate.
    //
    RGBInit(0);
    RGBColorSet(g_pui32Colors);
    RGBIntensitySet(0.5f);
    RGBEnable();

    //
    // The I2C3 peripheral must be enabled before use.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_I2C3);
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOD);

    //
    // Configure the pin muxing for I2C3 functions on port D0 and D1.
    // This step is not necessary if your part does not support pin muxing.
    //
    ROM_GPIOPinConfigure(GPIO_PD0_I2C3SCL);
    ROM_GPIOPinConfigure(GPIO_PD1_I2C3SDA);

    //
    // Select the I2C function for these pins.  This function will also
    // configure the GPIO pins pins for I2C operation, setting them to
    // open-drain operation with weak pull-ups.  Consult the data sheet
    // to see which functions are allocated per pin.
    //
    GPIOPinTypeI2CSCL(GPIO_PORTD_BASE, GPIO_PIN_0);
    ROM_GPIOPinTypeI2C(GPIO_PORTD_BASE, GPIO_PIN_1);

    //
    // Initialize the GPIO for the LED.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);
    ROM_GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_1);
    ROM_GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_1, 0x00);

    //
    // Enable interrupts to the processor.
    //
    ROM_IntMasterEnable();

    //
    // Initialize the I2C3 peripheral.
    //
    I2CMInit(&g_sI2CInst, I2C3_BASE, INT_I2C3, 0xff, 0xff,
             ROM_SysCtlClockGet());

    //
    // Initialize the BMP180.
    //
    BMP180Init(&g_sBMP180Inst, &g_sI2CInst, BMP180_I2C_ADDRESS,
               BMP180AppCallback, &g_sBMP180Inst);

    //
    // Wait for initialization callback to indicate reset request is complete.
    //
    while(g_vui8DataFlag == 0)
    {
        //
        // Wait for I2C Transactions to complete.
        //
    }

    //
    // Reset the data ready flag
    //
    g_vui8DataFlag = 0;

    //
    // Enable the system ticks at 10 Hz.
    //
    ROM_SysTickPeriodSet(ROM_SysCtlClockGet() / (10 * 3));
    ROM_SysTickIntEnable();
    ROM_SysTickEnable();

    //
    // After all the init and config we start blink the LED
    //
    RGBBlinkRateSet(1.0f);

    //
    // Begin the data collection and printing.  Loop Forever.
    //
    while(1)
    {
        //
        // Read the data from the BMP180 over I2C.  This command starts a
        // temperature measurement.  Then polls until temperature is ready.
        // Then automatically starts a pressure measurement and polls for that
        // to complete. When both measurement are complete and in the local
        // buffer then the application callback is called from the I2C
        // interrupt context.  Polling is done on I2C interrupts allowing
        // processor to continue doing other tasks as needed.
        //
        BMP180DataRead(&g_sBMP180Inst, BMP180AppCallback, &g_sBMP180Inst);
        while(g_vui8DataFlag == 0)
        {
            //
            // Wait for the new data set to be available.
            //
        }

        //
        // Reset the data ready flag.
        //
        g_vui8DataFlag = 0;

        //
        // Get a local copy of the latest temperature data in float format.
        //
        BMP180DataTemperatureGetFloat(&g_sBMP180Inst, &fTemperature);

        //
        // Convert the floats to an integer part and fraction part for easy
        // print.
        //
        i32IntegerPart = (int32_t) fTemperature;
        i32FractionPart =(int32_t) (fTemperature * 1000.0f);
        i32FractionPart = i32FractionPart - (i32IntegerPart * 1000);
        if(i32FractionPart < 0)
        {
            i32FractionPart *= -1;
        }

        //
        // Print temperature with three digits of decimal precision.
        //
        UARTprintf("Temperature %3d.%03d\t\t", i32IntegerPart, i32FractionPart);

        //
        // Get a local copy of the latest air pressure data in float format.
        //
        BMP180DataPressureGetFloat(&g_sBMP180Inst, &fPressure);

        //
        // Convert the floats to an integer part and fraction part for easy
        // print.
        //
        i32IntegerPart = (int32_t) fPressure;
        i32FractionPart =(int32_t) (fPressure * 1000.0f);
        i32FractionPart = i32FractionPart - (i32IntegerPart * 1000);
        if(i32FractionPart < 0)
        {
            i32FractionPart *= -1;
        }

        //
        // Print Pressure with three digits of decimal precision.
        //
        UARTprintf("Pressure %3d.%03d\t\t", i32IntegerPart, i32FractionPart);

        //
        // Calculate the altitude.
        //
        fAltitude = 44330.0f * (1.0f - powf(fPressure / 101325.0f,
                                            1.0f / 5.255f));

        //
        // Convert the floats to an integer part and fraction part for easy
        // print.
        //
        i32IntegerPart = (int32_t) fAltitude;
        i32FractionPart =(int32_t) (fAltitude * 1000.0f);
        i32FractionPart = i32FractionPart - (i32IntegerPart * 1000);
        if(i32FractionPart < 0)
        {
            i32FractionPart *= -1;
        }

        //
        // Print altitude with three digits of decimal precision.
        //
        UARTprintf("Altitude %3d.%03d", i32IntegerPart, i32FractionPart);

        //
        // Print new line.
        //
        UARTprintf("\n");

        //
        // Delay to keep printing speed reasonable. About 100 milliseconds.
        //
        ROM_SysCtlDelay(ROM_SysCtlClockGet() / (10 * 3));

    }//while end
}
//*****************************************************************************
//
// The program main function.  It performs initialization, then runs a loop to
// process USB activities and operate the user interface.
//
//*****************************************************************************
int
main(void)
{
    uint32_t ui32DriveTimeout;

    //
    // Enable lazy stacking for interrupt handlers.  This allows floating-point
    // instructions to be used within interrupt handlers, but at the expense of
    // extra stack usage.
    //
    ROM_FPULazyStackingEnable();

    //
    // Set the system clock to run at 50MHz from the PLL.
    //
    ROM_SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |
                       SYSCTL_XTAL_16MHZ);

    //
    // Configure the required pins for USB operation.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOB);
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOG);
    ROM_GPIOPinConfigure(GPIO_PG4_USB0EPEN);
    ROM_GPIOPinTypeUSBDigital(GPIO_PORTG_BASE, GPIO_PIN_4);
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOL);
    ROM_GPIOPinTypeUSBAnalog(GPIO_PORTL_BASE, GPIO_PIN_6 | GPIO_PIN_7);
    ROM_GPIOPinTypeUSBAnalog(GPIO_PORTB_BASE, GPIO_PIN_0 | GPIO_PIN_1);

    //
    // Configure SysTick for a 100Hz interrupt.
    //
    ROM_SysTickPeriodSet(ROM_SysCtlClockGet() / TICKS_PER_SECOND);
    ROM_SysTickEnable();
    ROM_SysTickIntEnable();

    //
    // Enable the uDMA controller and set up the control table base.
    // The uDMA controller is used by the USB library.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UDMA);
    ROM_uDMAEnable();
    ROM_uDMAControlBaseSet(g_psDMAControlTable);

    //
    // Enable Interrupts
    //
    ROM_IntMasterEnable();

    //
    // Initialize the display driver.
    //
    CFAL96x64x16Init();

    //
    // Initialize the buttons driver.
    //
    ButtonsInit();

    //
    // Initialize two offscreen displays and assign the palette.  These
    // buffers are used by the slide menu widget to allow animation effects.
    //
    GrOffScreen4BPPInit(&g_sOffscreenDisplayA, g_pui8OffscreenBufA, 96, 64);
    GrOffScreen4BPPPaletteSet(&g_sOffscreenDisplayA, g_pui32Palette, 0,
                              NUM_PALETTE_ENTRIES);
    GrOffScreen4BPPInit(&g_sOffscreenDisplayB, g_pui8OffscreenBufB, 96, 64);
    GrOffScreen4BPPPaletteSet(&g_sOffscreenDisplayB, g_pui32Palette, 0,
                              NUM_PALETTE_ENTRIES);

    //
    // Show an initial status screen
    //
    g_pcStatusLines[0] = "Waiting";
    g_pcStatusLines[1] = "for device";
    ShowStatusScreen(g_pcStatusLines, 2);

    //
    // Add the compile-time defined widgets to the widget tree.
    //
    WidgetAdd(WIDGET_ROOT, (tWidget *)&g_sFileMenuWidget);

    //
    // Initially wait for device connection.
    //
    g_eState = STATE_NO_DEVICE;

    //
    // Initialize the USB stack for host mode.
    //
    USBStackModeSet(0, eUSBModeHost, 0);

    //
    // Register the host class drivers.
    //
    USBHCDRegisterDrivers(0, g_ppHostClassDrivers, g_ui32NumHostClassDrivers);

    //
    // Open an instance of the mass storage class driver.
    //
    g_psMSCInstance = USBHMSCDriveOpen(0, MSCCallback);

    //
    // Initialize the drive timeout.
    //
    ui32DriveTimeout = USBMSC_DRIVE_RETRY;

    //
    // Initialize the power configuration. This sets the power enable signal
    // to be active high and does not enable the power fault.
    //
    USBHCDPowerConfigInit(0, USBHCD_VBUS_AUTO_HIGH | USBHCD_VBUS_FILTER);

    //
    // Initialize the USB controller for host operation.
    //
    USBHCDInit(0, g_pui8HCDPool, HCD_MEMORY_SIZE);

    //
    // Initialize the file system.
    //
    FileInit();

    //
    // Enter an infinite loop to run the user interface and process USB
    // events.
    //
    while(1)
    {
        uint32_t ui32LastTickCount = 0;

        //
        // Call the USB stack to keep it running.
        //
        USBHCDMain();

        //
        // Process any messages in the widget message queue.  This keeps the
        // display UI running.
        //
        WidgetMessageQueueProcess();

        //
        // Take action based on the application state.
        //
        switch(g_eState)
        {
            //
            // A device has enumerated.
            //
            case STATE_DEVICE_ENUM:
            {
                //
                // Check to see if the device is ready.  If not then stay
                // in this state and we will check it again on the next pass.
                //
                if(USBHMSCDriveReady(g_psMSCInstance) != 0)
                {
                    //
                    // Wait about 500ms before attempting to check if the
                    // device is ready again.
                    //
                    ROM_SysCtlDelay(ROM_SysCtlClockGet()/(3));

                    //
                    // Decrement the retry count.
                    //
                    ui32DriveTimeout--;

                    //
                    // If the timeout is hit then go to the
                    // STATE_TIMEOUT_DEVICE state.
                    //
                    if(ui32DriveTimeout == 0)
                    {
                        g_eState = STATE_TIMEOUT_DEVICE;
                    }

                    break;
                }

                //
                // Getting here means the device is ready.
                // Reset the CWD to the root directory.
                //
                g_pcCwdBuf[0] = '/';
                g_pcCwdBuf[1] = 0;

                //
                // Set the initial directory level to the root
                //
                g_ui32Level = 0;

                //
                // We need to reset the indexes of the root menu to 0, so that
                // it will start at the top of the file list, and reset the
                // slide menu widget to start with the root menu.
                //
                g_psFileMenus[g_ui32Level].ui32CenterIndex = 0;
                g_psFileMenus[g_ui32Level].ui32FocusIndex = 0;
                SlideMenuMenuSet(&g_sFileMenuWidget, &g_psFileMenus[g_ui32Level]);

                //
                // Initiate a directory change to the root.  This will
                // populate a menu structure representing the root directory.
                //
                if(ProcessDirChange("/", g_ui32Level))
                {
                    //
                    // If there were no errors reported, we are ready for
                    // MSC operation.
                    //
                    g_eState = STATE_DEVICE_READY;

                    //
                    // Set the Device Present flag.
                    //
                    g_ui32Flags = FLAGS_DEVICE_PRESENT;

                    //
                    // Request a repaint so the file menu will be shown
                    //
                    WidgetPaint(WIDGET_ROOT);
                }

                break;
            }

            //
            // If there is no device then just wait for one.
            //
            case STATE_NO_DEVICE:
            {
                if(g_ui32Flags == FLAGS_DEVICE_PRESENT)
                {
                    //
                    // Show waiting message on screen
                    //
                    g_pcStatusLines[0] = "Waiting";
                    g_pcStatusLines[1] = "for device";
                    ShowStatusScreen(g_pcStatusLines, 2);

                    //
                    // Clear the Device Present flag.
                    //
                    g_ui32Flags &= ~FLAGS_DEVICE_PRESENT;
                }
                break;
            }

            //
            // An unknown device was connected.
            //
            case STATE_UNKNOWN_DEVICE:
            {
                //
                // If this is a new device then change the status.
                //
                if((g_ui32Flags & FLAGS_DEVICE_PRESENT) == 0)
                {
                    //
                    // Clear the screen and indicate that an unknown device
                    // is present.
                    //
                    g_pcStatusLines[0] = "Unknown";
                    g_pcStatusLines[1] = "device";
                    ShowStatusScreen(g_pcStatusLines, 2);
                }

                //
                // Set the Device Present flag.
                //
                g_ui32Flags = FLAGS_DEVICE_PRESENT;

                break;
            }

            //
            // The connected mass storage device is not reporting ready.
            //
            case STATE_TIMEOUT_DEVICE:
            {
                //
                // If this is the first time in this state then print a
                // message.
                //
                if((g_ui32Flags & FLAGS_DEVICE_PRESENT) == 0)
                {
                    //
                    //
                    // Clear the screen and indicate that an unknown device
                    // is present.
                    //
                    g_pcStatusLines[0] = "Device";
                    g_pcStatusLines[1] = "Timeout";
                    ShowStatusScreen(g_pcStatusLines, 2);
                }

                //
                // Set the Device Present flag.
                //
                g_ui32Flags = FLAGS_DEVICE_PRESENT;

                break;
            }

            //
            // The device is ready and in use.
            //
            case STATE_DEVICE_READY:
            {
                //
                // Process occurrence of timer tick.  Check for user input
                // once each tick.
                //
                if(g_ui32SysTickCount != ui32LastTickCount)
                {
                    uint8_t ui8ButtonState;
                    uint8_t ui8ButtonChanged;

                    ui32LastTickCount = g_ui32SysTickCount;

                    //
                    // Get the current debounced state of the buttons.
                    //
                    ui8ButtonState = ButtonsPoll(&ui8ButtonChanged, 0);

                    //
                    // If select button or right button is pressed, then we
                    // are trying to descend into another directory
                    //
                    if(BUTTON_PRESSED(SELECT_BUTTON,
                                      ui8ButtonState, ui8ButtonChanged) ||
                       BUTTON_PRESSED(RIGHT_BUTTON,
                                      ui8ButtonState, ui8ButtonChanged))
                    {
                        uint32_t ui32NewLevel;
                        uint32_t ui32ItemIdx;
                        char *pcItemName;

                        //
                        // Get a pointer to the current menu for this CWD.
                        //
                        tSlideMenu *psMenu = &g_psFileMenus[g_ui32Level];

                        //
                        // Get the highlighted index in the current file list.
                        // This is the currently highlighted file or dir
                        // on the display.  Then get the name of the file at
                        // this index.
                        //
                        ui32ItemIdx = SlideMenuFocusItemGet(psMenu);
                        pcItemName = psMenu->psSlideMenuItems[ui32ItemIdx].pcText;

                        //
                        // Make sure we are not yet past the maximum tree
                        // depth.
                        //
                        if(g_ui32Level < MAX_SUBDIR_DEPTH)
                        {
                            //
                            // Potential new level is one greater than the
                            // current level.
                            //
                            ui32NewLevel = g_ui32Level + 1;

                            //
                            // Process the directory change to the new
                            // directory.  This function will populate a menu
                            // structure with the files and subdirs in the new
                            // directory.
                            //
                            if(ProcessDirChange(pcItemName, ui32NewLevel))
                            {
                                //
                                // If the change was successful, then update
                                // the level.
                                //
                                g_ui32Level = ui32NewLevel;

                                //
                                // Now that all the prep is done, send the
                                // KEY_RIGHT message to the widget and it will
                                // "slide" from the previous file list to the
                                // new file list of the CWD.
                                //
                                SendWidgetKeyMessage(WIDGET_MSG_KEY_RIGHT);

                            }
                        }
                    }

                    //
                    // If the UP button is pressed, just pass it to the widget
                    // which will handle scrolling the list of files.
                    //
                    if(BUTTON_PRESSED(UP_BUTTON, ui8ButtonState, ui8ButtonChanged))
                    {
                        SendWidgetKeyMessage(WIDGET_MSG_KEY_UP);
                    }

                    //
                    // If the DOWN button is pressed, just pass it to the widget
                    // which will handle scrolling the list of files.
                    //
                    if(BUTTON_PRESSED(DOWN_BUTTON, ui8ButtonState, ui8ButtonChanged))
                    {
                        SendWidgetKeyMessage(WIDGET_MSG_KEY_DOWN);
                    }

                    //
                    // If the LEFT button is pressed, then we are attempting
                    // to go up a level in the file system.
                    //
                    if(BUTTON_PRESSED(LEFT_BUTTON, ui8ButtonState, ui8ButtonChanged))
                    {
                        uint32_t ui32NewLevel;

                        //
                        // Make sure we are not already at the top of the
                        // directory tree (at root).
                        //
                        if(g_ui32Level)
                        {
                            //
                            // Potential new level is one less than the
                            // current level.
                            //
                            ui32NewLevel = g_ui32Level - 1;

                            //
                            // Process the directory change to the new
                            // directory.  This function will populate a menu
                            // structure with the files and subdirs in the new
                            // directory.
                            //
                            if(ProcessDirChange("..", ui32NewLevel))
                            {
                                //
                                // If the change was successful, then update
                                // the level.
                                //
                                g_ui32Level = ui32NewLevel;

                                //
                                // Now that all the prep is done, send the
                                // KEY_LEFT message to the widget and it will
                                // "slide" from the previous file list to the
                                // new file list of the CWD.
                                //
                                SendWidgetKeyMessage(WIDGET_MSG_KEY_LEFT);
                            }
                        }
                    }
                }
                break;
            }
            //
            // Something has caused a power fault.
            //
            case STATE_POWER_FAULT:
            {
                //
                // Clear the screen and show a power fault indication.
                //
                g_pcStatusLines[0] = "Power";
                g_pcStatusLines[1] = "fault";
                ShowStatusScreen(g_pcStatusLines, 2);
                break;
            }

            default:
            {
                break;
            }
        }
    }
}
예제 #27
0
파일: main.c 프로젝트: Drooids/nrf
static void wait(void)
{
  ROM_SysCtlDelay(10000000);
}
예제 #28
0
//*****************************************************************************
//
// A simple application demonstrating use of the boot loader,
//
//*****************************************************************************
int
main(void)
{
    tRectangle sRect;
    tContext sContext;
    unsigned long ulSysClock;

    //
    // Enable lazy stacking for interrupt handlers.  This allows floating-point
    // instructions to be used within interrupt handlers, but at the expense of
    // extra stack usage.
    //
    ROM_FPULazyStackingEnable();

    //
    // Set the system clock to run at 50MHz from the PLL
    //
    ROM_SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_XTAL_16MHZ |
                       SYSCTL_OSC_MAIN);
    ulSysClock = ROM_SysCtlClockGet();

    //
    // Initialize the peripherals that each of the boot loader flavors
    // supports.  Since this example is intended for use with any of the
    // boot loaders and we don't know which is actually in use, we cover all
    // bases and initialize for serial, Ethernet and USB use here.
    //
    SetupForUART();
    SetupForUSB();

    //
    // Initialize the buttons driver.
    //
    ButtonsInit();

    //
    // Initialize the display driver.
    //
    CFAL96x64x16Init();

    //
    // Initialize the graphics context.
    //
    GrContextInit(&sContext, &g_sCFAL96x64x16);

    //
    // Fill the top part of the screen with blue to create the banner.
    //
    sRect.sXMin = 0;
    sRect.sYMin = 0;
    sRect.sXMax = GrContextDpyWidthGet(&sContext) - 1;
    sRect.sYMax = 9;
    GrContextForegroundSet(&sContext, ClrDarkBlue);
    GrRectFill(&sContext, &sRect);

    //
    // Change foreground for white text.
    //
    GrContextForegroundSet(&sContext, ClrWhite);

    //
    // Put the application name in the middle of the banner.
    //
    GrContextFontSet(&sContext, g_pFontFixed6x8);
    GrStringDrawCentered(&sContext, "boot-demo2", -1,
                         GrContextDpyWidthGet(&sContext) / 2, 4, 0);

    GrStringDrawCentered(&sContext, "Press select", -1,
                         GrContextDpyWidthGet(&sContext) / 2, 20, false);
    GrStringDrawCentered(&sContext, "button to", -1,
                         GrContextDpyWidthGet(&sContext) / 2, 30, false);
    GrStringDrawCentered(&sContext, "update.", -1,
                         GrContextDpyWidthGet(&sContext) / 2, 40, false);
   
    //
    // Wait for select button to be pressed.
    // 
    while ((ButtonsPoll(0, 0) & SELECT_BUTTON) == 0) 
    {
        ROM_SysCtlDelay(ulSysClock / 1000);
    }

    GrStringDrawCentered(&sContext, "             ", -1,
                         GrContextDpyWidthGet(&sContext) / 2, 20, true);
    GrStringDrawCentered(&sContext, " Updating... ", -1,
                         GrContextDpyWidthGet(&sContext) / 2, 30, true);
    GrStringDrawCentered(&sContext, "             ", -1,
                         GrContextDpyWidthGet(&sContext) / 2, 40, true);

    //
    // Transfer control to the boot loader.
    //
    JumpToBootLoader();

    //
    // The previous function never returns but we need to stick in a return
    // code here to keep the compiler from generating a warning.
    //
    return(0);
}
예제 #29
0
void LED_Init()
{
	ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOM);
	ROM_SysCtlDelay(5);
	ROM_GPIOPinTypeGPIOOutput(GPIO_PORTM_BASE, GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_2);	
}
예제 #30
0
파일: starter1.c 프로젝트: manavm/Classes
int main2(void)
{
    UINT8  IsDHCP = 0;
    int32_t i32CommandStatus;
    _NetCfgIpV4Args_t ipV4;

    unsigned char len = sizeof(_NetCfgIpV4Args_t);
    int Status = 0;

    /* Stop WDT */
    stopWDT();

    /* Initialize the system clock of MCU */
    initClk();

    Board_Init();       // initialize LaunchPad I/O and PD1 LED
    ConfigureUART();    // Initialize the UART.
    UARTprintf("Section 11.4 IoT example, Volume 2 Real-time interfacing\n");
    UARTprintf("This application is configured to measure analog signals from Ain7=PD0\n");
    UARTprintf("  and send UDP packets to IP: %d.%d.%d.%d  Port: %d\n\n",
      SL_IPV4_BYTE(IP_ADDR,3), SL_IPV4_BYTE(IP_ADDR,2), 
      SL_IPV4_BYTE(IP_ADDR,1), SL_IPV4_BYTE(IP_ADDR,0),PORT_NUM);
    /* Initializing the CC3100 device */
    sl_Start(0, 0, 0);

    /* Connecting to WLAN AP - Set with static parameters defined at the top
       After this call we will be connected and have IP address */
    WlanConnect();

    /* Read the IP parameter */
    sl_NetCfgGet(SL_IPV4_STA_P2P_CL_GET_INFO,&IsDHCP,&len,
            (unsigned char *)&ipV4);

    //Print the IP
    UARTprintf("This node is at IP: %d.%d.%d.%d\n",  SL_IPV4_BYTE(ipV4.ipV4,3), SL_IPV4_BYTE(ipV4.ipV4,2), SL_IPV4_BYTE(ipV4.ipV4,1), SL_IPV4_BYTE(ipV4.ipV4,0));

    //
    // Loop forever waiting  for commands from PC...
    //
    while(1)
    {
        //
        // Print prompt for user.
        //
        UARTprintf("\n>");

        //
        // Peek to see if a full command is ready for processing.
        //
        while(UARTPeek('\r') == -1)
        {
            //
            // Approximately 1 millisecond delay.
            //
            ROM_SysCtlDelay(ROM_SysCtlClockGet() / 3000);
        }

        //
        // A '\r' was detected so get the line of text from the receive buffer.
        //
        UARTgets(g_cInput,sizeof(g_cInput));

        //
        // Pass the line from the user to the command processor.
        // It will be parsed and valid commands executed.
        //
        i32CommandStatus = CmdLineProcess(g_cInput);

        //
        // Handle the case of bad command.
        //
        if(i32CommandStatus == CMDLINE_BAD_CMD)
        {
            UARTprintf("    Bad command. Try again.\n");
        }
        //
        // Handle the case of too many arguments.
        //
        else if(i32CommandStatus == CMDLINE_TOO_MANY_ARGS)
        {
            UARTprintf("    Too many arguments for command. Try again.\n");
        }
        //
        // Handle the case of too few arguments.
        //
        else if(i32CommandStatus == CMDLINE_TOO_FEW_ARGS)
        {
            UARTprintf("    Too few arguments for command. Try again.\n");
        }
        //
        // Handle the case of too few arguments.
        //
        else if(i32CommandStatus == CMDLINE_INVALID_ARG)
        {
            UARTprintf("    Invalid command argument(s). Try again.\n");
        }
    }
    
}