/* this is really a sanity check */ static int test_macros(int __rte_unused unused_parm) { #define SMALLER 0x1000U #define BIGGER 0x2000U #define PTR_DIFF BIGGER - SMALLER #define FAIL_MACRO(x)\ {printf(#x "() test failed!\n");\ return -1;} uintptr_t unused = 0; RTE_SET_USED(unused); if ((uintptr_t)RTE_PTR_ADD(SMALLER, PTR_DIFF) != BIGGER) FAIL_MACRO(RTE_PTR_ADD); if ((uintptr_t)RTE_PTR_SUB(BIGGER, PTR_DIFF) != SMALLER) FAIL_MACRO(RTE_PTR_SUB); if (RTE_PTR_DIFF(BIGGER, SMALLER) != PTR_DIFF) FAIL_MACRO(RTE_PTR_DIFF); if (RTE_MAX(SMALLER, BIGGER) != BIGGER) FAIL_MACRO(RTE_MAX); if (RTE_MIN(SMALLER, BIGGER) != SMALLER) FAIL_MACRO(RTE_MIN); if (strncmp(RTE_STR(test), "test", sizeof("test"))) FAIL_MACRO(RTE_STR); return 0; }
static inline int create_unique_device_name(char *name, size_t size) { int ret; if (name == NULL) return -EINVAL; ret = snprintf(name, size, "%s_%u", RTE_STR(CRYPTODEV_NAME_AESNI_MB_PMD), unique_name_id++); if (ret < 0) return ret; return 0; }
static int test_lpm(void) { unsigned i; int status, global_status = 0; for (i = 0; i < NUM_LPM_TESTS; i++) { status = tests[i](); if (status < 0) { printf("ERROR: LPM Test %s: FAIL\n", RTE_STR(tests[i])); global_status = status; } } return global_status; }
static int update_order_ring(struct rte_cryptodev *dev, uint16_t qp_id) { struct scheduler_ctx *sched_ctx = dev->data->dev_private; struct scheduler_qp_ctx *qp_ctx = dev->data->queue_pairs[qp_id]; if (sched_ctx->reordering_enabled) { char order_ring_name[RTE_CRYPTODEV_NAME_MAX_LEN]; uint32_t buff_size = rte_align32pow2( sched_ctx->nb_slaves * PER_SLAVE_BUFF_SIZE); if (qp_ctx->order_ring) { rte_ring_free(qp_ctx->order_ring); qp_ctx->order_ring = NULL; } if (!buff_size) return 0; if (snprintf(order_ring_name, RTE_CRYPTODEV_NAME_MAX_LEN, "%s_rb_%u_%u", RTE_STR(CRYPTODEV_NAME_SCHEDULER_PMD), dev->data->dev_id, qp_id) < 0) { CS_LOG_ERR("failed to create unique reorder buffer " "name"); return -ENOMEM; } qp_ctx->order_ring = rte_ring_create(order_ring_name, buff_size, rte_socket_id(), RING_F_SP_ENQ | RING_F_SC_DEQ); if (!qp_ctx->order_ring) { CS_LOG_ERR("failed to create order ring"); return -ENOMEM; } } else { if (qp_ctx->order_ring) { rte_ring_free(qp_ctx->order_ring); qp_ctx->order_ring = NULL; } } return 0; }
static void ssovf_info_get(struct rte_eventdev *dev, struct rte_event_dev_info *dev_info) { struct ssovf_evdev *edev = ssovf_pmd_priv(dev); dev_info->driver_name = RTE_STR(EVENTDEV_NAME_OCTEONTX_PMD); dev_info->min_dequeue_timeout_ns = edev->min_deq_timeout_ns; dev_info->max_dequeue_timeout_ns = edev->max_deq_timeout_ns; dev_info->max_event_queues = edev->max_event_queues; dev_info->max_event_queue_flows = (1ULL << 20); dev_info->max_event_queue_priority_levels = 8; dev_info->max_event_priority_levels = 1; dev_info->max_event_ports = edev->max_event_ports; dev_info->max_event_port_dequeue_depth = 1; dev_info->max_event_port_enqueue_depth = 1; dev_info->max_num_events = edev->max_num_events; dev_info->event_dev_cap = RTE_EVENT_DEV_CAP_QUEUE_QOS | RTE_EVENT_DEV_CAP_DISTRIBUTED_SCHED | RTE_EVENT_DEV_CAP_QUEUE_ALL_TYPES; }
RTE_CRYPTODEV_VDEV_SLAVE, RTE_CRYPTODEV_VDEV_MODE, RTE_CRYPTODEV_VDEV_ORDERING, RTE_CRYPTODEV_VDEV_MAX_NB_QP_ARG, RTE_CRYPTODEV_VDEV_SOCKET_ID, RTE_CRYPTODEV_VDEV_COREMASK, RTE_CRYPTODEV_VDEV_CORELIST }; struct scheduler_parse_map { const char *name; uint32_t val; }; const struct scheduler_parse_map scheduler_mode_map[] = { {RTE_STR(SCHEDULER_MODE_NAME_ROUND_ROBIN), CDEV_SCHED_MODE_ROUNDROBIN}, {RTE_STR(SCHEDULER_MODE_NAME_PKT_SIZE_DISTR), CDEV_SCHED_MODE_PKT_SIZE_DISTR}, {RTE_STR(SCHEDULER_MODE_NAME_FAIL_OVER), CDEV_SCHED_MODE_FAILOVER}, {RTE_STR(SCHEDULER_MODE_NAME_MULTI_CORE), CDEV_SCHED_MODE_MULTICORE} }; const struct scheduler_parse_map scheduler_ordering_map[] = { {"enable", 1}, {"disable", 0} }; static int
/* * Prepare physical memory mapping: fill configuration structure with * these infos, return 0 on success. * 1. map N huge pages in separate files in hugetlbfs * 2. find associated physical addr * 3. find associated NUMA socket ID * 4. sort all huge pages by physical address * 5. remap these N huge pages in the correct order * 6. unmap the first mapping * 7. fill memsegs in configuration with contiguous zones */ static int rte_eal_hugepage_init(void) { struct rte_mem_config *mcfg; struct hugepage *hugepage, *tmp_hp = NULL; struct hugepage_info used_hp[MAX_HUGEPAGE_SIZES]; uint64_t memory[RTE_MAX_NUMA_NODES]; unsigned hp_offset; int i, j, new_memseg; int nrpages, total_pages = 0; void *addr; memset(used_hp, 0, sizeof(used_hp)); /* get pointer to global configuration */ mcfg = rte_eal_get_configuration()->mem_config; /* for debug purposes, hugetlbfs can be disabled */ if (internal_config.no_hugetlbfs) { addr = malloc(internal_config.memory); mcfg->memseg[0].phys_addr = (phys_addr_t)(uintptr_t)addr; mcfg->memseg[0].addr = addr; mcfg->memseg[0].len = internal_config.memory; mcfg->memseg[0].socket_id = 0; return 0; } /* calculate total number of hugepages available. at this point we haven't * yet started sorting them so they all are on socket 0 */ for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) { /* meanwhile, also initialize used_hp hugepage sizes in used_hp */ used_hp[i].hugepage_sz = internal_config.hugepage_info[i].hugepage_sz; total_pages += internal_config.hugepage_info[i].num_pages[0]; } /* * allocate a memory area for hugepage table. * this isn't shared memory yet. due to the fact that we need some * processing done on these pages, shared memory will be created * at a later stage. */ tmp_hp = malloc(total_pages * sizeof(struct hugepage)); if (tmp_hp == NULL) goto fail; memset(tmp_hp, 0, total_pages * sizeof(struct hugepage)); hp_offset = 0; /* where we start the current page size entries */ /* map all hugepages and sort them */ for (i = 0; i < (int)internal_config.num_hugepage_sizes; i ++){ struct hugepage_info *hpi; /* * we don't yet mark hugepages as used at this stage, so * we just map all hugepages available to the system * all hugepages are still located on socket 0 */ hpi = &internal_config.hugepage_info[i]; if (hpi->num_pages == 0) continue; /* map all hugepages available */ if (map_all_hugepages(&tmp_hp[hp_offset], hpi, 1) < 0){ RTE_LOG(DEBUG, EAL, "Failed to mmap %u MB hugepages\n", (unsigned)(hpi->hugepage_sz / 0x100000)); goto fail; } /* find physical addresses and sockets for each hugepage */ if (find_physaddr(&tmp_hp[hp_offset], hpi) < 0){ RTE_LOG(DEBUG, EAL, "Failed to find phys addr for %u MB pages\n", (unsigned)(hpi->hugepage_sz / 0x100000)); goto fail; } if (find_numasocket(&tmp_hp[hp_offset], hpi) < 0){ RTE_LOG(DEBUG, EAL, "Failed to find NUMA socket for %u MB pages\n", (unsigned)(hpi->hugepage_sz / 0x100000)); goto fail; } if (sort_by_physaddr(&tmp_hp[hp_offset], hpi) < 0) goto fail; /* remap all hugepages */ if (map_all_hugepages(&tmp_hp[hp_offset], hpi, 0) < 0){ RTE_LOG(DEBUG, EAL, "Failed to remap %u MB pages\n", (unsigned)(hpi->hugepage_sz / 0x100000)); goto fail; } /* unmap original mappings */ if (unmap_all_hugepages_orig(&tmp_hp[hp_offset], hpi) < 0) goto fail; /* we have processed a num of hugepages of this size, so inc offset */ hp_offset += hpi->num_pages[0]; } /* clean out the numbers of pages */ for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) for (j = 0; j < RTE_MAX_NUMA_NODES; j++) internal_config.hugepage_info[i].num_pages[j] = 0; /* get hugepages for each socket */ for (i = 0; i < total_pages; i++) { int socket = tmp_hp[i].socket_id; /* find a hugepage info with right size and increment num_pages */ for (j = 0; j < (int) internal_config.num_hugepage_sizes; j++) { if (tmp_hp[i].size == internal_config.hugepage_info[j].hugepage_sz) { internal_config.hugepage_info[j].num_pages[socket]++; } } } /* make a copy of socket_mem, needed for number of pages calculation */ for (i = 0; i < RTE_MAX_NUMA_NODES; i++) memory[i] = internal_config.socket_mem[i]; /* calculate final number of pages */ nrpages = calc_num_pages_per_socket(memory, internal_config.hugepage_info, used_hp, internal_config.num_hugepage_sizes); /* error if not enough memory available */ if (nrpages < 0) goto fail; /* reporting in! */ for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) { for (j = 0; j < RTE_MAX_NUMA_NODES; j++) { if (used_hp[i].num_pages[j] > 0) { RTE_LOG(INFO, EAL, "Requesting %u pages of size %uMB" " from socket %i\n", used_hp[i].num_pages[j], (unsigned) (used_hp[i].hugepage_sz / 0x100000), j); } } } /* create shared memory */ hugepage = create_shared_memory(eal_hugepage_info_path(), nrpages * sizeof(struct hugepage)); if (hugepage == NULL) { RTE_LOG(ERR, EAL, "Failed to create shared memory!\n"); goto fail; } /* * unmap pages that we won't need (looks at used_hp). * also, sets final_va to NULL on pages that were unmapped. */ if (unmap_unneeded_hugepages(tmp_hp, used_hp, internal_config.num_hugepage_sizes) < 0) { RTE_LOG(ERR, EAL, "Unmapping and locking hugepages failed!\n"); goto fail; } /* * copy stuff from malloc'd hugepage* to the actual shared memory. * this procedure only copies those hugepages that have final_va * not NULL. has overflow protection. */ if (copy_hugepages_to_shared_mem(hugepage, nrpages, tmp_hp, total_pages) < 0) { RTE_LOG(ERR, EAL, "Copying tables to shared memory failed!\n"); goto fail; } /* free the temporary hugepage table */ free(tmp_hp); tmp_hp = NULL; memset(mcfg->memseg, 0, sizeof(mcfg->memseg)); j = -1; for (i = 0; i < nrpages; i++) { new_memseg = 0; /* if this is a new section, create a new memseg */ if (i == 0) new_memseg = 1; else if (hugepage[i].socket_id != hugepage[i-1].socket_id) new_memseg = 1; else if (hugepage[i].size != hugepage[i-1].size) new_memseg = 1; else if ((hugepage[i].physaddr - hugepage[i-1].physaddr) != hugepage[i].size) new_memseg = 1; else if (((unsigned long)hugepage[i].final_va - (unsigned long)hugepage[i-1].final_va) != hugepage[i].size) new_memseg = 1; if (new_memseg) { j += 1; if (j == RTE_MAX_MEMSEG) break; mcfg->memseg[j].phys_addr = hugepage[i].physaddr; mcfg->memseg[j].addr = hugepage[i].final_va; mcfg->memseg[j].len = hugepage[i].size; mcfg->memseg[j].socket_id = hugepage[i].socket_id; mcfg->memseg[j].hugepage_sz = hugepage[i].size; } /* continuation of previous memseg */ else { mcfg->memseg[j].len += mcfg->memseg[j].hugepage_sz; } hugepage[i].memseg_id = j; } if (i < nrpages) { RTE_LOG(ERR, EAL, "Can only reserve %d pages " "from %d requested\n" "Current %s=%d is not enough\n" "Please either increase it or request less amount " "of memory.\n", i, nrpages, RTE_STR(CONFIG_RTE_MAX_MEMSEG), RTE_MAX_MEMSEG); return (-ENOMEM); } return 0; fail: if (tmp_hp) free(tmp_hp); return -1; }